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Abstract. This paper describes the outcomes of an ongoing collabo-
ration between Siemens and the University of Oxford, with the goal of
facilitating the design of ontologies and their deployment in applications.
Ontologies are often used in industry to capture the conceptual informa-
tion models underpinning applications. We start by describing the role
that such models play in two use cases in the manufacturing and energy
production sectors. Then, we discuss the formalisation of information
models using ontologies, and the relevant reasoning services. Finally, we
present SOMM—a tool that supports engineers with little background
on semantic technologies in the creation of ontology-based models and in
populating them with data. SOMM implements a fragment of OWL 2 RL
extended with a form of integrity constraints for data validation, and it
comes with support for schema and data reasoning, as well as for model
integration. Our preliminary evaluation demonstrates the adequacy of
SOMM’s functionality and performance.

1 Introduction

Software systems in the domain of industrial manufacturing have become increas-
ingly important in recent years. Production machines, such as assembly line
robots or industrial turbines, are equipped with and controlled by complex and
costly pieces of software; according to a recent survey, over 40 % of the total
production cost of such machines is due to software development and the trend
is for this number only to continue growing [35]. Additionally, many critical
tasks within business, engineering, and production departments (e.g., control of
production processes, resource allocation, reporting, business decision making)
have also become increasingly dependent on complex software systems.

Recent global initiatives such as Industry 4.0 [9,18,34] aim at the develop-
ment of smart factories based on fully computerised, software-driven, automa-
tion of production processes and enterprise-wide integration of software com-
ponents. In smart factories, software systems monitor and control physical
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processes, effectively communicate and cooperate with each other as well as
with humans, and are in charge of making decentralised decisions. The success
of such ambitious initiatives relies on the seamless (re)development and inte-
gration of software components and services. This poses major challenges to an
industry where software systems have historically been developed independently
from each other.

There has been a great deal of research in recent years investigating key
aspects of software development in industrial manufacturing domains, including
life-cycle costs, dependability, compatibility, integration, and performance (e.g.,
see [41] for a survey). This research has highlighted the need for enterprise-
wide information models—machine-readable conceptualisations describing the
functionality of and information flow between different assets in a plant, such
as equipment and production processes. The development information models
based on ISA and IEC standards1 has now become a common practice in modern
companies [30] and Siemens is not an exception in this trend.

In practice, however, many types of models co-exist, and applications typi-
cally access data from different kinds of machines and processes designed accord-
ing to different models. These information models have been independently
developed in different (often incompatible) formats using different types of pro-
prietary software; furthermore, they may not come with a well-defined seman-
tics, and their specification can be ambiguous. As a result, model development,
maintenance, and integration, as well as data exchange and sharing pose major
challenges in practice.

Adoption of semantic technologies has been a recent development in many
large companies such as IBM [11], the steel manufacturer Arcelor Mittal [2], the
oil and gas company Statoil [21], and Siemens [1,4,19,20,22,25,32]. An impor-
tant application of these technologies has been the formalisation of information
models using OWL 2 ontologies and the use of RDF for storing application data.
OWL 2 provides a rich and flexible modelling language that seems well-suited
for describing industrial information models: it not only comes with an unam-
biguous, standardised, semantics, but also with a wide range of tools that can be
used to develop, validate, integrate, and reason with such models. In turn, RDF
data can not only be seamlessly accessed and exchanged, but also stored directly
in highly scalable RDF triple stores and effectively queried in conjunction with
the available ontologies. Moreover, legacy and other data that must remain in
its original format and cannot be transformed into RDF can be virtualised as
RDF using ontologies following the Ontology-Based Data Access (OBDA) app-
roach [21,23,29].

In this paper, we describe the outcomes of an ongoing collaboration between
Siemens Corporate Technology in Munich and the University of Oxford, with the
goal of facilitating deployment of ontology-based industrial information models.
We start by describing the key role that information models play in two use
cases in the manufacturing and energy production sectors. Then, we present
industrial information models that are used for describing manufacturing and

1 International Society of Automation and International Electrotechnical Commission.
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energy plants, and discuss how they can be captured using ontologies. In our
discussion, we stress the modelling choices made when formalising these models
as ontologies and identify the key OWL constructs required in this setting. Our
analysis revealed the need for integrity constraints for data validation [27,37],
which are not available in OWL 2. Hence, we discuss in detail what kinds of
constraints are needed in industrial use cases and how to incorporate them. We
then illustrate the use of reasoning services, such as concept satisfiability, data
constraint validation, and query answering for addressing Siemens’ application
requirements.

Ontologies are currently being created and maintained in Siemens by qualified
R&D personnel with expertise in ontology languages and ontology engineering.
In order to widen the scope of application of semantic technologies in the com-
pany it is crucial to make ontology development accessible to other teams of
engineers. To this end, we have developed the Siemens-Oxford Model Manager
(SOMM)—a tool that has been designed to fulfil industrial requirements and
which supports engineers with little background on semantic technologies in the
creation and use of ontologies. SOMM provides a simple interface for ontology
development and enables the introduction of instance data via automatically gen-
erated forms that are driven by the ontology and which help minimising errors in
data entry. SOMM implements a fragment of the OWL 2 RL profile [26] extended
with database integrity constraints for data validation; the supported language
is sufficient to capture the main features of ISA and ICE based information mod-
els used by Siemens. SOMM is built on top of Web-Protégé [40], which provides
built-in functionality for ontology versioning and collaborative development. It
relies on HermiT [10] for ontology classification and LogMap [16] to support
model alignment and merging. For query answering and constraint validation,
SOMM requires a connection to a triple store or a rule inference system that
supports Datalog reasoning and stratified negation-as-failure.

We showcase the practical benefits of our tool using two ontologies in the
manufacturing and power generation domains. Both ontologies have been devel-
oped using SOMM by Siemens engineers to capture information models cur-
rently in use. Based on these ontologies, we conducted an empirical evaluation
of SOMM’s performance in supporting constraint validation and query answer-
ing over realistic manufacturing and gas turbine data. In our experiments, we
coupled SOMM with the rule inference engine IRIS [3], which is available under
the LGPL license.2 Our evaluation demonstrates the adequacy of SOMM’s func-
tionality and performance for industrial applications.

2 Industrial Information Models

Conceptual information models can be exploited in a wide range of manufactur-
ing and energy production applications. In this Section, we discuss two concrete
use cases and describe the underpinning models and their limitations.

2 http://www.iris-reasoner.org/.

http://www.iris-reasoner.org/
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2.1 Applications in Manufacturing and Energy Production

In manufacturing and energy production plants it is essential that all processes
and equipment run smoothly and without interruptions.

In a typical manufacturing plant, data is generated and stored whenever a
piece of equipment consumes material or completes a task. This data is then
accessed by plant operators using manufacturing execution systems (MES)—
software programs that steer the production in a manufacturing plant. MESs
are responsible for keeping track of the material inventory and tracing their con-
sumption, thus ensuring that equipment and materials needed for each process
are available at the relevant time [30]. Similarly, turbines in energy plants are
equipped with sensors that are continuously generating data. This data is con-
sumed by remote monitoring systems (RMS), which analyse turbine data to
prevent faults, report anomalies and ensure that the turbines operate without
interruption. In both application scenarios, the use of information models is
twofold.

1. Models are used to provide machine-readable specifications for the data gen-
erated by equipment and processes, and for the data flow across assets and
processes in a plant.

2. Models provide a schema for constructing and executing complex queries. In
particular, monitoring tasks in MESs are realised by means of queries issued
to production machines and data hubs; similarly, anomaly detection in an
RMS relies on queries spanning the structure of the turbines, the readings of
their sensors, and the configuration of turbines within a plant.

2.2 Information Models Based on Industrial Standards

We next describe the information models in Siemens relevant to the aforemen-
tioned applications. These models have been developed in compliance with ISA,
IEC, and ISO/TS international standards.

Manufacturing Models. For many manufacturing applications it is a com-
mon practice to rely on information models that are based on the international
standard ISA-88/95.

The ISA-88/95 standard provides general guidelines for specifying the func-
tionality of and interface between manufacturing software systems. The stan-
dard consists of UML-like diagrammatic descriptions accompanied with tables
and unstructured text, which are used to extend the diagrams with additional
information and examples. Figure 1 presents an excerpt of the ISA-88/95 stan-
dard modelling materials, equipment, personnel, and processes in a plant. For
instance, one of these diagrams establishes that pieces of equipment can be
composed by other pieces of equipment and are described by a number of spec-
ified ‘equipment properties’. The table complementing this diagram indicates
that each piece of equipment must have a numeric ID and may have a textual
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Fig. 1. Fragment of ISA 88/95 and an example model based on it.

description; additional properties of equipment can be introduced by providing
an ID, a textual description of the property, and a value range.

Figure 1 provides a simplified version of an information model based on the
standard ISA-88/95. The model is organised in three layers: product, process,
and execution. On the product level, we can see the specification of two products
and their relationship to production processes; for instance, Product1 consists
of PartA and PartB, which are manufactured by two consecutive processes. The
process segment level provides more fine-grained specifications of the structure of
each process; for instance, Process2 consists of three operations, where the second
one relies on specific kinds of materials and equipment. Finally, at the execution
level, we can see how data is stored and accessed by individual processes.

Energy Plant Models. Information models for energy plants are often based
on the Reference Designation System for Power Plants (RDS-PP) and Kraftwerk-
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Fig. 2. Designation models IEC 81346, ISO/TS 16952-10, and RDS-PP and example
energy information model for an energy plant [31].

Kennzeichensysten (KKS) standards, which are in turn extensions for the energy
sector of the IEC 81346 and ISO/TS 16952-10 international standards.

IEC 81346 and ISO/TS 16952-10 provide a generic dictionary of codes for
designating and classifying industrial equipment. Figure 2 provides an except
of these standards and their dependencies. For instance, in IEC-81346 letters
‘B’ to ‘U’ are used for generically designating systems in power plants. ISO/TS
16952-10 makes this specification more precise by indicating, for example, that
letter ‘M’ refers to systems for generating and transmitting electricity, and that
we can append ‘D’ to ‘M’ to refer to a wind turbine system. RDS PP and KKS
provide a more extensive vocabulary of codes for equipment, their functionality
and locations, as well as a system for combining such codes.

A typical energy plant model describes the structure of a plant by providing
the functionality and location of each equipment component using RDS PP and
KKS codes. Having this information in a machine-readable format is important
for planning and construction, as well as for the software-driven operation and
maintenance of the plant. Figure 2 shows how a specific plant is represented in
a model; for instance, code =G001 MDL10 denotes that the yaw drive system
number 10 of type MDL is located in the wind turbine generator number 001.
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2.3 Technical Challenges

The development and use of information models in practice poses major chal-
lenges.

1. Model development is costly, as it requires specialised training and proprietary
tools; as a result, model development often cannot keep up with the arrival
of new equipment and introduction of new processes.

2. Models are difficult to integrate and share since they are often independently
developed using different types of proprietary software and they are based on
incompatible data formats.

3. Monitoring queries are difficult to compose and execute on top of information
models: they must comply with the requirements of the models (e.g., refer to
specific codes in the energy use case), and their execution requires access to
heterogeneous data from different machines and processes.

In order to overcome these challenges Siemens has recently applied semantic
technologies in a number of applications [13,15,19,22,32]. In particular, OWL 2
has been used for describing information models. The choice of OWL 2 is not
surprising since it provides a rich and flexible modelling language that is well
suited for addressing the aforementioned challenges: it comes with an unam-
biguous, standardised semantics, and a wide range of tools and infrastructure.
Moreover, RDF provides a unified data exchange format, which can be used to
seamlessly access and exchange data, and hence facilitate monitoring tasks based
on complex queries.

3 From Information Models to Ontologies
and Constraints

In this section we describe the ontologies that we have developed to capture
manufacturing and energy production models presented in Sect. 2. The goal of
our ontologies is to eventually replace their underpinning models in applica-
tions. Thus, their design has been driven towards fulfilling the same purposes
as the models they originate from; that is, to act as schema-level templates for
data generation and exchange, and to enable the formulation and execution of
monitoring queries.

The representation of industrial information models and standards using
ontologies has been widely acknowledged as a non-trivial task [5,12,14,36]. In
Sect. 3.1 we discuss the modelling choices underpinning the design of our ontolo-
gies and identify a fragment of OWL 2 RL that is sufficient to capture the basic
aspects of the information models. Our analysis of the models, however, also
revealed the need to incorporate database integrity constraints for data valida-
tion, which are not supported in OWL 2 [27,37]. Thus, we also discuss the kinds
of constraints that are relevant to our applications.

Finally, in Sect. 3.2 we discuss how the OWL 2 RL axioms and integrity
constraints can be captured by means of rules with stratified negation for the
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purpose of data validation and query answering. We assume basic familiarity
with Datalog—the rule language underpinning OWL 2 RL and SWRL—as well
as with stratified negation-as-failure (see [6] for an excellent survey on Logic
Programming).

3.1 Modelling

From an ontological point of view, most building blocks of the the typical indus-
trial information models are rather standard in conceptual design and naturally
correspond to OWL 2 classes (e.g., Turbine, Process, Product), object properties
(e.g., hasPart, hasFunction, locatedIn) and data properties (e.g., ID, hasRotor-
Speed).

The main challenge that we encountered was to capture the constraints of the
models using ontological axioms. We next describe how this was accomplished
using a combination of OWL 2 RL axioms and integrity constraints.

Standard OWL 2 RL Axioms. The specification of the models suggests
the arrangement of classes and properties according to subsumption hierarchies,
which represent the skeleton of the model and establish the basic relationships
between their components. For instance, in the energy plant model a Turbine
is specified as a kind of Equipment, whereas hasRotorSpeed is seen as a more
specific relation than hasSpeed. The models also suggest that certain properties
must be declared as transitive, such as hasPart and locatedIn. Similarly, certain
properties are naturally seen as inverse of each other (e.g., hasPart and partOf ).
These requirements are easily modelled in OWL 2 using the following axioms
written in functional-style syntax:

SubClassOf(Turbine Equipment) (1)
SubDataPropertyOf(hasRotorSpeed hasSpeed) (2)
TransitiveObjectProperty(hasPart) (3)
InverseObjectProperties(hasPart partOf ) (4)

These axioms can be readily exploited by reasoners to support query answering;
e.g., when asking for all equipment with a rotor, one would expect to see all
turbines that contain a rotor as a part (either directly or indirectly).

Additionally, the models describe optional relationships between entities. In
the manufacturing model certain materials are optional to certain processes, i.e.,
they are compatible with the process but they are not always required. Similarly,
certain processes can optionally be followed by other processes ( e.g., conveying
may be followed by packaging). Universal (i.e., AllValuesFrom) restrictions are
well-suited for attaching an optional property to a class. For instance, the axiom

SubClassOf(Conveying ObjectAllValuesFrom(followedBy Packaging)) (5)

states that only packaging processes can follow conveying processes; that is, a
conveying process can be either terminal (i.e., not followed by any other process)



Capturing Industrial Information Models 333

or it is followed by a packaging process. As a result, when introducing a new
conveying process we are not forced to provide a follow-up process, but if we do
so it must be an instance of Packaging.

All the aforementioned types of axioms are included in the OWL 2 RL profile.
This has many practical advantages for reasoning since OWL 2 RL is amenable
to efficient implementation using rule-based technologies.

Constraint Axioms. In addition to optional relationships, the information
models from Sect. 2 also describe relationships that are inherently mandatory,
e.g., when introducing a new turbine, the energy model requires that we also
provide its rotors.

This behaviour is naturally captured by an integrity constraint: whenever a
turbine is added and its rotors are not provided, the application should flag an
error. Integrity constraints are not supported in OWL 2; for instance, the axiom

SubClassOf(Turbine ObjectSomeValuesFrom(hasPart Rotor)) (6)

states that every turbine must contain a rotor as a part; such rotor, however,
can be possibly unknown or unspecified.

The information models also impose cardinality restrictions on relationships.
For instance, each double rotor turbine in the energy plant model is specified as
having exactly two rotors. This can be modelled in OWL 2 using the axioms

SubClassOf(TwoRotorTurbine ObjectMinCardinality(2 hasPart Rotor)) (7)
SubClassOf(TwoRotorTurbine ObjectMaxCardinality(2 hasPart Rotor)) (8)

Such cardinality restrictions are interpreted as integrity constraints in many
applications: when introducing a specific double rotor turbine, the model requires
that we also provide its two rotors. The semantics of axioms (7) and (8) is not
well-suited for this purpose: on the one hand, (7) does not enforce a double rotor
turbine to explicitly contain any rotors at all; on the other hand, if more than
two rotors are provided, then (8) non-deterministically enforces at least two of
them to be equal.

There have been several proposals to extend OWL 2 with integrity constraints
[27,37]. In these approaches, the ontology developer explicitly designates a sub-
set of the OWL 2 axioms as constraints. Similarly to constraints in databases,
these axioms are used as checks over the given data and do not participate in
query answering once the data has been validated. The specifics of how this
is accomplished semantically differ amongst each of the proposals; however, all
approaches largely coincide if the standard axioms are in OWL 2 RL.

3.2 Data Validation and Query Answering

Our approach to data validation and query answering follows the standard
approaches in the literature [27,37]: given a query Q, dataset D, and OWL
2 ontology O consisting of a set S of standard OWL 2 RL axioms and a set C
of axioms marked as constraints, we proceed according to Steps 1–4 given next.
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Table 1. OWL 2 RL axioms as rules. All entities mentioned in the axioms are named.
By abuse of notation, we use SubPropertyOf and AllValuesFrom to refer to both their
Object and Data versions in functional syntax.

OWL 2 Axiom Datalog Rules

SubClassOf(A B) B(?x) ← A(?x)

SubPropertyOf(P1 P2) P2(?x, ?y) ← P1(?x, ?y)

TransitiveObjectProperty(P ) P (?x, ?z) ← P (?x, ?y) ∧ P (?y, ?z)

InverseObjectProperties(P1, P2) P2(?y, ?x) ← P1(?x, ?y) and

P1(?y, ?x) ← P2(?x, ?y)

SubClassOf(A AllValuesFrom(P B)) B(?y) ← P (?x, ?y) ∧ A(?x)

1. Translate the standard axioms S into a Datalog program ΠS using the well-
known correspondence between OWL 2 RL and Datalog.

2. Translate the integrity constraints C into a Datalog program ΠC with strati-
fied negation-as-failure containing a distinguished binary predicate Violation
for recording the individuals and axioms involved in a constraint violation.

3. Retrieve and flag all integrity constraint violations. This can be done by
computing the extension of the Violation predicate.

4. If no constraints are violated, answer the user’s query Q using the query
answering facilities provided by the reasoner.

Steps 3 and 4 can be implemented on top of RDF triple stores with support
for OWL 2 RL and stratified negation (e.g., [28]), as well as on top of generic
rule inference systems (e.g., [3]). In the remainder of this Section we illustrate
Steps 1 and 2, where standard axioms and constraints are translated into rules.
Standard Axioms. Table 1 provides the standard OWL 2 RL axioms needed to
capture the information models of Sect. 2 and their translation into negation-free
rules. In particular, the axioms (1)–(5) are equivalent to the following rules:

Equipment(?x) ← Turbine(?x) (9)
hasSpeed(?x, ?y) ← hasRotorSpeed(?x, ?y) (10)
hasPart(?x, ?z) ← hasPart(?x, ?y) ∧ hasPart(?y, ?z) (11)
Packaging(?y) ← Conveying(?x) ∧ followedBy(?x, ?y) (12)

Constraint Axioms. Table 2 provides the constraint axioms required to cap-
ture the models of Sect. 2 together with their translation into rules with nega-
tion. Our translation assigns a unique id to each individual axiom marked as an
integrity constraint in the ontology, and it introduces predicates not occurring
in the ontology in the heads of all rules. Constraint violations are recorded using
the fresh predicate Violation relating individuals to constraint axiom ids.

The constraint (6) from Sect. 3.1 is captured by the following rules:

hasPart Rotor(?x) ← hasPart(?x, ?y) ∧ Rotor(?y) (13)
V iolation(?x, α) ← Turbine(?x) ∧ not hasPart Rotor(?x) (14)
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Table 2. Constraints axioms as rules. All entities are named, n ≥ 1, and α is the
unique id for the given constraint. SomeValuesFrom, HasValue, FunctionalProperty,
MaxCardinality and MinCardinality denote both their Object and Data versions.

OWL Axiom Datalog rules

SubClassOf(A SomeValuesFrom(R B)) R B(?x) ← R(?x, ?y) ∧ B(?y) and

V iolation(?x, α) ← A(?x) ∧ not R B(?x)

SubClassOf(A HasValue(R b)) V iolation(?x, α) ← A(?x) ∧ not R(?x, b)

FunctionalProperty(R)
R 2(?x) ← R(?x, ?y1) ∧ R(?x, ?y2) ∧

not owl:sameAs(?y1, ?y2)

and V iolation(?x, α) ← R 2(?x)

SubClassOf(A MaxCardinality(n R B))

R (n+1) B(?x) ← ∧

1≤i≤n+1
(R(?x, ?yi) ∧ B(?yi))

∧

1≤i<j≤n+1
(not owl:sameAs(?yi, ?yj))

and V iolation(?x, α) ← A(?x) ∧ R (n+1) B(?x)

SubClassOf(A MinCardinality(n R B))

R n B(?x) ← ∧

1≤i≤n

(R(?x, ?yi) ∧ B(?yi))

∧

1≤i<j≤n

(not owl:sameAs(?yi, ?yj))

and V iolation(?x, α) ← A(?x) ∧ not R n B(?x)

Rule (13) identifies all individuals with a rotor as a part, and stores them as
instances of the auxiliary predicate hasPart Rotor . In turn, Rule (14) identifies
all turbines that are not known to be instances of hasPart Rotor (i.e., those with
no known rotor as a part) and links them to the constraint α they violate.

Integrity constraints based on cardinalities require the use of the OWL 2
equality predicate owl:sameAs. For instance, the constraint axiom (7) from
Sect. 3.1, to which we assign the id β1, is translated into the following rules:

hasPart 2 Rotor(?x) ←
∧

1≤i≤2

(hasPart(?x, ?yi) ∧ Rotor(?yi))∧

∧ (not owl:sameAs(?y1, ?y2))
V iolation(?x, β1) ←TwoRotorTurbine(?x) ∧ not hasPart 2 Rotor(?x)

The first rule infers an instance of the auxiliary predicate hasPart 2 Rotor if it
is connected to two instances of Rotor that are not known to be equal; in turn,
the second rule infers that all instances of TwoRotorTurbine that are not known
to be instances of the auxiliary predicate violate the constraint (7). Similarly,
axiom (8), to which we assign the id β2, is translated as follows:

hasPart 3 Rotor(?x) ←
∧

1≤i≤3

(hasPart(?x, ?yi) ∧ Rotor(?yi))∧

∧
∧

1≤i<j≤3

(not owl:sameAs(?yi, ?yj))

V iolation(?x, β2) ←TwoRotorTurbine(?x) ∧ hasPart 3 Rotor(?x)

Analogously to the previous case, the first rule infers that an individual is an
instance of hasPart 3 Rotor if it is connected to three instances of Rotor that are
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not known to be equal; in turn, the second rule infers that every such individual
that is also an instance of TwoRotorTurbine violates the constraint axiom (8).

To conclude this section, we note that our translation in Table 2 yields a
stratified program for any set C of constraints. We can always define a stratifica-
tion where the lowest stratum consists of the predicates in C and owl:sameAs,
the intermediate stratum contains all predicates of the form R B, R n B, and
R n, and the uppermost stratum contains the special V iolation predicate.

4 SOMM: An Industrial Ontology Management System

We have developed the Siemens-Oxford Ontology Management (SOMM) tool3

to support engineers in building ontologies and inserting data based on their
information models. The interface of SOMM is restricted to support only the
kinds of standard OWL 2 RL axioms and constraints discussed in Sect. 3.

SOMM is built on top of the Web-Protégé platform [40] by extending its
front-end with new visual components and its back-end to access a Datalog-
based triple store or a generic rule inference system for query answering and
constraint validation, the OWL 2 reasoner HermiT [33] for ontology classifica-
tion, and LogMap [16] to support ontology alignment and merging. Our choice
of WebProtégé was based on Siemens’ requirements for the platform underpin-
ning SOMM, namely that it (i) can be used as a Web application; (ii) is under
active development; (iii) is open-source and modular; (iv) includes built-in func-
tionality for ontology versioning and collaborative development; (v) provides a
form-based and end-user oriented interface; and (vi) enables the automatic gener-
ation of forms to insert instance data. Although we considered other alternatives
such as Protégé-desktop [39], NeON toolkit [8], OBO-Edit [7], and TopBraid
Composer [38], we found that only WebProtégé satisfied all the aforementioned
requirements.

In the remainder of this section, we describe the main features of SOMM.

Insertion of axioms and constraints. We have implemented a form-
based interface for editing standard axioms and constraints. Figure 3 shows
a screenshot of the SOMM class editor representing the following axioms about
SteamTurbine (abbreviated below as ST ), where all but the last axiom represent
constraints.

SubClassOf(ST ObjectSomeValuesFrom(hasState State))
SubClassOf(ST DataSomeValuesFrom(hasId xsd:string))

SubClassOf(ST ObjectMinCardinality(1 hasConfig STConfig))
SubClassOf(ST ObjectMaxCardinality(3 hasConfig STConfig))

SubClassOf(ST ObjectAllValuesFrom(hasProductLine ProductLine))

The interface shows that the class SteamTurbine has three mandatory properties
(hasState, hasID and hasConfig) marked as ‘Required’ and interpreted as con-
straints, and an optional property (hasProductLine) interpreted as a standard
3 http://www.cs.ox.ac.uk/isg/tools/SOMM/.

http://www.cs.ox.ac.uk/isg/tools/SOMM/
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axiom. Object and data properties are indicated by blue and green rectangles,
respectively. For each property we can specify their filler using a WebProtégé
autocompletion field. Finally, the fields ‘Min’ and ‘Max’ are used to represent
cardinality constraints on mandatory properties.

Fig. 3. SOMM editor to attach properties to classes.

Fig. 4. Data insertion in SOMM.

Automatically generated data forms.SOMM exploits the capabilities of
the ‘knowledge acquisition forms’ in Web-Protégé to guide engineers during data
entry. The main use of data forms that we envision is ontology validation during
the time of ontology development. The forms are automatically generated for each
class based on its relevant mandatory and optional properties. For this, SOMM
considers (i) the explicitly provided properties; (ii) the inherited properties; and
(iii) the properties explicitly attached to its descendant classes. The latter were
deemed useful by Siemens engineers, e.g., although Turbine does not have directly
attached properties, the SOMM interface would suggests adding data for the prop-
erties attached to its subclass SteamTurbine. Figure 4 shows an example of the
property fields for an instance of the class SteamTurbine, where required fields
(i.e., those for which a value must be provided) are marked with (*).

Extended hierarchies.In addition to subsumption hierarchies, SOMM allows
also for hierarchies based on arbitrary properties. These can be seen as a gener-
alisation of partonomy hierarchies, and assume that the dependencies between
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classes or individuals based on the relevant property are ‘tree-shaped’. Figures 5a
and b show the hierarchy for the follows property, which determines which kinds
of processes can follow other processes; for instance, Conveying follows Loading
and is followed by Testing .

Alignment. SOMM integrates the system LogMap [16] to support model align-
ment and merging. Users can select and merge two Web-Protégé projects, or
import and merge an ontology into the active Web-Protégé project. Although
LogMap supports interactive alignment [17], it is currently used in SOMM in an
automatic mode; we are planning to extend SOMM’s interface to support user
interaction in the alignment process.

Reasoning. SOMM relies on HermiT [10] to support standard reasoning ser-
vices such as class satisfiability and ontology classification. Data validation and
query answering support is currently provided on top of the IRIS reasoner [3],
as described in Sect. 3.2. Figures 5c and d illustrates the supported reasoning
services. The left-hand-side of the figure shows that the class GasTurbineModes
is satisfiable and Process is an inferred superclass. On the right-hand-side we
can see that steam turbine 987 violates one of the integrity constraints; indeed,
as shown in Fig. 4, steam turbine 987 is missing data for the property hasState,
which is mandatory for all steam turbines (see Fig. 3).

(a) Classes (b) Individuals

(c) Classes (d) Individuals

Fig. 5. Above: tree-like navigation of the ontology classes and individuals in SOMM.
Below: reasoning services for ontology classes and individuals in SOMM
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5 Evaluation

We have evaluated the practical feasibility of the data validation and query
answering services provided by SOMM. For this, we have conducted two sets of
experiments for the manufacturing and energy turbine scenarios, respectively.
In the first experiment, we simulated the operation of a manufacturing plant
using a synthetic generator that produces realistic product manufacturing data
of varying size; in the second experiment, we used real anonymised turbine data.4

All our experiments were conducted on a laptop with an Intel Core i7-4600U
CPU at 2.10 GHz and 16 GB of RAM running Ubuntu 14.04 (64 bits). We
allocated 15 GB to Java 8 and set up IRIS with its default configuration.

Manufacturing Experiments. In our experiments for the manufacturing use
case we used the ontology, data and queries given next.

– The ontology capturing the manufacturing model illustrated in Fig. 1 from
Sect. 2.1. The ontology contains 79 standard axioms and 20 constraints.

– A data generator used by Siemens engineers to simulate manufacturing of
products of two types based on the aforementioned model. We used two con-
figurations of the generator: configuration (C1) simulates a situation where
products were manufactured in violation of the model specifications (e.g., they
used too much material of some kind); in (C2), each product is manufactured
according to specifications.

– A sample of three monitoring queries commonly used in practice. The first
query asks for all products that use material from a given lot; the second asks
for all material lots used in a given product; finally, the third one asks for the
total quantity of material in lots of a specific kind.

We generated data for 6 different sizes, ranging from 50 triples to 1 million
triples. For each size, we generated one dataset for each configuration of the
generator. We set up configuration C1 so that 35% of the manufactured products
violate specification. Our experiments follow Steps 1–4 in Sect. 3.2. We checked
validity of each dataset against the ontology using Steps 1–3; then, for each
dataset created using C2 we also answered all test queries (Step 4). We repeated
the experiment 5 times for each dataset and configuration (i.e., 10 times for each
dataset size).

Our results are summarised in Fig. 6. Times for each data size are wall clock
time averages (in ms). Constraint validation time (grey bar) correspond to Step
3 in Sect. 3.2. Query answering times (blue bar) measure the time for answering
the use case queries (Step 4); here, only datasets satisfying the constraints (i.e.,
generated using C2) are considered. The figure also provides the average number
of constraint violations in data generated according to C1, and the number of
triples after constraint validation.

Our results demonstrate the feasibility of our ontology-based approach to
model validation and query answering in realistic manufacturing scenarios. In
4 We are in the process of sorting out the licenses for the ontologies and data used in

our experiments; they cannot be made publicly available at this point.
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Fig. 6. Experimental results

particular, constraint validation and query answering were feasible within 87s
on stock hardware over datasets containing over 1 million triples.

Gas Turbine Experiment. In this experiment we used the following data:

– The ontology capturing the energy plant model illustrated in Fig. 2 from
Sect. 2. The ontology contains 121 standard axioms and 25 constraints.

– An anonymised dataset describing the structure of 800 real gas turbines,
their sensor readings (temperature, pressure, rotor speed and position), and
associated processes (e.g., expansion, compression, start up, shut down). The
dataset was converted from a relational DB into RDF, and contains 25, 090
triples involving 4, 076 individuals.

– Three commonly used test queries. The first query asks for the core parts,
equipment and current state of all turbines of a given type; the second asks
for all components involved in a compression process; the last query asks for
the temperature readings of turbines of a given type.

We followed the same steps as in the previous experiments, with very positive
results. Constraint checking was completed in 2s and generated 27, 007 additional
triples; we found 1, 582 constraint violations, which is especially interesting given
that the data is real. Query answering over the valid subset took 1s on average.

6 Lessons Learned and Future Work

We have studied the use of ontologies to capture industrial information models
in manufacturing and energy production applications.
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Our study of the requirements of information models revealed that many
key aspects of information models naturally correspond to integrity constraints
and hence cannot be captured by standard OWL 2 ontologies. This demonstrates
intrinsic limitations of OWL 2 for industrial modelling and gives a clear evidence
of why constraints are essential for such modelling.

We also learned that even a rather simple form-based interface such as the
one of SOMM is sufficient to capture most of the manufacturing and energy infor-
mation models based on ISA and ICE standards. This was an important insight
for us since at the beginning of this research project it was unclear whether
designing such a simple tool to write ontologies of practical interest to our use
cases would be feasible.

Finally, we have received a very positive feedback from Siemens engineers
about the usability of SOMM at informal workshops organised as part of the
project. This was encouraging since the development of a tool that is accessi-
ble to users without background in semantic technologies was one of the main
motivations of our work.

In the future, we plan to conduct a formal user study where—with the help
of SOMM—Siemens engineers will design elaborate information models and per-
form various tasks on these models, including validation and merging. We also
plan to conduct more extensive scalability experiments. SOMM is a research
prototype and, depending on the outcome these studies, we would like to deploy
it in production departments.
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