
PGX.D/Async: A Scalable Distributed
Graph Pattern Matching Engine

Nicholas P. Roth
Vasileios Trigonakis

Sungpack Hong
Hassan Chafi

Oracle Labs
{first.last}@oracle.com

Anthony Potter
Boris Motik
Ian Horrocks

University of Oxford
{first.last}@cs.ox.ac.uk

Abstract
Graph querying and pattern matching is becoming an important
feature of graph processing as it allows data analysts to easily collect
and understand information about their graphs in a way similar to
SQL for databases. One of the key challenges in graph pattern match-
ing is to process increasingly large graphs that often do not fit in the
memory of a single machine. In this paper, we present PGX.D/Async,
a scalable distributed pattern matching engine for property graphs
that is able to handle very large datasets. PGX.D/Async imple-
ments pattern matching operations with asynchronous depth-first
traversal, allowing for a high degree of parallelism and precise con-
trol over memory consumption. In PGX.D/Async, developers can
query graphs with PGQL, an SQL-like query language for property
graphs. Essentially, PGX.D/Async provides an intuitive, distributed,
in-memory pattern matching engine for very large graphs.

1 Introduction
Graph processing is becoming an integral part of big-data analytics.
This is partially because graphs can naturally represent data that
captures fine-grained relationships among entities. Graph analysis
can provide valuable insights about such data by examining these
relationships.

Typically, graph analysis is performed with two distinct but corre-
lated methods, namely computational analysis and pattern matching
queries. With computational analysis, the user runs various algo-
rithms that traverse the graph, often repeatedly, and calculate certain
(numeric) values to get the desired information, e.g., PageRank
or shortest paths [21]. Pattern matching queries are declaratively
given as graph patterns. The system finds every subgraph of the
target graph that is topologically isomorphic/homomorphic to the
query graph and satisfies any accompanying filters. For example, the
following PGQL [27] query:
SELECT a, b WHERE (a WITH age > 18)-[:friend]->(b)

returns all pairs of vertices a, b, with a.age > 18, where a is
connected to b with a friend edge.

In this paper, we introduce PGX.D/Async, a scalable, dis-
tributed pattern-matching engine for property graphs. As the name

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GRADES’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5038-9/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3078447.3078454

suggests, PGX.D/Async extends PGX.D, a computational graph
analysis framework [18], adding graph pattern matching features.
PGX.D/Async accepts PGQL [27] query as its input.

Existing systems typically take one of two approaches for im-
plementing graph pattern matching. One such approach processes
queries in a similar way to relational databases, with joins to traverse
edges (e.g., [14]). Another technique interprets the queries on the
graph and runs each operator separately in a breadth-first manner
(e.g., [24]). These two approaches are not ideal for distributed sys-
tems, for they result in (i) high memory utilization due to potential
intermediate state explosion [28] and (ii) low performance due to
extensive, eager communication [17].

Instead, PGX.D/Async adapts a query evaluation strategy based
on asynchronous depth-first traversal [23] to the property graph
setting and adds dynamic memory management for controlling mes-
sage buffers. PGX.D/Async achieves controllable high degrees of
parallelism (for good performance and scalability) as well as precise
flow control with a deterministic guarantee of query completion
under a finite amount of memory. In detail:

• Depth-First Traversal (DFT) allows for a highly parallel, scal-
able, and asynchronous model of execution. DFT results in fewer
intermediate results than breadth-first traversal, while allowing
for controllable parallelism and memory consumption. Asyn-
chrony helps improve the performance of queries on distributed
graphs by using work from other stages to hide the effects of
workload imbalance and communication latency within a stage.

• Strict, Precise Flow Control ensures that any query can execute
with a limited amount of memory. If at any point in the execution,
the next operation of a graph traversal would violate flow control,
the corresponding worker thread can just suspend this operation
and work on a different one (i.e., a later vertex match in the path
or an incoming message from another machine).

In brief, every PGQL query in PGX.D/Async is broken into
stages. Each stage is responsible for visiting / matching one ver-
tex. The execution of a query proceeds sequentially—for depth-first
traversal—and transitions to the next stage via hop engines. A hop
engine (e.g., an in- or out-neighbor match) is responsible for select-
ing the next vertex to hop to based on any filters in the query. For
example, Figure 1 shows how a simple PGQL query is translated
into PGX.D/Async stages. In stage 0, vertex p is matched (if p has
property age with age < 18). Then, an out-neighbor hop engine is
used to traverse to the targets of stage 1. Both stages 0 and 1, as
well as the hop engine, add to the output context, such that if there
is finally a match, the last stage can forward the query output.

To support asynchronous execution, each stage contains the cur-
rent intermediate output and the context for continuing the execution

Stage 0

Filter: age < 18
Out Context: +p

Stage 1

Filter: price > 1000
Out Context: +id

neighbor hop<out>

Filter: type bought
Out Context: +when

p ib

SELECT p, b.when, i.id
WHERE (p WITH age < 18) -[b:bought]-> (i WITH price > 1000)

Figure 1. Example: From a PGQL query to PGX.D/Async stages.

of the query for each worker thread in the computation. Conse-
quently, if a worker on stage 0 of Figure 1 needs to hop to a neighbor
on a different machine for stage 1, it simply transmits the whole con-
text of its current stage. This worker, instead of blocking to wait for
a response, can continue processing operations on other stages of the
same query instance submitted internally to facilitate work-sharing
or externally by remote machines.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss some background and existing work related to graph analytics
and graph pattern matching. We describe the design and implemen-
tation of PGX.D/Async and show evaluation results in Sections 3
and 4 respectively. Finally, in Section 5 we conclude the paper and
discuss future directions for PGX.D/Async.

2 Background and Related Work
RDF vs. Property Graph. There are two different kinds of graph
databases: First, there are graph databases [1, 9, 12, 17, 23, 28] that
adopt the classic RDF data model. The RDF model, regularizes the
graph representation as a set of triples. In the RDF model, even
constant literals are encoded as graph vertices, and such artificial
vertices can induce noise to the outcome of the graph analysis and
overhead for graph querying. Second, there are graph databases [5,
7, 24] that adopt the Property Graph (PG) data model where nodes
and edges in a graph can be associated with arbitrary properties as
key-value pairs. PGX.D/Async is an efficient distributed in-memory
query pattern matching for property graphs.

Graph Query Languages. PGX.D/Async adopts PGQL [27] as a
front-end graph query language, while there are a few other alter-
natives. SPARQL [11] is a query language for RDF model, stan-
dardized by the World Wide Web Consortium. For property graph,
to the contrary, there is no standard query language. Cypher [4] is
a popular graph query language for property graph; however it is
missing some fundamental graph querying functionalities, such as
regular path queries and graph construction [27].

Graph Pattern Matching. As we mention in the previous section,
there are two approaches for implementing graph pattern matching,
namely joins and breadth-first traversals (BFTs) on the graph. For
example, GraphFrames [14] implements distributed graph pattern
matching on top of Apache SPARK’s dataframes: One dataframe for
vertices and another for edges. Consequently, a stage for matching
an edge is naturally mapped into a join operation.

However, these approaches can cause performance issues in dis-
tributed execution. First, they both result in a potentially high maxi-
mum memory utilization due to the volume of intermediate results
and states. Extending a pattern with BFTs/joins can result in expo-
nentially many active intermediate results. In contrast, with depth-
first traversals, each worker in PGX.D/Async tries to complete a
query instance before starting a new one, thus reducing the number

of active intermediate results. Second, with BFTs/joins, communi-
cation across the machines might be in the critical path. To traverse
one edge all machines in the cluster could be involved. In contrast,
communication in PGX.D/Async happens asynchronously—when
a traversal crosses the borders of a machine, the worker that initi-
ated the traversal simply sends a message to the target machine and
continues with performing some other local computation.

We are not the first to recognize that asynchrony and depth-first
traversal are suitable for distributed graph pattern matching. The
authors of Trinity.RDF [28] point out that traditional RDF join ap-
proaches result in excessive intermediate results and propose a solu-
tion where multiple triple joins are eagerly evaluated (in a depth-first
manner). Similarly, Triad [17] uses asynchronous communication to
execute independent “leaves” of the query in parallel.

Potter et al. [23] extend these ideas to design a query engine
for distributed RDF graphs. Their work extends the data exchange
operator, originally introduced in Volcano [16], with dynamic data
exchange, an approach that detects whether a join of RDF triplets
requires communication across machines. Execution proceeds asyn-
chronously in each machine (communication happens for complet-
ing intermediate queries across machines) and flow control ensures
query completion within memory bounds. In this paper we bring
these ideas to property graphs, extending them with dynamic mem-
ory management for message buffers, presenting an implementation
of the resulting algorithm and evaluating its effectiveness.

Graph Libraries and Graph Processing Frameworks. There are
many systems that focus on the fast execution of graph analysis algo-
rithms. First, there exists many different graph libraries for different
programming languages. Examples include NetworkX [8] (Python),
Jung [6] (Java), Stinger [15] and Boost Graph Library [3] (C++). Es-
sentially, these libraries provide their own graph data structures; for
custom algorithms the users should come up with their own parallel
implementation on top of the library’s data structures. Second, there
are many (distributed) graph processing frameworks which consider
parallel or distributed execution of graph algorithms [2, 19–22, 26].

We implement PGX.D/Async in the PGX.D distributed graph
analytics system [18]. PGX.D implements a relaxed version of
the bulk-synchronous model, where graph algorithms proceed with
global steps. This execution model is suitable for algorithms, such
as PageRank, that iteratively traverse the (whole) graph. Essentially,
PGX.D/Async augments PGX.D with a complementary, asynchro-
nous execution model. PGX.D/Async directly builds on top of the
task and data management components of PGX.D.

3 PGX.D/Async: A Distributed Graph Pattern
Matching and Querying Engine

PGX.D/Async accepts PGQL queries as its input. On a high level, the
execution of a query proceeds in four steps (the boxes of Figure 2):

i. PGX.D/Async compiles the PGQL into an query plan (using
the standard PGQL compiler [10]);

ii. PGX.D/Async transforms the query plan into a distributed
query plan, which handles some intricacies of querying a
distributed graph;

iii. PGX.D/Async translates the distributed query plan into an
execution plan in which every stage—each responsible for
matching or visiting one vertex—has highly structured and
well-defined inputs, outputs, and constraints; and

<stage a: id < 17>
hop: neighbor match
(a->b: a.type = b.type)

<stage b>
hop: inspection step
(a)

<stage a>
hop: neighbor match
(a->c: b.type != c.type)

<stage c>
hop: output

PGQL query
plan

distributed
query plan

distributed
execution plan

SELECT a, b.name
WHERE
(a)-[]->(b),
(a)-[]->(c),
a.id() < 17,
a.type = b.type,
b.type != c.type

<root vertex match>
(a: id < 17)

<neighbor match>
(a->b: a.type = b.type)

<neighbor match>
(a->c: b.type != c.type)

Stage 0: (a)
filter : id < 17
hop : out nghbr: b
capture: a.type
out ctx: +a

Stage 1: (b)
filter : a.type = b.type
hop : inspection: a
capture: b.type
out ctx: +b.name

Stage 2: (a)
hop : out nghbr: c

Stage 3: (c)
filter : b.type != c.type
hop : output

i ii iii PGX.D Async
runtime

iv

a

b c

Figure 2. Example: From a PGQL query to PGX.D/Async stages.

iv. PGX.D/Async compiles the execution plan into memory
compact data structures and launches the computation.

In what follows, we first describe how PGX.D/Async transforms
the query plan to an execution plan and then we detail the anatomy
of a stage and the design of PGX.D/Async’s runtime.

3.1 From Query Plan to a Distributed Execution Plan
In step i, PGX.D/Async translates the PGQL query to a generic query
plan, which comprises graph matching operators, such as (constant)
vertex, neighbor, and edge match. This plan is designed for shared-
memory execution—i.e., it assumes that operators can access the
properties of every vertex—and can be used as-is in PGX. This
assumption is not true in a distributed environment: A later operator
cannot directly access the properties and the neighbors of “earlier”
vertices as they might reside on a remote machine. For instance, the
query plan of Figure 2 includes a final neighbor match operator for
a -> c, which comes after matching a -> b. In shared memory,
implementing such operation is inexpensive, because the runtime
can simply access the edges of a. In contrast, in a distributed setting,
the computation would potentially need to move across machines
in order to visit vertex a again. Similarly, both neighbor match
operators compare properties of the target vertex (e.g., b in a -> b)
with properties of the source vertex. As earlier, these properties are
not easily accessible in a distributed setting.

PGX.D/Async removes these limitations in steps ii and iii. In
step ii, PGX.D/Async modifies the query plan to account for such
situations and transform the list of match operators into a list of
stages with hop engines. In our example, the distributed query plan
includes an inspection step to ensure that the query execution will
return the context to vertex a in order to match the edge to c.

Then, in step iii, PGX.D/Async translates the distributed query
plan to a distributed execution plan. This process also chooses the
memory layout of the context object for each stage and binds vari-
ables used by hop engines and filters to offsets in the context or
directly-accessible graph properties. Furthermore, PGX.D/Async
performs dependency analysis so that earlier stages keep enough
context for later stages to be able to complete without remote com-
munication. In the example of Figure 2, stage 0 adds a.type to the
context so that stage 1 can use it in its filter. Similarly, stage 1 adds
b.name to the context so that it can be outputted upon finding a com-
plete match. Essentially, the distributed query plan makes certain
that the required vertices are accessible, while the execution plan
ensures that data dependencies are efficiently fulfilled.

Finally, in step iv, the PGX.D/Async runtime executes the execu-
tion plan—described in Section 3.3.

3.2 Anatomy of a Stage
A stage represents the processing of a single vertex, except for inspec-
tion stages which are used for re-visiting already processed vertices.
Stages advance sequentially, in accordance with PGX.D/Async’s
depth-first traversal. Each stage also contains the necessary compo-
nents to allow for:

1. Matching vertices according to filters (e.g., a.age > 18);
2. Transitioning from one vertex (a stage) to the next one (next

stage) in well-defined ways (hop engine);
3. Performing flow control;
4. Handling pause and resume logic for worker threads, in case

they have to block the processing of a stage; and
5. Delivering messages to the next stage.

In what follows, we describe each component individually.

Vertex Function. The vertex function is responsible for (i) applying
the PGQL vertex filters, and (ii) building the parts of the output
context of the stage that correspond to vertex properties (the vertex
filter does not handle edge data).

Hop Engine. A hop engine defines how to traverse to the next vertex.
Various hop engines implement traversal for specific patterns:

• Vertices: Hop to one or more vertices. Inspection stages are
implemented by configuring this hop engine to hop to a
single vertex, as discussed above.

• Out neighbors: Hop to the outgoing neighbors of the current
vertex. For example, (a) -[]-> (b) defines such a hop,
assuming that the stage of a is earlier than the one of b.

• In neighbors: Hop to incoming neighbors of the current
vertex. For example, (a) <-[]- (b) defines such a hop,
assuming that the stage of a is earlier than the one of b.

• Common neighbors: Hop to the common neighbors of two
vertices. For example: (a) -[]-> (b) <-[]- (c) requires
to visit the common neighbors between a and c.

• Output: Pass the output context of the current stage to the
collected global output. This is always the hop engine of the
last stage in a query.

Note that these hop engines offer some flexibility to the query
plan generator. For instance, a (a) -[]-> (b) out-neighbors hop
can be transformed to a (b) <-[]- (a) in-neighbors hop. Simi-
larly, the common neighbors hop can be translated and implemented

as separate out/in neighbor hops. As we discuss in Section 5, we
include the common neighbors hop engine in order to allow for
implementing efficient distributed common neighbors algorithms.

In the exact same way as the vertex function of a stage, the hop
function of a hop engine can include filters on information specific
to the hop engine (e.g., edge filters) and add relevant information to
the output context of the stage.

Message Manager. The message manager handles incoming and
outgoing messages, essentially providing messaging queues to
worker threads. These messages include both work and acknowl-
edgment messages. Each stage has a message manager, with more
than one outgoing slots per worker. Outgoing messages from a stage
are delivered to the next stage on a different machine. Messages
received by the message manager are picked up by idle workers and
the computations that they denote are performed to completion or
until flow control prevents them from advancing.

The message manager tracks whether the queues of a worker are
full. In the latter case, when the thread cannot send a message due
to full queues, it blocks the computation for the current stage and
performs computation either queued up from incoming messages
or work sharing pertaining to stages other than the stage at which
the current computation stack began. The message manager protects
workers from adding additional computations to already-full bulk
messages and thus implicitly performs the first form of flow control
in PGX.D/Async, disallowing worker threads from having arbitrarily
many undelivered messages.

Flow Control Manager. The flow control manager controls the
memory requirements of computations by tracking the number of
unprocessed messages from one machine to another for each stage,
thus allowing any computation to have finite memory requirements.
Essentially, the flow control manager might delay the transmission
of messages to specific machines in order to avoid overloading those
machines. Thus, the user of PGX.D/Async can configure the amount
of memory that each machine can use. We describe the implementa-
tion of “global” flow control later in Section 3.3.

3.3 Runtime
The runtime consists of a number of worker threads per machine
(typically slightly less than the number of hardware contexts of each
machine). These workers are initialized by the task manager [18] on
system boot time. Computations in PGX.D are defined as tasks and
are placed in task queues. For example, launching the asynchronous
computation is a single task, while another task represents waiting
for the computation to finish and handling incoming asynchronous
work messages. These are the only tasks used by PGX.D/Async. For
the most part, PGX.D/Async ignores the synchronous task model
of PGX.D, layering its own model on top of these two synchronous
supersteps (“bootstrap” and “await completion”). In this text, a
computation shall refer to the in-place depth-first traversal of the
graph within a single machine by one or more PGX.D/Async stages.

It is also important to note that we design PGX.D/Async to op-
erate in the same situations as PGX.D, augmenting it with query
answering capabilities. In a multi-tenant enterprise system such as
PGX.D, precisely tracking resource usage while ensuring complete
results is extremely important. Furthermore, perhaps most impor-
tantly, as the distributed facet of PGX, PGX.D/Async must be able
to operate with limited resources on arbitrarily large graphs. In light

age = 14

price = 2000

price = 50 price = 1500

price = 1100

price = 150 price = 1200

Machine 0 Machine 1

Figure 3. Query of Figure 1: Moving from stage 0 to stage 1. Only
the thick, red edges will be followed by the hop engine of stage 0.

of these considerations, we dedicate a substantial part of this section
to a disucssion on flow control and memory management.

The execution starts by adding one of two types of bootstrap
tasks to the task manager, depending on whether the query origin is
a single (e.g., (v WITH id() = 17)-[]->()) or multiple vertices
(e.g., (v)-[]->()). The former task is explicitly created by calling
the apply() function of stage 0 once on the machine where the
origin vertex resides, while the latter calls the apply() function
of stage 0 on each vertex in the graph, at which point the vertex
function eliminates vertices that fail to satisfy any filters. For all
other stages, work comes from a recursive call to apply() or a
message. Both scenarios occur when workers call apply() to move
to later stages of the computation. For example, Figure 3 depicts a
potential configuration of the query in Figure 1:
... (p)-[:bought]->(i), p.age < 18, i.price > 1000

In the example, there is already a vertex match in machine 0 for
stage 0. Subsequently, the hop engine of stage 0 will only select the
:bought edges to follow, resulting in both local computation and
messaging to machine 1 with the task of continuing this computation.

To bootstrap a query in PGX.D/Async, workers call apply on the
instantiated runtime class corresponding to stage 0 for each starting
vertex of the computation. Initially, the workers attempt to execute
stage 0 in-place in addition to recursively executing subsequent
stages on matched vertices. When the computation blocks because
of flow control or full messaging queues, this line of computation
is paused. Instead of idling, the worker repeatedly calls DOWORK

(Figure 4) on stage 0 while periodically checking if it can continue
the bootstrapping process. After a worker finishes its bootstrapping
task, it runs a second PGX.D task that repeatedly calls DOWORK to
handle messages until all machines finish the query.

DOWORK handles incoming messages (intermediate results) for
the current and the subsequent stages in descending order to maxi-
mize performance. Intermediate results produced by later stages are
expected to produce less net work than those produced by earlier
stages and therefore require fewer future resources. This improves
performance and reliability of the messaging layer by alleviating
memory pressure and avoiding message floods. Note that the func-
tions TRYRESUME and FINISHWORK in Figure 4 attempt to retry the
currently-blocked operation and finish running the current stage on
each intermediate result in the current message, respectively. Both
functions return true upon success.

Termination Protocol
Detecting the termination of a query (or even of a single stage) is not
straightforward in the asynchronous setting of PGX.D/Async. Earlier
stages might send messages to the “current” stage, thus triggering
more computation (or delivering more results). We solve this prob-
lem using a lightweight termination protocol which incrementally
detects the termination of each stage. The protocol in PGX.D/Async

is an adaptation of the termination protocol first described by Potter
et al. [23] in the context of query pattern matching on RDF graphs.

In summary, termination is detected by tracking the per-machine
completion of each stage in the query. To achieve this behavior,
machines track the completion of a stage locally and exchange spe-
cial COMPLETED messages once a stage is completed. In particular,
machine k can finish processing stage n if it knows that all machines
have finished processing all stages up to n − 1; and the machine has
processed all received messages for this stage. At this point, ma-
chine k sends a COMPLETED message to all other machines informing
them that they will not receive further messages from k for stage n.
Essentially, the termination of a query is performed incrementally:
Stage 0 cannot receive any messages from previous stages, hence
machines can send their first COMPLETED message as soon as they
finish bootstrapping the query. Then, stage 1 can complete after all
stage 0 COMPLETED messages are received and the the machine has
finished processing all messages delivered to stage 1, etc.

Flow Control
To maintain a strict memory bound while satisfying PGX.D/Async’s
termination condition, each stage n is independently restricted such
that on any machine m, no more than an,m unprocessed messages
can be in transit to or stored for that stage.1 This limit is enforced
by the flow control on stage n − 1 of the sending machine (using
a counter). In a simple implementation, this counter can have a
constant maximum bn,m := an,m

M−1 on a cluster with M machines.
When the counter reaches bn,m , flow control does not let any more
messages pass to stage n on machine m. When machine m acknowl-
edges that it finished processing one or more messages originating
at the current machine (and therefore does not need to preserve their
contents in memory), the counter an,m on the current machine is
decremented by the number of messages acknowledged.

Maximizing Memory Efficiency of Flow Control. This lightweight
form of flow control works well in many situations (e.g., when the
workload is balanced across machines). However, large clusters and
computations with many stages could require an exorbitant amount
of memory to achieve the expected performance. The following
modifications selectively allow counters to steal capacity from each
other to improve memory efficiency without sacrificing the flow-
control precision and performance of the original algorithm:

1. After the termination algorithm detects that a stage n is
finished, stage n’s capacity an,m is distributed among{
an+1,m ,an+2,m , ...,aN−1,m ,aN ,m

}
1On our homogeneous cluster, we set the same an,m := an on each machine.

◃ Do outstanding work on a stage n and a worker w
function DOWORK(n, w)

if n < N_STAGES then ◃ Operate on the latest stage possible
DOWORK(n + 1, w)

end if
if State[n,w].blocked then

if TRYRESUME(n, w) ∧ FINISHWORK(n, w) then
State[n,w].blocked← False

end if
else if GETMESSAGE(n) ∧¬FINISHWORK(n, w) then

State[n,w].blocked← True
end if

end function

Figure 4. Continuing the work of a suspended stage.

2. During a computation, each stage on machinem can request
additional bandwidth from the same stage on machinems .

Note that dynamic memory management improves the utilization
of the memory used for message buffers over the previous flow
control mechanism [23].

4 Evaluation
In this section, we describe some evaluation results with
PGX.D/Async. The main goals of this evaluation are to illustrate that
PGX.D/Async (i) indeed succeeds in analyzing large graphs, much
larger than what we can fit in a single machine, and (ii) scales with
the number of machines, thus enabling the analysis of increasingly
larger graphs using more processors.

Experimental Settings. We perform our evaluation on a cluster of
32 identical machines, connected with an InfiniBand network (with
a Mellanox SX6512, 54.54 Gb/s per port switch). The machines use
Linux 2.6.32 (OEL 6.5) and gcc 4.9.0. Each machine is a 2-socket
Intel Xeon E5-2660 (2.20 GHz) with 8 cores (16 hyperthreads) each,
256 GB DDR3 RAM, and a Mellanox Connect-IB network card.
Note that our cluster uses InfiniBand, however, the implementation
of PGX.D (and PGX.D/Async) is independent from the underlying
interconnection fabric, as it does not exploit any of its special fea-
tures (e.g., RDMA). Still, the underlying messaging library utilizes
RDMA—when available—for performance.

For the experiments in this paper, we disable the ghost nodes
functionality of PGX.D. Additionally, we execute each set of queries
five times, after one extra warmup execution after loading the graph
and report the median execution time (note that we observe low
deviation in our results). The partitioning of vertices to machines
is random, except that the system attempts to distribute a similar
number of edges to each machine. Finally, we set the flow control
limit of PGX.D/Async to use up to 17 GB of memory per machine.

4.1 Experimental Results
Comparing to a Single Machine. For our first experiment, we use
the BSBM SPARQL e-commerce benchmark [13]. We transform the
generated RDF graph to a property graph and we rewrite the queries
to PGQL. We use an eight million products set, which corresponds
to a graph with 250 million vertices and almost one billion edges—
the graph tightly fits in the main memory of a single machine. We
evaluate PGX.D/Async with the 10 parts of BSBM query 5.

Figure 5 includes the results, normalized to the per-query execu-
tion time of PGX on a single machine. Clearly, some queries, such
as P8 and P9, do not scale in PGX.D/Async. The reasons are that
(i) these queries have inherently limited parallelism and they are
very short, and (ii) we have not yet implemented the intra-machine
workload balancing capabilities described above. Essentially, this
lack of scalability is mainly due to the overheads of a distributed

0

1

2

3

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

R
el

at
iv

e
to

 P
G

X

Q
u

er
y

Ti
m

e

1 2 4 8 16 32
PGX PGX.D/Async

Machines:

Figure 5. Relative (to PGX) time to complete BSBM queries.

Figure 6. Time to complete queries on a random graph.

system: For example, PGX takes 3 ms to complete a tiny query on a
tiny graph, compared to 37 ms of PGX.D/Async on two machines,
and more than 50 ms on 32 machines. On the remaining queries,
we see that PGX.D/Async scales with the number of machines and
outperforms the single machine PGX results.

Querying a Very Large Graph. In our second experiment, we use
an artificial uniformly random graph of 200 million vertices and two
billion edges to show that, indeed, PGX.D/Async can handle graphs
that do not fit in the memory of a single machine. We evaluate 10
randomly selected queries, with four edge patterns each. Figure 6
includes the time to complete these queries on 2–32 machines. We
separate the queries into heavy queries (with runtime in the scale of
seconds) and fast queries. Evidently, PGX.D/Async achieves very
good scalability on the heavy queries, since there is enough work
to leverage the additional machines. In contrast, for small queries,
we observe similar behavior as in our BSBM experiments: Adding
more machines does not bring any benefits and, as expected, using
more machines introduces some overhead.

5 Conclusion and Future Work
We presented the PGX.D/Async distributed engine for efficient graph
querying and pattern matching. PGX.D/Async employs asynchro-
nous depth-first traversal, thus avoiding problems, such as large
intermediate result sets that could run a system out of memory, while
improving the potential for parallelism in certain situations. We im-
plemented PGX.D/Async in PGX.D and maintained compatibility
with the PGX shared-memory graph analytics framework. This way,
data analysts can reuse their existing PGQL scripts to analyze ever-
larger graphs that do not fit in the main memory of a single machine.
As we showed in our evaluation, PGX.D/Async can load and query
graphs that require hundreds of gigabytes of memory.

Future Work. We have currently implemented the basic PGQL fil-
tering and pattern matching capabilities in PGX.D/Async in order to
show that the asynchronous depth-first approach is indeed a good
generic solution for distributed graphs. In the future, we intend to
extend our PGX.D/Async implementation in several directions.

Complete PGQL Support. We will implement the PGQL functional-
ity is currently missing in our PGX.D/Async implementation. This
includes aggregations (e.g., COUNT, SUM), grouping (i.e., GROUP BY),
sorting (i.e., SORT), and recursive paths.

Graph Isomorphism. PGX.D/Async currently only supports graph
homomorphism. With homomorphism, two graphs can be matched,
even though they do not have the same number of vertices. Isomor-
phism requires that there is a one-to-one mapping of the edges of
one graph to another. For isomorphism, the runtime must not only
check the edges that are matched, but also that there are no edges
that connect the matched vertices and do not belong to the pattern.

Common Neighbors. Patterns like (a) -[]-> (c) <-[]- (b) enu-
merate the common neighbors of a and b, which is an expensive

operation in a distributed setting. We intend to optimize the runtime
with specialized common neighbor operators [25] which calculate
common neighbors by simply exchanging the edges of one another.

Query Scheduling. Depending on the actual properties of the graph,
the sequence with which a pattern is matched can play an important
role in performance. For example, in the following query:
SELECT person, band WHERE
(person)-[:likes]->(song)-[:from]->(band),

person.gender = "female", song.style = "rock",

band.name = "Uknown1"

we would prefer to start by matching the vertex band as it (proba-
bly) has the lowest selectivity. In practice, having this information
about the graph structure ahead of time and knowing how to use it
quickly and efficiently is very difficult. Still, with data collection
during graph loading and runtime, we believe that it is possible to
significantly improve query performance.

References
[1] AllegroGraph. http://franz.com/agraph/allegrograph/.
[2] Apache Giraph Project. http://giraph.apache.org.
[3] Boost Graph Library (BGL). http://www.boost.org/doc/libs/ 1_55_0/libs/graph/-

doc/index.html.
[4] Cypher - the Neo4j query Language. http://www.neo4j.org/learn/cypher.
[5] InfiniteGraph. http://www.objectivity.com/infinitegraph.
[6] Java universal network/graph framework. http://jung.sourceforge.net.
[7] Neo4j graph database. http://www.neo4j.org/.
[8] NetworkX. https://networkx.github.io.
[9] Oracle Spatial and Graph, RDF Semantic

Graph,. http://www.oracle.com/technetwork/database/
options/spatialandgraph/overview/rdfsemantic-graph-1902016.html.

[10] PGQL: Property Graph Query Language. http://pgql-lang.org/.
[11] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/.
[12] Virtuoso Universal Server. http://virtuoso.openlinksw.com/.
[13] BIZER, C., AND SCHULTZ, A. The Berlin SPARQL Benchmark. Int. J. Semantic

Web Inf. Syst. (2009).
[14] DAVE, A., JINDAL, A., LI, L. E., XIN, R., GONZALEZ, J., AND ZAHARIA, M.

GraphFrames: An Integrated API for Mixing Graph and Relational Queries. In
GRADES (2016).

[15] EDIGER, D., MCCOLL, R., RIEDY, J., AND BADER, D. A. STINGER: High
Performance Data Structure for Streaming Graphs. In HPEC (2012).

[16] GRAEFE, G., AND DAVISON, D. L. Encapsulation of Parallelism and
Architecture-Independence in Extensible Database Query Execution. IEEE Trans.
Software Eng. (1993).

[17] GURAJADA, S., SEUFERT, S., MILIARAKI, I., AND THEOBALD, M. TriAD:
A Distributed Shared-Nothing RDF Engine Based on Asynchronous Message
Passing. In SIGMOD (2014).

[18] HONG, S., DEPNER, S., MANHARDT, T., LUGT, J., VERSTRAATEN, M., AND
CHAFI, H. PGX.D: A Fast Distributed Graph Processing Engine. In SC (2015).

[19] KANG, U., TSOURAKAKIS, C. E., AND FALOUTSOS, C. Pegasus: A peta-scale
graph mining system implementation and observations. In ICDM (2009).

[20] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KYROLA, A., AND
HELLERSTEIN, J. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. PVLDB (2012).

[21] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J. C., HORN, I.,
LEISER, N., AND CZAJKOWSKI, G. Pregel: A System for Large-scale Graph
Processing. In SIGMOD (2010).

[22] NGUYEN, D., LENHARTH, A., AND PINGALI, K. A Lightweight Infrastructure
for Graph Analytics. In SOSP (2013).

[23] POTTER, A., MOTIK, B., NENOV, Y., AND HORROCKS, I. Distributed RDF
Query Answering with Dynamic Data Exchange. In ISWC (2016).

[24] SEVENICH, M., HONG, S., VAN REST, O., WU, Z., BANERJEE, J., AND CHAFI,
H. Using Domain-Specific Languages For Analytic Graph Databases. PVLDB
(2016).

[25] SEVENICH, M., HONG, S., WELC, A., AND CHAFI, H. Fast In-Memory Triangle
Listing for Large Real-World Graphs. In SNAKDD (2014).

[26] SUNDARAM, N., SATISH, N., PATWARY, M. M. A., DULLOOR, S., ANDER-
SON, M. J., VADLAMUDI, S. G., DAS, D., AND DUBEY, P. GraphMat: High
Performance Graph Analytics Made Productive. PVLDB (2015).

[27] VAN REST, O., HONG, S., KIM, J., MENG, X., AND CHAFI, H. PGQL: A
Property Graph Query Language. In GRADES (2016).

[28] ZENG, K., YANG, J., WANG, H., SHAO, B., AND WANG, Z. A Distributed
Graph Engine for Web Scale RDF Data. PVLDB (2013).

	Abstract
	1 Introduction
	2 Background and Related Work
	3 PGX.D/Async: A Distributed Graph Pattern Matching and Querying Engine
	3.1 From Query Plan to a Distributed Execution Plan
	3.2 Anatomy of a Stage
	3.3 Runtime

	4 Evaluation
	4.1 Experimental Results

	5 Conclusion and Future Work
	References

