
Canonicalizing Knowledge Base Literals

Jiaoyan Chen1, Ernesto Jiménez-Ruiz2,3, and Ian Horrocks1,2

1 Department of Computer Science, University of Oxford, United Kingdom
2 The Alan Turing Institute, United Kingdom

3 Department of Informatics, University of Oslo, Norway

Abstract. Ontology-based knowledge bases (KBs) like DBpedia are very valu-
able resources, but their usefulness and usability are limited by various quality
issues. One such issue is the use of string literals instead of semantically typed
entities. In this paper we study the automated canonicalization of such literals,
i.e., replacing the literal with an existing entity from the KB or with a new entity
that is typed using classes from the KB. We propose a framework that combines
both reasoning and machine learning in order to predict the relevant entities and
types, and we evaluate this framework against state-of-the-art baselines for both
semantic typing and entity matching.

Keywords: Knowledge Base Correction · Literal Canonicalization · Knowledge-
based Learning · Recurrent Neural Network

1 Introduction

Ontology-based knowledge bases (KBs) like DBpedia [2] are playing an increasingly
important role in domains such knowledge management, data analysis and natural lan-
guage understanding. Although they are very valuable resources, the usefulness and
usability of such KBs is limited by various quality issues [31, 10, 22]. One such issue is
the use of string literals (both explicitly typed and plain literals) instead of semantically
typed entities; for example in the triple 〈River Thames, passesArea, “Port Meadow,
Oxford”〉. This weakens the KB as it does not capture the semantics of such literals. If,
in contrast, the object of the triple were an entity, then this entity could, e.g., be typed as
Wetland and Park, and its location given as Oxford. This problem is pervasive and hence
results in a significant loss of information: according to statistics from Gunaratna et al.
[14], in 2016, the DBpedia property dbp:location has over 105,000 unique string literals
that could be matched with entities. Besides DBpedia, such literals can also be found in
some other KBs from encyclopedias (e.g., zhishi.me [21]), in RDF graphs transformed
from tabular data (e.g., LinkedGeoData [3]), in aligned or evolving KBs, etc.

One possible remedy for this problem is to apply automated semantic typing and en-
tity matching (AKA canonicalization4) to such literals. To the best of our knowledge,
semantic typing of KB literals has rarely been studied. Gunaratna et al. [14] used se-
mantic typing in their entity summarization method, first identifying the so called focus
term of a phrase via grammatical structure analysis, and then matching the focus term

4 Note this is different from canonical mapping of literal values in the RDF standard by W3C.



2 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

with both KB types and entities. Their method is, however, rather simplistic: it neither
utilizes the literal’s context, such as the associated property and subject, nor captures
the contextual meaning of the relevant words. What has been widely studied is the se-
mantic annotation of KB entities [13, 23, 28] and of noun phrases outside the KB (e.g.,
from web tables) [18, 9, 4]; in such cases, however, the context is very different, and
entity typing can, for example, exploit structured information such as the entity’s linked
Wikipedia page [13] and the domain and range of properties that the entity is associated
with [23].

With the development of deep learning, semantic embedding and feature learning
have been widely adopted for exploring different kinds of contextual semantics in pre-
diction, with Recurrent Neural Network (RNN) being a state-of-the-art method for deal-
ing with structured data and text. One well known example is word2vec — an RNN
language model which can represent words in a vector space that retains their mean-
ing [20]. Another example is a recent study by Kartsaklis et al. [15], which maps text to
KB entities with a Long-short Term Memory RNN for textual feature learning. These
methods offer the potential for developing accurate prediction-based methods for KB
literal typing and entity matching where the contextual semantics is fully exploited.

In this study, we investigate KB literal canonicalization using a combination of
RNN-based learning and semantic technologies. We first predict the semantic types of a
literal by: (i) identifying candidate classes via lexical entity matching and KB queries;
(ii) automatically generating positive and negative examples via KB sampling, with
external semantics (e.g., from other KBs) injected for improved quality; (iii) training
classifiers using relevant subject-predicate-literal triples embedded in an attentive bidi-
rectional RNN (AttBiRNN); and (iv) using the trained classifiers and KB class hierarchy
to predict candidate types. The novelty of our framework lies in its knowledge-based
learning; this includes automatic candidate class extraction and sampling from the KB,
triple embedding with different importance degrees suggesting different semantics, and
using the predicted types to identify a potential canonical entity from the KB. We have
evaluated our framework using a synthetic literal set (S-Lite) and a real literal set (R-
Lite) from DBpedia [2]. The results are very promising, with significant improvements
over several baselines, including the existing state-of-the-art.

2 Method

2.1 Problem Statement

In this study we consider a knowledge base (KB) that includes both ontological axioms
that induce (at least) a hierarchy of semantic types (i.e., classes), and assertions that
describe concrete entities (individuals). Each such assertion is assumed to be in the
form of an RDF triple 〈s, p, o〉, where s is an entity, p is a property and o can be either
an entity or a literal (i.e., a typed or untyped data value such as a string or integer).

We focus on triples of the form 〈s, p, l〉, where l is a string literal; such literals can
be identified by regular expressions, as in [14], or by data type inference as in [8]. Our
aim is to cononicalize l by first identifying the type of l, i.e., a set of classes Cl that an
entity corresponding to l should be an instance of, and then determining if such an entity



Canonicalizing Knowledge Base Literals 3

already exists in the KB. The first subtask is modeled as a machine learning classifica-
tion problem where a real value score in [0, 1] is assigned to each class c occurring in
the KB, and Cl is the set of classes determined by the assigned score with strategies e.g.,
adopting a class if its score exceeds some threshold. The second subtask is modeled as
an entity lookup problem constrained by Cl. It is important to note that:

(i) When we talk about a literal l we mean the occurrence of l in a triple 〈s, p, l〉.
Lexically equivalent literals might be treated very differently depending on their
triple contexts.

(ii) If the KB is an OWL DL ontology, then the set of object properties (which connect
two entities) and data properties (which connect an entity to a literal) should be
disjoint. In practice, however, KBs such as DBpedia often do not respect this
constraint. In any case, we avoid the issue by simply computing the relevant typing
and canonicalization information, and leaving it up to applications as to how they
want to exploit it.

(iii) We assume that no manual annotations or external labels are given — the classifier
is automatically trained using the KB.

2.2 Technical Framework

The technical framework for the classification problem is shown in Fig. 1. It involves
three main steps: (i) candidate class extraction; (ii) model training and prediction; and
(iii) literal typing and canonicalization.

<Subject,	Property,	Literal>’s
-,	passesArea,	“Port	Meadow,	Oxford”,

-,	passesArea,	“London,	England”
…

Entities	𝐸"

Entities	𝐸#

Classes	𝐶"

Classes	𝐶#

Candidate	
Classes	𝐶"#

Literal 
Matching

Property 
Objects

Query

For each class 𝑐 in 𝐶"#

Sampling

Sample:	(triple	< 𝑠, 𝑝, 𝑙 >,	label)
Particular	&	General	samples	

Sample	refinement

Neural	Network	(Classifier)

Triple	< 𝑠, 𝑝, 𝑙 > to	Sequence	
[𝑤𝑜𝑟𝑑1,…	,𝑤𝑜𝑟𝑑4 ]

Bidirectional	RNNs	+	Attention	Layer

Training

For each literal, predict 
types, lookup entities 

Literal	Typing	&	
Canonicalization

“Port	Meadow,	Oxford”	–
Park	andWetland (Types)

“London,	England”	–
London (Entity)

Query Merge

Fig. 1. The technical framework for KB literal canonicalization.

Candidate class extraction Popular KBs like DBpedia often contain a large number
of classes. For efficiency reasons, and to reduce noise in the learning process, we first
identify a subset of candidate classes. This selection should be rather inclusive so as to
maximize potential recall. In order to achieve this, we pool the candidate classes for all
literals occurring in triples with a given property; i.e., to compute the candidate classes
for a literal l occurring in a triple 〈s, p, l〉, we consider all triples that use property p.



4 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

Note that, as discussed above, in practice such triples may include both literals and en-
tities as their objects. We thus use two techniques for identifying candidate classes from
the given set of triples. In the case where the object of the triple is an entity, the candi-
dates are just the set of classes that this entity is an instance of. In practice we identify
the candidates for the set of all such entities, which we denoteEP , via a SPARQL query
to the KB, with the resulting set of classes being denoted CP . In the case where the ob-
ject of the triple is a literal, we first match the literal to entities using a lexical index
which is built based on the entity’s name, labels and anchor text (description). To max-
imize recall, the literal as well as its sub-phrases are used to retrieve entities by lexical
matching; this technique is particularly effective when the literal is a long phrase. As in
the first case, we identify all relevant entities, which we denote EM , and then retrieve
the relevant classes CM using a SPARQL query. The candidate class set is simply the
union of CP and CM , denoted as CPM .

Model training and prediction. We adopt the strategy of training one binary classifier
for each candidate class, instead of multi-class classification, so as to facilitate dealing
with the class hierarchy [27]. The classifier architecture includes an input layer with
word embedding, an encoding layer with bidirectional RNNs, an attention layer and a
fully connected (FC) layer for modeling the contextual semantics of the literal. To train
a classifier, both positive and negative entities (samples), including those from EM
(particular samples) and those outside EM (general samples) are extracted from the
KB, with external KBs and logical constraints being used to improve sample quality.
The trained classifiers are used to compute a score for each candidate class.

Literal Typing and Canonicalization The final stage is to semantically type and,
where possible, canonicalize literals. For a given literal, two strategies, independent
and hierarchical, are used to determine its types (classes), with a score for each type.
We then use these types and scores to try to identify an entity in the KB that could
reasonably be substituted for the literal.

2.3 Prediction Model

Given a phrase literal l and its associated RDF triple 〈s, p, l〉, our neural network model
aims at utilizing the semantics of s, p and l for the classification of l. The architecture
is shown in Fig. 2. It first separately parses the subject label, the property label and
the literal into three word (token) sequences whose lengths, denoted as Ts, Tp and
Tl, are fixed to the maximum subject, property and literal sequence lengths from the
training data by padding shorter sequences with null words. We then concatenate the
three sequences into a single word sequence (wordt, t ∈ [1, T ]), where T = Ts+ Tp+
Tl. Each word is then encoded into a vector via word embedding (null is encoded into
a zero vector), and the word sequence is transformed into a vector sequence (xt, t ∈
[1, T ]). Note that this preserves information about the position of words in s, p and l.

The semantics of forward and backward surrounding words is effective in predicting
a word’s semantics. For example, “Port” and “Meadow” are more likely to indicate
a place as they appear after “Area” and before “Oxford”. To embed such contextual



Canonicalizing Knowledge Base Literals 5

“River” “Thames”

Subject 𝑠

“passes” “Area”

Predicate 𝑝

“Port” “Meadow” “Oxford”

Literal 𝑙

Word
Vectors

Bidirectional
RNNs

Attention
Layer

Word Attentions
FC Layer + 

Logistic Regression

𝑓(𝑠,𝑝, 𝑙)

Query

𝑥), 𝑡 ∈ [1, 𝑇]

ℎ), 𝑡 ∈ [1, 𝑇]

ℎ), 𝑡 ∈ [𝑇, 1]

𝑢2

𝛼),𝑡 ∈ [1,𝑇]

𝑣

Fig. 2. The architecture of the neural network.

semantics into a feature vector, we stack a layer composed of bidirectional Recurrent
Neural Networks (BiRNNs) with Gated Recurrent Unit (GRU) [5]. Within each RNN,
a reset gate rt is used to control the contribution of the past word, and an update gate
zt is used to balance the contributions of the past words and the new words. The hidden
state (embedding) at position t is computed as

ht = (1− zt)� ht−1 + zt � h̃t,
h̃t = τ(Whxt + rt � (Uhht−1) + bh),

zt = σ(Wzxt + Uzht−1 + bz),

rt = σ(Wrxt + Urht−1 + br),

(1)

where � denotes the Hadamard product, σ and τ denote the activation function of
sigmod and tanh respectively, and Wh, Uh, bh, Wz , Uz , bz , Wr, Ur and br are pa-
rameters to learn. With the two bidirectional RNNs, one forward hidden state and one
backward hidden state are calculated for the sequence, denoted as (

−→
ht , t ∈ [1, T ]) and

(
←−
ht , t ∈ [T, 1]) respectively. They are concatenated as the output of the RNN layer:
ht =

[−→
ht ,
←−
ht

]
, t ∈ [1, T ].

We assume different words are differently informative towards the type of the literal.
For example, the word “port” is more important than the other words in distinguishing
the type Wetland from other concrete types of Place. To this end, an attention layer
is further stacked. Given the input from the RNN layer (ht, t ∈ [1, T ]), the attention
layer outputs ha = [αtht] , t ∈ [1, T ], where αt is the normalized weight of the word at
position t and is calculated asαt =

exp(uT
t uw)∑

t∈[1,T ] exp(u
T
t uw)

ut = τ(Wwht + bw),
(2)



6 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

where uw, Ww and bw are parameters to learn. Specifically, uw denotes the general
informative degrees of all the words, while αt denotes the attention of the word at
position t w.r.t. other words in the sequence. Note that the attention weights can also
be utilized to justify a prediction. In order to exploit information about the location
of a word in the subject, property or literal, we do not calculate the weighted sum of
the BiRNN output but concatenate the weighted vectors. The dimension of each RNN
hidden state (i.e.,

←−
ht and

−→
ht), denoted as dr, and the dimension of each attention layer

output (i.e., αtht), denoted as da, are two hyper parameters of the network architecture.
A fully connected (FC) layer and a logistic regression layer are finally stacked for

modeling the nonlinear relationship and calculating the output score respectively:

f(s, p, l) = σ(Wfha + bf ), (3)

where Wf and bf are the parameters to learn, σ denotes the sigmod function, and f
denotes the function of the whole network.

2.4 Sampling and Training

We first extract both particular samples and general samples from the KB using SPARQL
queries and reasoning; we then improve sample quality by detecting and repairing
wrong and missing entity classifications with the help of external KBs; and finally we
train the classifiers.

Particular Sample Particular samples are based on the entities EM that are lexically
matched by the literals. For each literal candidate class c in CM , its particular samples
are generated by:

(i) Extracting its positive particular entities:EcM = {e|e ∈ EM , e is an instance of c};
(ii) Generating its positive particular samples as

P+
c = ∪e∈Ec

M
{〈s, p, l〉|s ∈ S(p, e), l ∈ L(e)} , (4)

where S(p, e) denotes the set of entities occurring in the subject position in a triple
of the form 〈s, p, e〉, and L(e) denotes all the labels (text phrases) of the entity e;

(iii) Extracting its negative particular entities E c̃M as those entities in EM that are
instances of some sibling class of c and not instances of c;5

(iv) Generating its negative particular samples P−c with E c̃M using the same approach
as for positive samples.

General Sample Given that the literal matched candidate classesCM are only a part of
all the candidate classes CPM , and that the size of particular samples may be too small
to train the neural network, we additionally generate general samples based on common
KB entities. For each candidate class c inCPM , all its entities in the KB, denoted asEc,
are extracted and then its positive general samples, denoted as G+c , are generated from

5 We use sibling classes to generate negative examples as, in practice, sibling classes are often
disjoint.



Canonicalizing Knowledge Base Literals 7

Ec using the same approach as for particular samples. Similarly, entities of the sibling
classes of c, denoted asE c̃, are extracted, and general negative samples, denoted as G−c ,
are generated from E c̃. As for negative particular entities, we check each entity in E c̃

and remove those that are instances of c.
Unlike the particular samples, the positive and negative general samples are bal-

anced. This means that we reduce the size of G+c and G−c to the minimum of #(G+c ),
#(G−c ) and N0, where #() denotes set cardinality, and N0 is a hyper parameter for
sampling. Size reduction is implemented via random sampling.

Sample Refinement Many KBs are quite noisy, with wrong or missing entity classi-
fications. For example, when using the SPARQL endpoint of DBpedia, dbr:Scotland
is classified as dbo:MusicalArtist instead of as dbo:Country, while dbr:Afghan appears
without a type. We have corrected and complemented the sample generation by combin-
ing the outputs of more than one KB. For example, the DBpedia endpoint suggestions
are compared against Wikidata and the DBpedia lookup service. Most DBpedia entities
are mapped to Wikidata entities whose types are used to validate and complement the
suggested types from the DBpedia endpoint. In addition, the lookup service, although
incomplete, typically provides very precise types that can also confirm the validity of
the DBpedia endpoint types. The validation is performed by identifying if the types
suggested by one KB are compatible with those returned by other KBs, that is, if the
relevant types belong to the same branch of the hierarchy (e.g., the DBpedia taxonomy).
With the new entity classifications, the samples are revised accordingly.

Training We train a binary classifier f c for each class c in CPM . It is first pre-trained
with general samples G+c ∪ G−c , and then fine-tuned with particular samples P+

c ∪ P−c .
Pre-training deals with the shortage of particular samples, while fine-tuning bridges the
gap between common KB entities and the entities associated with the literals, which is
also known as domain adaptation. Given that pre-training is the most time consuming
step, but is task agnostic, classifiers for all the classes in a KB could be pre-trained in
advance to accelerate a specific literal canonicalization task.

2.5 Independent and Hierarchical Typing

In prediction, the binary classifier for class c, denoted as f c, outputs a score ycl indicat-
ing the probability that a literal l belongs to class c: ycl = f c(l), ycl ∈ [0, 1]. With the
predicted scores, we adopt two strategies – independent and hierarchical to determine
the types. In the independent strategy, the relationship between classes is not consid-
ered. A class c is selected as a type of l if its score ycl ≥ θ, where θ is a threshold hyper
parameter in [0, 1].

The hierarchical strategy considers the class hierarchy and the disjointness between
sibling classes. We first calculate a hierarchical score for each class with the predicted
scores of itself and its descendants:

scl = max
{
yc

′

l |c′ v c, c′ ∈ CPM
}
, (5)



8 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

where v denotes the subclass relationship between two classes, CPM is the set of can-
didate classes for l, and max denotes the maximum value of a set. For a candidate class
c′ in CPM , we denote all disjoint candidate classes as D(CPM , c′). They can be de-
fined as sibling classes of both c′ and its ancestors, or via logical constraints in the KB.
A class c is selected as a type of l if (i) its hierarchical score scl ≥ θ, and (ii) it satisfies
the following soft exclusion condition:

scl −max
{
sc

′

l |c′ ∈ D(CPM , c)
}
≥ κ, (6)

where κ is a relaxation hyper parameter. The exclusion of disjoint classes is hard if κ is
set to 0, and relaxed if κ is set to a negative float with a small absolute value e.g., −0.1.

Finally, for a given literal l, we return the set of all selected classes as its types Cl.

2.6 Canonicalization

Given a literal l, we use Cl to try to identify an associated entity. A set of candidate
entities are first retrieved using the lexical index that is built on the entity’s name, label,
anchor text, etc. Unlike candidate class extraction, here we use the whole text phrase of
the literal, and rank the candidate entities according to their lexical similarities. Those
entities that are not instances of any classes in Cl are then filtered out, and the most simi-
lar entity among the remainder is selected as the associated entity for l. If no entities are
retrieved, or all the retrieved entities are filtered out, then the literal could be associated
with a new entity whose types are those most specific classes in Cl. In either case we
can improve the quality of our results by checking that the resulting entities would be
consistent if added to the KB, and discarding any entity associations that would lead to
inconsistency.

3 Evaluation

3.1 Experiment Setting

Data Sets In the experiments, we adopt a real literal set (R-Lite) and a synthetic literal
set (S-Lite)6 , both of which are extracted from DBpedia. R-Lite is based on the prop-
erty and literal pairs published by Gunaratna et al. in 2016 [14]. We refine the data by (i)
removing literals that no longer exist in the current version of DBpedia; (ii) extracting
new literals from DBpedia for properties whose existing literals were all removed in
step (i); (iii) extending each property and literal pair with an associated subject; and (iv)
manually adding ground truth types selected from classes defined in the DBpedia On-
tology (DBO).7 To fully evaluate the study with more data, we additionally constructed
S-Lite from DBpedia by repeatedly: (i) selecting a DBpedia triple of the form 〈s, p, e〉,
where e is an entity; (ii) replacing e with it’s label l to give a triple 〈s, p, l〉; (iii) elim-
inating the entity e from DBpedia; and (iv) adding as ground truth types the DBpedia
classes of which e is (implicitly) an instance. More data details are shown in Table 1.

6 Data and codes: https://github.com/ChenJiaoyan/KG_Curation
7 Classes with the prefix http://dbpedia.org/ontology/.



Canonicalizing Knowledge Base Literals 9

Properties # Literals # Ground Truth Types # (per Literal) Characters (Tokens) # per Literal

S-Lite 41 1746 256 (2.94) 16.66 (2.40)

R-Lite 142 820 123 (3.11) 19.44 (3.25)

Table 1. Statistics of S-Lite and R-Lite.

Metrics In evaluating the typing performance, Precision, Recall and F1 Score are used.
For a literal l, the computed types Cl are compared with the ground truths Cgtl , and the
following micro metrics are calculated: Pl = #(Cl ∩ Cgtl )/#(Cl), Rl = #(Cl ∩ Cgtl )/#(Cgtl ),
and F1l = (2× Pl × Rl)/(Pl + Rl). They are then averaged over all the literals as the final
Precision, Recall and F1 Score of a literal set. Although F1 Score measures the overall
performance with both Precision and Recall considered, it depends on the threshold
hyper parameter θ as with Precision and Recall. Thus we let θ range from 0 to 1 with
a step of 0.01, and calculate the average of all the F1 Scores (AvgF1@all) and top 5
highest F1 Scores (AvgF1@top5). AvgF1@all measures the overall pattern recognition
capability, while AvgF1@top5 is relevant in real applications where we often use a
validation data set to find a θ setting that is close to the optimum. We also use the
highest (top) Precision in evaluating the sample refinement.

In evaluating entity matching performance, Precision is measured by manually check-
ing whether the identified entity is correct or not. S-Lite is not used for entity matching
evaluation as the corresponding entities for all its literals are assumed to be excluded
from the KB. We are not able to measure recall for entity matching as we do not have
the ground truths; instead, we have evaluated entity matching with different confidence
thresholds and compared the number of correct results.

Baselines and Settings The evaluation includes three aspects. We first compare differ-
ent settings of the typing framework, analyzing the impacts of sample refinement, fine
tuning by particular samples, BiRNN and the attention mechanism. We also compare
the independent and hierarchical typing strategies. We then compare the overall typing
performance of our framework with (i) Gunaratna et al. [14], which matches the literal
to both classes and entities; (ii) an entity lookup based method; and (iii) a probabilis-
tic property range estimation method. Finally, we analyze the performance of entity
matching with and without the predicted types.

The DBpedia lookup service, which is based on the Spotlight index [19], is used for
entity lookup (retrieval). The DBpedia SPARQL endpoint is used for query answering
and reasoning. The reported results are based on the following settings: the Adam opti-
mizer together with cross-entropy loss are used for network training; dr and da are set to
200 and 50 respectively; N0 is set to 1, 200; word2vec trained with the latest Wikipedia
article dump is adopted for word embedding; and (Ts, Tp, Tl) are set to (12, 4, 12) for S-
Lite and (12, 4, 15) for R-Lite. The experiments are run on a workstation with Intel(R)
Xeon(R) CPU E5-2670 @2.60GHz, with programs implemented by Tensorflow.



10 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

3.2 Results on Framework Settings

We first evaluate the impact of the neural network architecture, fine tuning and different
typing strategies, with their typing results on S-Lite shown in Table 2 and Fig. 3. Our
findings are supported by comparable results on R-Lite. We further evaluate sample
refinement, with some statistics of the refinement operations as well as performance
improvements shown in Fig. 4.

Network Architecture and Fine Tuning According to Table 2, we find BiRNN sig-
nificantly outperforms Multiple Layer Perceptron (MLP), a basic but widely used neu-
ral network model, while stacking an attention layer (AttBiRNN) further improves
AvgF1@all and AvgF1@top5, for example by 3.7% and 3.1% respectively with hierar-
chical typing (κ = −0.1). The result is consistent for both pre-trained models and fine
tuned models, using both independent and hierarchical typing strategies. This indicates
the effectiveness of our neural network architecture. Meanwhile, the performance of all
the models is significantly improved after they are fine tuned by the particular samples,
as expected. For example, when the independent typing strategy is used, AvgF1@all
and AvgF1@top5 of AttBiRNN are improved by 54.1% and 35.2% respectively.

Framework Independent Hierarchical (κ = −0.1) Hierarchical (κ = 0)
Settings AvgF1@all AvgF1@top5 AvgF1@all AvgF1@top5 AvgF1@all AvgF1@top5

Pre-training
MLP 0.4102 0.4832 0.5060 0.5458 0.5916 0.5923

BiRNN 0.4686 0.5566 0.5295 0.5649 0.5977 0.5985

AttBiRNN 0.4728 0.5590 0.5420 0.5912 0.6049 0.6052

Fine tuning
MLP 0.6506 0.6948 0.6859 0.6989 0.6429 0.6626

BiRNN 0.7008 0.7434 0.7167 0.7372 0.6697 0.6850

AttBiRNN 0.7286 0.7557 0.7429 0.7601 0.6918 0.7070

Table 2. Typing performance of our framework on S-Lite under different settings.

Independent and Hierarchical Typing The impact of independent and hierarchical
typing strategies is more complex. As shown in Table 2, when the classifier is weak
(e.g., pre-trained BiRNN), hierarchical typing with both hard exclusion (κ = 0) and
relaxed exclusion (κ = −0.1) has higher AvgF1@all and AvgF1@top5 than indepen-
dent typing. However, when a strong classifier (e.g., fine tuned AttBiRNN) is used,
AvgF1@all and AvgF1@top5 of hierarchical typing with relaxed exclusion are close
to independent typing, while hierarchical typing with hard exclusion has worse per-
formance. We further analyze Precision, Recall and F1 Score of both typing strategies
under varying threshold (θ) values, as shown in Fig. 3. In comparison with indepen-
dent typing, hierarchical typing achieves (i) more stable Precision, Recall and F1 Score
curves; and (ii) significantly higher Precision, especially when θ is small. Meanwhile, as
with the results in Table 2, relaxed exclusion outperforms hard exclusion in hierarchical
typing except for Precision when θ is between 0 and 0.05.

Sample Refinement Fig. 4 [Right] shows the ratio of positive and negative particular
samples that are deleted and added during sample refinement. The AttBiRNN classifiers



Canonicalizing Knowledge Base Literals 11

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P	(I) R	(I) F1	(I) 

P	(H,	𝛋=-0.1) R	(H,	𝛋=-0.1) F1	(H,	𝛋=-0.1) 

P	(H,	𝛋=0.0) R	(H,	𝛋=0.0) F1	(H,	𝛋=0.0) 

P
/	R

/F1

𝜃

Fig. 3. (P)recision, (R)ecall and (F1) Score of independent (I) and hierarchical (H) typing for
S-Lite, with the scores predicted by the fine-tuned AttBiRNN.

fine-tuned by the refined particular samples are compared with those fine-tuned by the
original particular samples. The improvements on AvgF1@all, AvgF1@top5 and top
Precision, which are based on the average of the three above typing settings, are shown
in Fig. 4 [Left]. On the one hand, we find sample refinement benefits both S-Lite and
R-Lite, as expected. On the other hand, we find the improvement on S-Lite is limited,
while the improvement on R-Lite is quite significant: F1@all and top Precision, e.g.,
are improved by around 0.8% and 1.8% respectively on S-Lite, but 4.3% and 7.4%
respectively on R-Lite. This may be due to two factors: (i) the ground truths of S-Lite
are the entities’ class and super classes inferred from the KB itself, while the ground
truths of R-Lite are manually labeled; (ii) sample refinement deletes many more noisy
positive and negative samples (which are caused by wrong entity classifications of the
KB) on R-Lite than on S-Lite, as shown in Fig. 4 [Right].

0.00% 

1.00% 

2.00% 

3.00% 

4.00% 

5.00% 

6.00% 

7.00% 

S-Lite R-Lite

F1@all F1@top5 top	Precision

0.00% 

2.00% 

4.00% 

6.00% 

8.00% 

10.00% 

12.00% 

(Positive,	Add) (Negative,	Add) (Positive,	Del) (Negative,	Del)

S-Lite R-Lite

Fig. 4. [Left] Performance improvement (%) by sample refinement; [Right] Ratio (%) of added
(deleted) positive (negative) particular sample per classifier during sample refinement.



12 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

3.3 Results on Semantic Typing

Table 3 displays the overall semantic typing performance of our method and the base-
lines. Results for two optimum settings are reported for each method. The baseline
Entity-Lookup retrieves one or several entities using the whole phrase of the literal, and
uses their classes and super classes as the types. Gunaratna [14] matches the literal’s
focus term (head word) to an exact class, then an exact entity, and then a class with the
highest similarity score. It stops as soon as some classes or entities are matched. We ex-
tend its original “exact entity match” setting with “relaxed entity match” which means
multiple entities are retrieved. Property Range Estimation gets the classes and super
classes from the entity objects of the property, and calculates the score of each class as
the ratio of entity objects that belong to that class. (H/I, κ, ·)@top-P (F1) denotes the
setting where the highest Precision (F1 Score) is achieved.

Methods with S-Lite R-Lite
Their Settings Precision Recall F1 Score Precision Recall F1 Score

Gunaratna
exact entity match 0.3825 0.4038 0.3773 0.4761 0.5528 0.4971

relaxed entity match 0.4176 0.5816 0.4600 0.3865 0.6526 0.4469

Entity-Lookup
top-1 entity 0.2765 0.2620 0.2623 0.3994 0.4407 0.4035

top-3 entities 0.2728 0.3615 0.2962 0.3168 0.5201 0.3655

Property Range (H/I, κ, θ)@top-P 0.7563 0.5583 0.6210 0.5266 0.4015 0.4364

Estimation (H/I, κ, θ)@top-F1 0.6874 0.7166 0.6773 0.4520 0.5069 0.4632

AttBiRNN
(H/I, κ, θ)@top-P 0.8320 0.7325 0.7641 0.7466 0.5819 0.6340

(H/I, κ, θ)@top-F1 0.8179 0.7546 0.7708 0.6759 0.6451 0.6386

Table 3. Overall typing performance of our method and the baselines on S-Lite and R-Lite.

As we can see, AttBiRNN achieves much higher performance than all three base-
lines on both S-Lite and R-Lite. For example, the F1 Score of AttBiRNN is 67.6%,
160.2% and 13.8% higher than those of Gunaratna, Entity-Lookup and Property Range
Estimation respectively on S-Lite, and 28.5%, 58.3% and 37.9% higher respectively
on R-Lite. AttBiRNN also has significantly higher Precision and Recall, even when the
setting is adjusted for the highest F1 Score. This is as expected, because our neural net-
work, which learns the semantics (statistical correlation) from both word vector corpus
and KB, models and utilizes the contextual meaning of the literal and its associated
triple, while Gunaratna and Entity-Lookup are mostly based on lexical similarity. The
performance of Property Range Estimation is limited because the object annotation in
DBpedia usually does not follow the property range, especially for those properties in
R-Lite. For example, objects of the property dbp:office have 35 DBO classes, ranging
from dbo:City and dbo:Country to dbo:Company.

It is also notable that AttBiRNN and Property Range Estimation perform better
on S-Lite than on R-Lite. The top F1 Score is 20.7% and 46.2% higher respectively,
while the top Precision is 11.4% and 43.6% higher respectively. This is because R-
Lite is more noisy, with longer literals, and has more ground truth types on average
(cf. Table 1), while S-Lite has fewer properties, and each property has a large number



Canonicalizing Knowledge Base Literals 13

of entity objects, which significantly benefits Property Range Estimation. In contrast,
the two entity matching based methods, Gunaratna and Entity-Lookup, perform worse
on S-Lite than on R-Lite; this is because the construction of S-Lite removes those KB
entities from which literals were derived. Gunaratna outperforms Entity-Lookup as it
extracts the head word and matches it to both entities and classes. Note that the head
word is also included in our candidate class extraction with lookup.

3.4 Results on Entity Matching

Table 4 displays the number of correct matched entities and the Precision of entity
matching on R-Lite. The types are predicted by the fine-tuned AttBiRNN with inde-
pendent typing and two threshold settings. We can see that Precision is improved when
the retrieved entities that do not belong to any of the predicted types are filtered out. The
improvement is 6.1% and 5.8% when θ is set to 0.15 and 0.01 respectively. Meanwhile,
although the total number of matches may decrease because of the filtering, the number
of correct matches still increases from 396 to 404 (θ = 0.01). This means that Recall is
also improved.

Metrics Pure Lookup Lookup-Type (θ = 0.15) Lookup-Type (θ = 0.01)

Correct Matches # 396 400 404

Precision 0.6781 0.7194 0.7176

Table 4. Overall performance of entity matching on R-Lite with and without type constraint.

4 Related Work

Work on KB quality issues can can be divided into KB quality assessment [10, 31],
and KB quality improvement/refinement [22]. The former includes error and anomaly
detection methods, such as test-driven and query template based approaches [16, 11],
with statistical methods [6] and consistency reasoning [24] also being applied to assess
KB quality with different kinds of metric. The latter includes (i) KB completion, such
as entity classification [13, 23, 28], relation prediction [17] and data typing [8]; and (ii)
KB diagnosis and repair, such as abnormal value detection [11], erroneous identity link
detection [26] and data mapping (e.g., links to Wikipedia pages) correction [7].

KB canonicalization refers to those refinement works that deal with redundant and
ambiguous KB components as well as poorly expressed knowledge with limited rea-
soning potential. Some works in open information extraction (IE) [12, 29, 30] aim to
identify synonymous noun phrases and relation phrases of open KBs which are com-
posed of triple assertions extracted from text without any ontologies. For example, the
recently proposed CESI method [29] utilizes both learned KB embeddings and side
information like WordNet to find synonyms via clustering. Other works analyze syn-
onyms for ontological KBs. Abedjan et al. [1] discovered synonymously used predi-
cates for query expansion on DBpedia. Pujara et al. [25] identified coreferent entities of



14 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

NELL with ontological constraints considered. These clustering, embedding, or entity
linking based methods in open IE, however, can not be directly applied or do not work
well for our KB literal canonicalization. The utilization of these techniques will be in
our future work.

String literals in ontological KBs such as DBpedia often represent poorly expressed
knowledge, with semantic types and coreferent entities missed. As far as we known,
canonicalization of such literals has been little studied. Gunaratna et al. [14] typed the
literal by matching its head term to ontology classes and KB entities, but the literal
context (e.g., the associated subject and property) and semantic meaning of the com-
position words were not utilized. Some ideas of entity classification can be borrowed
for literal typing but will become ineffective as the context differs. For example, the
baseline Property Range Estimation in our experiments uses the idea of SDType [23] —
utilizing the statistical distribution of types in the subject position and object position of
properties to estimate an entity’s type probabilities. As a literal is associated with only
one property, such probabilistic estimation becomes inaccurate (cf. results in Table 3).

Our literal classification model is in some degree inspired by those natural language
understanding and web table annotation works that match external noun phrases to KB
types and entities [15, 18, 4] using neural networks and semantic embeddings for mod-
eling the contextual semantics. For example, Luo et al. [18] learned features from the
surrounding cells of a target cell to predict its entity association. However the context in
those works is very different, i.e., a simple regular structure of rows/columns with lim-
ited (table) metadata. In contrast, KBs have a complex irregular structure and rich meta-
data (the knowledge captured in the KB). Differently from these works, we developed
different methods, e.g., candidate class extraction and high quality sampling, to learn
the network from the KB with its assertions, terminologies and reasoning capability.

5 Discussion and Outlook

In this paper we present our study on KB literal canonicalization — an important prob-
lem on KB quality that has been little studied. A new technical framework is proposed
with neural network and knowledge-based learning. It (i) extracts candidate classes as
well as their positive and negative samples from the KB by lookup and query answer-
ing, with their quality improved using an external KB; (ii) trains classifiers that can ef-
fectively learn a literal’s contextual features with BiRNNs and an attention mechanism;
(iii) identifies types and matches entity for canonicalization. We use a real data set and a
synthetic data set, both extracted from DBpedia, for evaluation. It achieves much higher
performance than the baselines that include the state-of-the-art. We discuss below some
more subjective observations and possible directions for future work.

Neural Network and Prediction Justification The network architecture aims to learn
features from a literal’s context. In our AttBiRNN, a triple is modeled as a word se-
quence with three size-fixed segments allocated for the subject, object and literal re-
spectively. The cooccurrence of words and the importance of each word are learned
by BiRNNs and the attention mechanism respectively, where word position (including
whether it is in the subject, property or literal) is significant. The effectiveness of such



Canonicalizing Knowledge Base Literals 15

a design has been validated in Section 3.2. However, the current design does not exploit
further semantics of the subject, such as its relation to other entities. We believe that
this will provide limited indication of the literal’s semantic type, but this could be ex-
plored using graph embedding methods such as random walks and Graph Convolutional
Networks.

We believe that it would be interesting to explore the possible use of the learned
attention weights (αt) in justifying the predictions. For example, considering the lit-
eral in triple 〈dbr:Byron White, dbp:battles, “World War II”〉 and the classifier of type
dbo:MilitaryConflict, “War” gets a dominant attention weight of 0.919, “battles” and
“II” get attention weights 0.051 and 0.025 respectively, while the attention weights of
other words and the padded empty tokens are all less than 0.0015. Similarly, in the
triple 〈dbr:Larry Bird, dbp:statsLeague, “NBA” 〉, the total attention weights of the
subject, property and literal are 0.008, 0.801 and 0.191 respectively w.r.t. the classi-
fier of dbo:Organisation, but become 0.077, 0.152 and 0.771 w.r.t. the classifier of
dbo:BasketballLeague, where the signal of basketball is focused.

Knowledge-based Learning We developed some strategies to fully train our neural
networks with the supervision of the KB itself. One strategy is the separated extrac-
tion of general samples and particular samples. It (i) eliminates the time consuming
pre-training step from a specific task, reducing for example the total typing time per
literal of S-Lite from 10.5 seconds to 2.5 seconds (training and prediction are run with
at most 10 parallel threads), and (ii) adapts the domain of the classifier toward the tar-
get literals through fine tuning, which significantly improves the accuracy as shown in
Table 2. Another strategy that has been evaluated in Section 3.2 is sample refinement
by validating entity classifications with external knowledge from Wikidata. However,
we believe that this could be further extended with more external KBs, as well as with
logical constraints and rules.

Entity Matching We currently search for the corresponding entity of a literal by lex-
ical lookup, and filter out those that are not instances of any of the predicted types.
The extension with prediction does improve the performance in comparison with pure
lookup (cf. Section 3.4), but not as significantly as semantic typing, especially on the
metric of the number of correct matches. One reason is that entity matching itself has
relatively few ground truths as many literals in R-Lite have no corresponding entities
in the KB. Another reason is that we post-process the entities from lookup instead of
directly predicting the correspondence. This means that those missed by pure lookup
are still missed. In the future we plan to explore direct prediction of the matching entity
using semantic embedding and graph feature learning.

Acknowledgments

The work is supported by the AIDA project, The Alan Turing Institute under the EPSRC
grant EP/N510129/1, the SIRIUS Centre for Scalable Data Access (Research Council of
Norway, project 237889), the Royal Society, EPSRC projects DBOnto, MaSI3 and ED3.



16 Jiaoyan Chen, Ernesto Jiménez-Ruiz, and Ian Horrocks

References

1. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Extended semantic
web conference. pp. 140–154. Springer (2013)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus
for a web of open data. In: The semantic web, pp. 722–735. Springer (2007)

3. Auer, S., Lehmann, J., Hellmann, S.: Linkedgeodata: Adding a spatial dimension to the web
of data. In: International Semantic Web Conference. pp. 731–746. Springer (2009)

4. Chen, J., Jimenez-Ruiz, E., Horrocks, I., Sutton, C.: Colnet: Embedding the semantics of
web tables for column type prediction. In: AAAI (2019)

5. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Ben-
gio, Y.: Learning phrase representations using rnn encoder–decoder for statistical machine
translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing. pp. 1724–1734 (2014)

6. Debattista, J., Londoño, S., Lange, C., Auer, S.: Quality assessment of linked datasets using
probabilistic approximation. In: European semantic web conference. pp. 221–236. Springer
(2015)

7. Dimou, A., Kontokostas, D., Freudenberg, M., Verborgh, R., Lehmann, J., Mannens, E.,
Hellmann, S., Van de Walle, R.: Assessing and refining mappingsto rdf to improve dataset
quality. In: International Semantic Web Conference. pp. 133–149. Springer (2015)

8. Dongo, I., Cardinale, Y., Al-Khalil, F., Chbeir, R.: Semantic web datatype inference: Towards
better rdf matching. In: International Conference on Web Information Systems Engineering.
pp. 57–74 (2017)

9. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Matching web ta-
bles with knowledge base entities: from entity lookups to entity embeddings. In: International
Semantic Web Conference. pp. 260–277. Springer (2017)

10. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of dbpedia, free-
base, opencyc, wikidata, and yago. Semantic Web 9(1), 77–129 (2018)

11. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors in numerical
linked data using cross-checked outlier detection. In: International Semantic Web Confer-
ence. pp. 357–372 (2014)

12. Galárraga, L., Heitz, G., Murphy, K., Suchanek, F.M.: Canonicalizing open knowledge bases.
In: Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management. pp. 1679–1688 (2014)

13. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Au-
tomatic typing of dbpedia entities. In: International Semantic Web Conference. pp. 65–81.
Springer (2012)

14. Gunaratna, K., Thirunarayan, K., Sheth, A., Cheng, G.: Gleaning types for literals in rdf
triples with application to entity summarization. In: European Semantic Web Conference.
pp. 85–100 (2016)

15. Kartsaklis, D., Pilehvar, M.T., Collier, N.: Mapping text to knowledge graph entities using
multi-sense lstms. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. pp. 1959–1970 (2018)

16. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri,
A.: Test-driven evaluation of linked data quality. In: Proceedings of the 23rd international
conference on World Wide Web. pp. 747–758. ACM (2014)

17. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge
graphs. In: International Semantic Web Conference. pp. 640–655. Springer (2015)

18. Luo, X., Luo, K., Chen, X., Zhu, K.Q.: Cross-lingual entity linking for web tables. In: AAAI.
pp. 362–369 (2018)



Canonicalizing Knowledge Base Literals 17

19. Mendes, P.N., Jakob, M., Garcı́a-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the
web of documents. In: Proceedings of the 7th international conference on semantic systems.
pp. 1–8. ACM (2011)

20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

21. Niu, X., Sun, X., Wang, H., Rong, S., Qi, G., Yu, Y.: Zhishi. me-weaving chinese linking
open data. In: International Semantic Web Conference. pp. 205–220. Springer (2011)

22. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation methods.
Semantic web 8(3), 489–508 (2017)

23. Paulheim, H., Bizer, C.: Type inference on noisy rdf data. In: International semantic web
conference. pp. 510–525 (2013)

24. Paulheim, H., Gangemi, A.: Serving dbpedia with dolce–more than just adding a cherry on
top. In: International Semantic Web Conference. pp. 180–196. Springer (2015)

25. Pujara, J., Miao, H., Getoor, L., Cohen, W.: Knowledge graph identification. In: International
Semantic Web Conference. pp. 542–557. Springer (2013)

26. Raad, J., Beek, W., Van Harmelen, F., Pernelle, N., Saı̈s, F.: Detecting erroneous identity
links on the web using network metrics. In: International Semantic Web Conference. pp.
391–407. Springer (2018)

27. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery 22(1-2), 31–72 (2011)

28. Sleeman, J., Finin, T., Joshi, A.: Entity type recognition for heterogeneous semantic graphs.
AI Magazine 36(1), 75–86 (2015)

29. Vashishth, S., Jain, P., Talukdar, P.: Cesi: Canonicalizing open knowledge bases using em-
beddings and side information. In: Proceedings of the 2018 World Wide Web Conference on
World Wide Web. pp. 1317–1327 (2018)

30. Wu, T.H., Wu, Z., Kao, B., Yin, P.: Towards practical open knowledge base canonicalization.
In: Proceedings of the 27th ACM International Conference on Information and Knowledge
Management. pp. 883–892 (2018)

31. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment
for linked data: A survey. Semantic Web 7(1), 63–93 (2016)


