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Abstract. Description logics (DLs) are a family of formal languages
for knowledge representation with numerous applications. Consequence-
based reasoning is a promising approach to DL reasoning which can be
traced back to the work of Franz Baader and his group on efficient sub-
sumption algorithms for the EL family of DLs circa 2004. Consequence-
based reasoning combines ideas from hypertableaux and resolution in a
way that has proved very effective in practice, and it still remains an ac-
tive field of research. In this paper, we review the evolution of the field in
the last 15 years and discuss the various consequence-based calculi that
have been developed for different DLs, from the lightweight EL to the
expressive SROIQ. We thus provide a comprehensive and up-to-date
analysis that highlights the common characteristics of these calculi and
discusses their implementation.

Keywords: description logics · automated reasoning · ontologies · knowl-
edge representation.

1 Introduction

Description logics (DLs) are a prominent family of languages for knowledge
representation and reasoning with well-understood formal properties [3]. Interest
in DLs has been spurred by their applications to the representation of ontologies:
for instance, the DL SROIQ provides the formal underpinning for the Web
Ontology Language OWL 2 [46].

A central component of most DL applications is a scalable reasoner, which can
be used to discover logical inconsistencies, classify the concepts of an ontology
in a subsumption hierarchy, or answer database-style queries over an ontology
and a dataset. Two traditional approaches to concept classification (and to DL
reasoning more broadly) are tableaux [4] and resolution [9].

Tableau and hyper-tableau calculi underpin many of the existing DL rea-
soners [40, 44, 18, 17, 41]. To check whether a concept subsumption relationship
holds, (hyper-)tableau calculi attempt to construct a finite representation of an
ontology model disproving the given subsumption. The constructed models can,
however, be large—a source of performance issues; this problem is exacerbated
in classification tasks due to the large number of subsumptions to be tested.
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Another major category of DL reasoning calculi comprises methods based on
first-order logic resolution [9]. A common approach to ensure both termination
and worst-case optimal running time is to parametrise resolution to ensure that
the calculus only derives a bounded number of clauses [34, 22, 37, 21, 15, 28]. This
technique has been implemented, for instance, in the KAON2 reasoner [32] for
SHIQ. Resolution can also be used to simulate model-building (hyper)tableau
techniques [20], including blocking methods which ensure termination [16].

Consequence-based (CB) calculi emerged as a promising approach to DL rea-
soning combining features of (hyper)tableau and resolution [2, 24, 26, 10]. On the
one hand, similarly to resolution, they derive formulae entailed by the ontology
(thus avoiding the explicit construction of large models), and they are typically
worst-case optimal. On the other hand, clauses are organised into contexts ar-
ranged as a graph structure reminiscent of that used for model construction
in (hyper)tableau; this prevents CB calculi from drawing many unnecessary in-
ferences and yields a nice goal-oriented behaviour. Furthermore, in contrast to
both resolution and (hyper)tableau, CB calculi can verify a large number of sub-
sumptions in a single execution, allowing for one-pass classification. Finally, CB
calculi are very effective in practice, and systems based on them have shown out-
standing performance. Leading reasoners for lightweight DLs such as ELK [27] or
Snorocket [31] are based on consequence-based calculi. Furthermore, prototypi-
cal implementations of consequence-based calculi for more expressive languages,
such as Sequoia [11] or Avalanche [45], show promising results.

The first CB calculi were proposed by Franz Baader, Sebastian Brandt, and
Carsten Lutz for the EL family of DLs [12, 2]. They were later extended to more
expressive logics like Horn-SHIQ [24], Horn-SROIQ [35], and ALCH [38]. A
unifying framework for CB reasoning was developed in [39] forALCHI, introduc-
ing the notion of contexts as a mechanism for constraining resolution inferences
and making them goal-directed. The framework has been extended to the DLs
ALCHIQ, which supports number restrictions and inverse roles [10]; ALCHOI,
which supports inverse roles and nominals [42]; ALCHOQ, supporting nominals
and number restrictions [23], and finally to ALCHOIQ, which supports all of
the aforementioned constructs [43].

This paper reviews the development of the consequence-based approach to
DL reasoning since its first appearance fifteen years ago. In Section 2 we in-
troduce the core ideas behind consequence-based reasoning, using a simplified
version of the original CB calculus in [12]. In Section 3 we discuss the evolution
of consequence-based calculi in the first decade after the introduction of the orig-
inal calculus, which focused mostly in lightweight or Horn DLs. In Section 4 we
discuss the introduction in [39] of a unifying framework for consequence-based
reasoning. This piece of work describes an abstract structure which more explic-
itly captures the defining features of consequence-based calculi. By varying the
parameters in this structure, it becomes possible to simulate many previously
existing calculi. Finally, in Section 5 we discuss recent progress in consequence-
based reasoning, including the design of calculi for more expressive DLs, and the
introduction of hybrid methods that combine the consequence-based approach
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with other well-known reasoning techniques such as tableaux or integer linear
programming.

We assume familiarity with the basics of Description Logics, and refer the
reader to [6] for a comprehensive introduction to DLs.

2 Consequence-based Reasoning

This section introduces the consequence-based approach to DL reasoning. We
start by describing one of the simplest and best known consequence-based calculi:
the classification algorithm for EL. We next give a summary of the common
features of consequence-based calculi, and use the EL calculus as an illustrative
example of these characteristics.

2.1 The EL Consequence-based Calculus

The calculus presented in this section is a restricted form of the classification
procedure given in [12]. The original presentation used a notation different from
the terminology used in this section, which is due to [24] and has been used in
many of the subsequent consequence-based calculi, as well as in a recent textbook
on Description Logics [6].

Consider an arbitrary EL ontology O in normal form, which is defined as
a set of axioms of the form A v B, A1 u A2 v B, A v ∃R.B, or ∃R.A v B,
with A,B atomic concepts, and R an atomic role. It is well-known that any
EL ontology can be normalised to this form in polynomial time. The calculus
builds a set S containing inclusions entailed by O, which are called consequences
of O. Set S is initialised by using rules IR1 and IR2 from Figure 1. Next, the
algorithm repeatedly applies rules CR1-CR4 to saturate S. These rules use the
existing consequences in S and the axioms of O to derive further consequences;
e.g., rule CR1 uses consequence A v B and the fact that B v C is an axiom of
O to conclude that A v C is also a consequence.

IR1
A v A

IR2
A v >

CR1
A v B B v C ∈ O

A v C

CR2
A v B A v C B u C v D ∈ O

A v D

CR3
A v B B v ∃R.C ∈ O

A v ∃R.C
CR4

A v ∃R.B B v C ∃R.C v D ∈ O
A v D

Fig. 1. Inference rules for the simplified EL calculus

The calculus in Figure 1 ensures that any subsumption of the form A v B
that is logically entailed by the ontologyO will be contained in S after saturation;
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hence, the classification ofO can be read directly from S. The resulting algorithm
works in worst-case polynomial time in the size of the input ontology O.

2.2 The Defining Characteristics of Consequence-Based Reasoning

Although consequence-based calculi described in the literature may appear rather
different from each other at first glance, they all share several defining character-
istics. We discuss these common features using the EL calculus as an example.

Materialisation of derived consequences. Similarly to resolution-based ap-
proaches, consequence-based calculi proceed by deriving formulae entailed by
the input ontology. This approach can have significant practical advantages over
(hyper-)tableau calculi, since these construct (a representation of) a model of
the input ontology, and such (representations of) models may be very large. We
illustrate this with an example: suppose we would like to check whether the
subsumption B0 v C is entailed by the following EL ontology:

{Bi v ∃R.Bi+1 | 0 ≤ i ≤ n− 1} Bn v C ∃R.C v C
{Bi v ∃S.Bi+1 | 0 ≤ i ≤ n− 1} ∃S.C v C

If we use a tableau algorithm for this task, the size of the generated model will
depend on the order in which inference rules are applied. In particular, building
the tableau in a breadth-first manner will lead to an exponentially large model.

{B0, ∃R.B1, ∃S.B1, ¬C, · · · , C,⊥}

{B1, ∃R.B2, ∃S.B2, · · · , C}

{B2, ∃R.B3, ∃S.B3, · · · , C}

R

{B2, . . . }
S

R

{B1, . . . }

R

{B2, . . . }

S

S

Fig. 2. Model built by a tableau-like procedure. All node labels are derived from the
root downwards, except for C, which is derived first at the leaves and then propagated
upwards, and ⊥.

In contrast, the subsumption can be proved using the algorithm of Section
2.1 in a linear number of steps. Indeed, initialisation would produce Bi v >
and Bi v Bi for each 0 ≤ i ≤ n, together with C v > and C v C. Rule CR1
would then produce Bn v C; afterwards, rule CR3 would produce at least one
of Bi v ∃R.Bi+1 and Bi v ∃S.Bi+1 for each 0 ≤ i ≤ n. Finally, CR4 would
generate all inferences of the form Bi v C, including our target subsumption.
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Locality of consequences. Another key characteristic of consequence-based
calculi is their emphasis on computing “local” consequences only. Unlike methods
based on resolution, where many other kinds of entailments can be derived,
CB calculi derive only clauses of a very restricted form which constrain only
a “central” domain element t and (possibly) domain elements that are directly
connected to t via roles (binary predicates). This can be easily seen in the EL
calculus above, where consequences have the same form as ontology axioms, and
these are equivalent to first-order clauses universally quantified over a single
variable x, which may also introduce an existentially quantified variable y in
clauses with a role atom of the form R(x, y) acting as a guard.

Focus on contexts. The search for local consequences in consequence-based
calculi is driven by contexts [39], which group similar types of local consequences
together. For instance, in the EL calculus, inference rules always use a premise of
the form A v ∆, where A is an atomic concept, and ∆ is a concept. Hence, we can
define one context per atomic concept A and group together in the same context
all consequences having A in the left-hand-side. This is an advantage with respect
to resolution-based methods, for it prevents the derivation of irrelevant clauses.
For example, a DL-clause B1 uB2 v B3, where B1, B2, B3 are atomic concepts,
is only used in the EL calculus if we have derived consequences A v B1 and
A v B2. In contrast, a resolution method could resolve the same axiom with
consequences of the form A1 v B1 and A2 v B2 even if A1 and A2 never appear
together in the same context, which suggests that the derived consequence would
not be relevant for the taxonomy.

Other Features. The main characteristics described above enable other fea-
tures that are often regarded as distinctive traits of consequence-based reasoning.

– Goal-oriented behaviour. It is often possible to focus only on contexts that
are relevant for the given query, as well as contexts that are found to be
relevant during the saturation phase. For instance, if we use the EL calculus
to check a single subsumption of the form A v B, we can initialise the
algorithm simply with A v A and A v >, and then restrict the application
of rules IR1 and IR2 only to those atomic concepts that are generated in S
during saturation.

– Reusability of consequences and one-pass classification. Since consequences
derived while answering a query are entailments of the input ontology, they
can be re-used in reasoning for any further queries. For instance, in the
previous example, any consequences generated while checking whether Bi v
C for some 0 < i < n can be reused to determine whether B0 v C. Therefore,
if we initialise the calculus by applying rules IR1 and IR2 to every atomic
concept, all subsumptions that follow from an EL ontology are computed
in a single run of the algorithm. Consequences can also be reused when the
input ontology O is extended with new axioms.
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– Parallelisation. Emphasis on locality makes consequence-based calculi very
amenable to parallel implementations, since many inferences in each context
can be done independently of other contexts. Furthermore, if one can predict
which contexts will interact little or not at all with each other, the workload
can be better divided in order to increase the progress that can be made in
parallel.

3 The Early Years: 2004 - 2013

This section gives a historical perspective of the first 10 years of consequence-
based reasoning, which mostly focused on lightweight or Horn DLs.

3.1 The First Consequence-based Calculus

The first consequence-based calculi were introduced by Franz Baader and col-
leagues around the year 2004. A first version was presented in [12] for the DL
ELH, and this was extended shortly afterwards to handle additional constructs
such as the constant for unsatisfiable concepts (⊥), concrete domains, and role
chains [2]. The EL family of DLs was starting to receive significant attention at
the time: on the one hand, EL reasoning had been proven to be tractable; on the
other hand, the logics in the EL family had been shown to be expressive enough
to capture real-world ontologies. The logic EL++ eventually became the basis
for one of the standardised profiles [33] of the ontology language OWL 2.

The first analysis of fragments of EL used structural subsumption algorithms
[7, 5], but the new technique introduced in [12] and [2] was radically different.
This technique starts by normalising the ontology, following a procedure analo-
gous to that devised in [30], and then it applies a series of inference rules until
saturation is reached. The calculus in Section 2.1 represents an example of this
approach. Although these calculi were not referred to as “consequence-based” at
the time, they already displayed the defining features that have been discussed
in Section 2.2.

The calculus in [2] was implemented in the reasoner CEL [8]; experiments
with this system on life-science ontologies showed that efficient reasoning was
feasible even for very large ontologies. The elegance and simplicity of this tech-
nique was quickly recognised, and it inspired similar methods for more expressive
DLs, which we discuss in the following sections.

At the same time, interest was sparked into developing more efficient imple-
mentations of consequence-based calculi for the EL family of DLs. Research in
this area has covered topics such as alternative consequence-based calculi for EL
and its variants, efficient strategies for saturation based on tailored data struc-
tures and indices, or incremental reasoning. Reasoners such as ELK [27] and
Snorocket [31] draw upon this work in order to provide highly efficient, robust,
and scalable implementations for lightweight extensions of EL.
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3.2 Going Beyond EL: Horn-SHIQ

In 2009, a new consequence-based calculus was introduced in [24] for the DL
Horn-SHIQ, which includes expressive constructs not supported in any variant
of EL, such as universal restrictions (∀R.A), inverse roles, and number restric-
tions. The addition of these constructs led to new challenges for the development
of consequence-based calculi. In particular, it becomes necessary to allow for
the derivation of additional types of consequences in order to ensure complete-
ness. For instance, a consequence like A v ∃R.B combined with an axiom like
A v ∀R.C entails consequence A v ∃R.(B u C), which then becomes relevant
for deriving additional atomic subsumptions. The calculus in [24] allows for con-
sequences of the forms

dn
i=1Ai v B and

dn
i=1Ai v ∃R.(

dm
j=1Bj), where Ai, Bj

are atomic concepts, and R is an atomic role. These inferences may lead to con-
junctions that can be as long as the number of atomic concepts in the ontology.
This syntax is also useful to represent consequences of axioms involving number
restrictions, as seen in the following inference rule from the calculus in [24]:

R5

M v ∃R1.N1 N1 v B R1 v S ∈ O
M v ∃R2.N2 N2 v B R2 v S ∈ O M v ≤ 1S.B

M v ∃R1.(N1 uN2)

In this inference rule, M , N1, and N2 are conjunctions of atomic concepts, B
is an atomic concept, and R1,R2, and S are atomic roles. The calculus shares
many desirable properties with the ELH procedure: it is worst-case optimal (it
works in exponential time for a logic that is ExpTime-complete) and it allows for
one-pass classification. Furthermore, it displays a pay-as-you-go behaviour, as it
becomes analogous to the ELH procedure on an ELH ontology. Such behaviour
is very convenient in applications, because the calculus can deal very effectively
with ontologies that are “mostly” ELH. This was proved in practice when the
calculus was implemented in a reasoner called CB [24], which classified for the
first time the full version of the GALEN ontology.

3.3 Reasoning with Nominals: Horn-SROIQ and ELHO

Although the calculus in [2] for EL++ included nominals, it was later found
to be incomplete for handling them [26]. Complete consequence-based calculi
for logics involving nominals were later developed for Horn-SROIQ [35] and
ELHO [26]. In order to ensure completeness, the calculus in [26] had to keep
track of “conditional” consequences, which only hold in models where some
atomic concepts are non-empty. To see why this may be necessary, observe that
an axiom of the form C v {o} in an ontology splits the models of the ontology
into two kinds: those in which C is interpreted as the empty set and those where
C is interpreted as a singleton; this obviously affects also the subconcepts of C.

Both of the aforementioned calculi introduced additional syntax to keep track
of this kind of consequences. The Horn-SROIQ calculus in [35] introduces a
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predicate rel which identifies non-empty concepts and inference rules to prop-
agate this predicate when necessary. Similarly, the ELHO calculus from [26]
introduces a new type of consequences which can be written as G : C v D.
This represents that inclusion C v D holds whenever concept G is not empty.
Furthermore, the calculus also uses the dependency G  H to represent that
concept H is non-empty whenever concept G is non-empty. Notice that such
consequences are not always “local” in the sense described in Section 2.2; in-
deed, the restriction to local consequences is difficult to marry with the presence
of nominals in ontologies. It is often possible, however, to carefully constrain
the syntax of consequences so that, in the absence of nominals, local forms are
recovered.

Another interesting aspect of the Horn-SROIQ method is the introduc-
tion of a predicate equal to represent equality between individuals, together
with inference rules that ensure such relations are congruences. Later calculi for
DLs with number restrictions and/or nominals also require the use of equali-
ties, as we show in Section 5.1, but instead of axiomatising equality, they use
paramodulation-based inference rules [47]. The Horn-SROIQ calculus intro-
duces also a rule to deal with the “terrible trifecta,” a simultaneous interaction
between nominals, inverse roles, and functional restrictions. The rule ensures
that any two concepts or types related by a role R to the same nominal, and
such that the inverse of R is functionally restricted, are satisfied by a single,
unique domain element. This is recorded with the help of a special predicate
same, which ensures that such a pair behaves, for the purposes of the calculus,
like a nominal. Similar strategies have been used for other consequence-based
calculi or in other approaches to reasoning for SHOIQ, such as the resolution-
based calculus in [28] or the tableau calculus in [19].

Both calculi are worst-case optimal, and the ELHO algorithm is also pay-as-
you-go in the sense that it reduces to the standard ELH calculus in the absence
of nominals.

3.4 Embracing Disjunction: ALCH

The consequence-based calculus presented in [38] for ALCH was the first to
support concept disjunction. The introduction of disjunction leads to difficulties:
while previous calculi are such that a canonical model can be built from the
saturated set of consequences to disprove any subsumption A v B absent from
this set, such a model may not exist for ontologies with disjunction. The calculus
proposed in [38] used an explicit representation of disjunctions which was similar
to that used in resolution calculi for fragments of first-order logic. The calculus
also introduced ordering, which dramatically reduces the number of inferences to
consider [36] and helps to single out a model as “canonical,” in case one exists.
Some of the more recent calculi have also adopted this approach for dealing with
disjunction [39, 10].

This calculus, like those for Horn DLs, transforms the input ontology into a
normal form, which now allows for conjunctions of concepts of the form A, ∃R.A
and ∀R.A, and negation in front of atomic concepts. The presence of disjunction
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increases the complexity of the representation of consequences, which may now
be of the form:

nl

i=1

Li v
m⊔
i=1

Ai t ∃R.

(
kl

i=n+1

Li

)
,

where each expression of the form Li is an atomic concept or its negation, and
each Ai is an atomic concept. Once again, the calculus is worst-case optimal
and pay-as-you-go, as it simulates the Horn-ALCH and the ELH approaches for
ontologies of the corresponding expressivity. One-pass classification is retained.

4 Interlude: A Unifying Framework for CB Reasoning

In 2014, Simanč́ık and colleagues [39] extended the calculus in [38] to ALCHI
while ensuring worst-case optimality, pay-as-you-go behaviour, and one-pass
classification. As part of this work, they introduced a unifying framework for
consequence-based reasoning that explicitly captures many of the aspects de-
scribed in Section 2.2. This framework describes a graph-based context structure,
where each node represents a context and the presence of an edge between con-
texts indicates that information can be transferred between those contexts. The
set S of consequences derived by the calculus is split into sets S(v) associated
to each context v. Furthermore, each context is associated to a particular set
of concepts, called the core of the context; consequences in S(v) are relevant
for all elements of a model that satisfy the core. Inference rules are applied to
individual contexts, or to pairs of contexts that share an edge. Edges between
contexts v and w are defined in cases where each element satisfying the core of
v may have an R-filler that satisfies the core of w for some role R; each edge
is labelled by the existential concept generating this connection. Figure 4 shows
how the example of Section 2.2 could look like in this framework.

B0

> vB0

> v∃R.B1

> v∃S.B1

> vC

B1

> v B1

> v ∃R.B2

> v ∃S.B2

> v C
> v ∀R−.C
> v ∀S−.C

· · · Bn

> v Bn

> v C
> v ∀R−.C
> v ∀S−.C

∃R.B1

∃S.B1

∃R.B2

∃S.B2

∃R.Bn

∃S.Bn

Fig. 3. Context structure for the example in Section 2.2. Cores of contexts are written
inside their respective nodes, and below each node all the consequences derived for that
context are listed. The first three inclusions in each of these sets are derived first and
left-to-right; the inclusions involving C are derived afterwards and right-to-left.
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Contexts in the example have only atomic concepts as cores; however, con-
junctions of concepts are also allowed to represent cores. This may be relevant
whenever consequences of the form > v ∃R.A and > v ∀R.B appear in the
same context; in that case, one may wish to draw an edge to a context with core
AuB. However, the calculus also makes it possible to draw an edge to a context
with core A. Furthermore, if the context with the chosen core does not exist, the
calculus may create it fresh. The policy for deciding how to draw edges between
contexts and whether to introduce new contexts or re-use those already in the
context structure is a parameter of the calculus called the expansion strategy.
By suitably choosing this parameter, the framework can be used to simulate
some of the calculi from previous sections. For instance, by allowing only cores
with atomic concepts, the calculus described in Section 2.1 can be simulated; in
contrast, to simulate the Horn-SHIQ calculus in [24], we need a strategy such
that, for every relevant conjunction of atomic concepts M , a new context vM is
introduced with core M .

The calculus for ALCHI discussed in this section does not support nominals,
and therefore it cannot simulate the calculi described in Section 3.3. However,
one can find correspondences between constructs introduced in Section 3.3 to
deal with nominals, and properties of a context structure created according to
a suitable expansion strategy. For instance, assume an expansion strategy that
uses a successor context vA with core A whenever > v ∃R.A appears in a context
w (and otherwise it re-uses a context v⊥ with empty core); then, the existence of
a path from a context u to a context v implies that coreu  corev, where is the
reachability relation in the ELHO calculus in Section 3.3. Similarly, any context
clause Γ v ∆ in a context v reachable from context u can be seen as a conditional
consequence coreu: Γ v ∆ from the ELHO calculus. These correspondences are
exploited by some of the calculi for DLs with nominals discussed in Section 5.1.

5 Recent Developments: 2014 - 2019

This section discusses recent developments in consequence-based reasoning, in-
cluding the extension of calculi to expressive DLs and the hybridisation of this
approach with other well-known reasoning techniques.

5.1 Calculi for Expressive DLs

The framework described in Section 4 has been recently modified and extended
to the DLs SRIQ [10] and SROIQ [43]. One of the most noteworthy aspects of
these calculi is their use of first-order logic syntax with equality to represent both
ontology axioms and derived consequences. This choice is motivated by the need
of representing consequences stemming from the interactions between number
restrictions, inverse roles, and/or nominals. Equalities participate in inferences
that implement well-known paramodulation rules for equality reasoning [47].

These calculi are still pay-as-you-go and retain the one-pass classification
property. In addition, the SRIQ calculus is also worst-case optimal, while the



15 Years of Consequence-Based Reasoning 11

SROIQ calculus terminates within worst-case optimal bounds except when on-
tologies feature a simultaneous interaction of disjunction with nominals, inverse
roles, and “at-most” quantifiers. In practice, these occurrences are very rare.

The SRIQ calculus has been implemented in the reasoner Sequoia [11],
which has proved to be competitive with state-of-the-art reasoners despite being
an early prototype. The main outstanding practical issues in systems such as
Sequoia are the following:

– The application of inference rules in the system can lead to the generation of
clauses involving a large number of disjuncts. Resolution of such clauses with
others can lead to combinatorial explosions due to repetitive inferences. For
instance, suppose a clause of the form > → A1(x)∨· · ·∨An(x) is generated in
a context, and suppose the ontology contains clause Ai(x)→ Bi(x) ∨ Ci(x)
for each 1 ≤ i ≤ n. If the ordering between literals in the context makes
atoms of the form Bi(x) and Cj(x) smaller than atoms of the form Ak(x),
the calculus will derive 2n clauses in the context. Most of these clauses are
typically irrelevant since they do not participate in the derivation of target
subsumptions.

– The system performs poorly in the presence of number restrictions involving
elements of the model with many different successors by a particular role. For
instance, if clauses {> → R(x, fi(x)) | 1 ≤ i ≤ n} are derived in a context,
and the ontology contains a number restriction enforcing that no element
may have more than m successors by R, then the calculus will derive

(
n

m+1

)
different clauses. Furthermore, each of these clauses will have no less than(
m+1
2

)
disjuncts in the head; these long disjunctions may, in turn, exacerbate

the issue discussed above.

5.2 Hybrid Methods

The consequence-based approach has been successfully combined with other well-
known reasoning methods that can help overcome some of the aforementioned
practical limitations. It has been suggested that the problem of generating long
disjunctions may be addressed by means of an algebraic reasoner [28]. There
currently exist consequence-based calculi that follow this strategy. The calculus
in [45] for the DL ELQ incorporates calls to an external Integer Linear Program-
ming component that is able to find solutions to algebraic constraint satisfaction
problems based on the numeric restrictions appearing in derived consequences.
This approach has been extended to the DL SHOQ in [23]. From a theoretical
perspective, it remains unclear whether these calculi are worst-case optimal or
whether they show pay-as-you-go behaviour. However, these systems have been
implemented into the reasoner Avalanche [45], which shows promising results in
ontologies with large number restrictions.

A different kind of hybridisation is proposed in [41], which describes the rea-
soner Konclude. This system works very efficiently in a wide range of expressive
DLs. In contrast to all consequence-based calculi discussed so far, Konclude is



12 D. Tena Cucala, B. Cuenca Grau, and I. Horrocks

based on a tableau calculus, and therefore it attempts to answer queries by build-
ing a model. However, Konclude uses an incomplete version of a consequence-
based calculus in order to generate as many (sound) consequences of the ontology
as possible. These consequences are then used to aid in the construction of the
tableau, and the result is a system that is highly competitive even in lightweight
description logics such as EL.

Another method for building a hybrid of tableau and consequence-based cal-
culus is presented in [25] for the description logic ALCHI. This calculus is once
again based in deriving ontology entailments. However, it deals with disjunction
in a way that is very different from the method described in Section 3.4. In-
stead of freely using resolution-like inference rules to generate long disjunctions,
this algorithm makes non-deterministic choices during the saturation procedure
which are reminiscent of those used by tableau-based algorithms. This calculus
can explore alternative branches and backtrack when necessary, unlike previ-
ously discussed consequence-based calculi, which are purely deterministic. This
prevents the problem of generating long disjunctions. The calculus is also worst-
case optimal and enjoys pay-as-you-go behaviour. A prototype of this calculus
has been implemented, and the evaluation shows promising results.

The reasoner MORe [1] provides yet another way of combining consequence-
based reasoning with other techniques. The algorithm presented in [1] addresses
the problem of ontology classification by decomposing an input ontology into
modules, and then classifying each module using a reasoner most suited for
the language used in that module. MORe has shown it can effectively classify
ontologies using a consequence-based reasoner on ELH modules, and a reasoner
such as HermiT [17], which is based on a tableau calculus, on the remaining
modules. This approach is particularly useful for ontologies which have most
axioms in a lightweight DL and a few axioms in an expressive logic.

6 Conclusion and Future Directions

Consequence-based reasoning has been a very active area of research for the
last 15 years, and progress on this field shows no signs of slowing down. There
is still no consequence-based calculi covering all expressive features of OWL 2
DL, as there is yet little progress in the area of consequence-based reasoning
in expressive DLs with concrete domains. Further research is also needed in
the area of optimisations and implementation techniques for consequence-based
reasoning, especially for those calculi for the more expressive DLs. Furthermore,
it is yet unclear whether hybrid approaches with algebraic reasoning and non-
determinism can be effectively implemented for the whole of SROIQ.

The application of consequence-based calculi to problems other than sub-
sumption or classification (such as conjunctive query answering) remains also
a fairly unexplored topic. A solid basis for this line of research is provided by
“combined” approaches [29, 14, 13] to query answering that start with a mate-
rialisation phase similar to saturation in consequence-based reasoning, which is
then followed by query-rewriting techniques.
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For all these reasons, we think that consequence-based reasoning will continue
being a dynamic area of research, one which holds promise for delivering the next
generation of robust, efficient, and scalable reasoners for Description Logics.
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