
An Efficient Index for RDFQuery Containment

Theofilos Mailis
∗

Athena Research Centre

University of Athens, Greece

tmailis@di.uoa.gr

Yannis Kotidis
†

Athens University of Economics

and Business, Greece

kotidis@aueb.gr

Vaggelis Nikolopoulos

University of Athens

Greece

vgnikolop@di.uoa.gr

Evgeny Kharlamov
‡

University of Oslo, Norway

Bosch Center for AI, Germany

evgeny.kharlamov@ifi.uio.no

Ian Horrocks

University of Oxford

United Kingdom

ian.horrocks@cs.ox.ac.uk

Yannis Ioannidis

Athena Research Centre

University of Athens, Greece

yannis@di.uoa.gr

ABSTRACT
Query containment is a fundamental operation used to ex-

pedite query processing in view materialisation and query

caching techniques. Since query containment has been shown

to be NP-complete for arbitrary conjunctive queries on RDF

graphs, we introduce a simpler form of conjunctive queries

that we name f-graph queries. We first show that contain-

ment checking for f-graph queries can be solved in polyno-

mial time. Based on this observation, we propose a novel

indexing structure, named mv-index, that allows for fast con-

tainment checking between a single f-graph query and an

arbitrary number of stored queries. Search is performed in

polynomial time in the combined size of the query and the in-

dex. We then show how our algorithms and structures can be

extended for arbitrary conjunctive queries on RDF graphs by

introducing f-graph witnesses, i.e., f-graph representatives

of conjunctive queries. F-graph witnesses have the following

interesting property, a conjunctive query for RDF graphs is

contained in another query only if its corresponding f-graph

witness is also contained in it. The latter allows to use our

∗
T.Mailis has received funding from EUHorizon2020, “DARE” project, Grant

Agreement nr. 777413.

†
Y. Kotidis was financed by the Research Centre of Athens University of

Economics and Business, in the framework of the project entitled “Original

Scientific Publications”.

‡
E. Kharlamov was partially financed by the Norwegian Research Council

project under the number 237898.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319864

indexing structure for the general case of conjunctive query

containment. This translates in practice to microseconds or

less for the containment test against hundreds of thousands

of queries that are indexed within our structure.

ACM Reference Format:
Theofilos Mailis, Yannis Kotidis, Vaggelis Nikolopoulos, Evgeny

Kharlamov, Ian Horrocks, and Yannis Ioannidis. 2019. An Effi-

cient Index for RDF Query Containment. In 2019 International

Conference on Management of Data (SIGMOD ’19), June 30-July 5,

2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3299869.3319864

1 INTRODUCTION AND MOTIVATION
The growing popularity of graph-structured data in many

real-world applications such as life science databases, e.g.

PUBCHEM, co-purchase networks, e.g. Amazon.com, and

Web Search, e.g. Google KnowledgeGraph, has led to a renais-

sance of research on graph data management. RDF [14] and

SPARQL [61] are promising examples of a graph data model

and the corresponding query language that have gained a lot

of attraction. Indeed, DBpedia, an RDF version of Wikipedia,

serves as the main hub for the Linked Open Data initiative

and consists of more than 1 billion RDF triples. In order to

handle the burst of RDF data that is available on the Web,

much research has been devoted on scalable techniques for

RDF processing. Various systems for RDF processing have

been developed [1, 7, 15, 48, 54, 64, 72], using techniques

such as indexing, caching, and view materialisation in order

to accelerate the execution time of SPARQL queries.

Query caching and view materialisation are directly re-

lated to the problem of query containment [22, 45] as we will

see in Section 2. The containment problem has been proved

to be NP-complete for arbitrary conjunctive queries [17] and

unions of conjunctive queries [62] over relational databases.

The same results also apply for conjunctive queries on RDF

graphs and their SPARQL counterparts [31, 60]. By examin-

ing the real-world query workload of DBPedia, we observe

https://doi.org/10.1145/3299869.3319864
https://doi.org/10.1145/3299869.3319864

that only a small fragment of the queries have all the prop-

erties that make query containment so hard to solve. Based

on this observation, we identify f-graph queries, a restricted

form of conjunctive queries that allow to solve the contain-

ment checking problem in PTime. Based on f-graphs, we

propose an efficient indexing structure, the mv-index, for

checking the containment relation between a single f-graph

queryQf and a set of indexed queriesW in polynomial time

w.r.t. the combined size of the query and the index. By intro-

ducing witnesses, i.e., representatives of arbitrary queries,

we can further extend mv-indices to evaluate containment

for arbitrary conjunctive queries on RDF graphs. In real-

world query workloads, this translates to microseconds or

less for the containment test against hundreds of thousands

of queries that are indexed within the structure. Because of

this, mv-indices are the perfect candidate to be combined

with existing and novel materialisation and caching tech-

niques in order to efficiently accelerate the execution time

of pragmatic query workloads. The major contributions of

this paper are:

▶ F-Graph Definition, Query Containment. We define

f-graph queries, restricted RDF conjunctive queries whose

structure allows to check for query containment in PTime.

We initially focus on query containments of the formQf ⊑W
between an f-graph and a query W that has only IRIs in

the predicate position of a triple pattern. The algorithm for

containment checking operates in PTime and is based on a

serialised representation of queries that encodes each query

starting from an anchor vertex and blending IRIs, literals,

and parenthesis symbols to represent its nested subgraphs.

▶Mv-indices.The structure of the serialised form of queries

allows to introduce thematerialised-view indices, mv-indices,

novel indexing structures for checking query containment.

Mv-indices are tree-like structures that are based on Radix

trees. They represent queries as vertices within the Radix

tree, while edges correspond to query patterns that appear

in one or more queries. Mv-indices (i) allow to represent in

a compact form thousands of queries by taking advantage of

common patterns that appear in them; (ii) allow to evaluate

query containment between an f-graph query Qf and an

arbitrary number of indexed queries within polynomial time

in the combined size of the query and the index; (iii) permit

updating of the mv-index structure with additional queries

in linear time with respect to the newly-inserted-query size.

▶ F-GraphWitnesses&Variables as Predicates. F-graph
witnesses allow to represent an arbitrary RDF conjunctive

query in the left hand side of a query containment. F-graph

witnesses have the following interesting property, an RDF

conjunctive query is contained in another query only if its

corresponding f-graph witness is contained in it. F-graph

witnesses provide a partial answer to the query containment

problem and a NP check has to be performed to check if

the containment indeed applies. We additionally present the

methodology for solving the containment problem for the

unrestricted case where variables may appear as predicates.

The latter allows to use the mv-index structure for arbitrary

RDF conjunctive queries.

▶RDF Schema. Finally, we have extended our algorithm for

containment checking to take into consideration the implicit

information that can be inferred based on the terminological

knowledge that is expressed in the form of an RDF Schema

(RDFS) [14]. This can be accomplished by introducing an

additional step for containment checking that extends the

examined query based on the RDF schema.

We have implemented our novel structures and algorithms

and tested their efficiency in a combined query workload

consisting of DBPedia, WatDiv, BSBM, LUBM, and LDBC

queries. This workload is described in detail in our evaluation

Section and consists of 1, 536, 378 queries. We have evalu-

ated insertion and containment performance with respect

to different query and mv-index properties. The average

time for query containment against an mv-index containing

397, 507 distinct queries from all 5 workloads was between

0.0093msec and 0.041msec.

In Section 2 we provide some preliminary definitions.

In Section 3 we introduce f-graph queries and provide the

polynomial algorithm for containment checking for f-graph

queries. In Section 4 we present the mv-index and its usage

for computing multiple containments. In Section 5 we in-

troduce f-graph witnesses that allow to represent arbitrary

conjunctive queries within the mv-index and check for con-

tainment. In Section 6 we extend our techniques to handle

an available RDF Schema. In Section 7 we perform an ex-

perimental evaluation of our structures and indexes. Finally,

Section 8 presents the current literature on RDF stores, query

containment, and view materialisation, while Section 9 sum-

marises the paper and mentions directions for future work.

2 PRELIMINARIES
Initially, we will present some preliminary definitions in

order to formalise the problem of query containment. In

the rest of the paper we assume that an RDF data graph

is defined via set semantics. Bag semantics have also been

suggested in the bibliography, but the theoretical complexity

of query containment w.r.t. bag semantics remains an open

problem [2].

RDF Graph [57]. Assume the pairwise disjoint infinite sets

I , B, and L of IRIs, Blank nodes, and literals. IRIs are Interna-

tionalised Resource Identifiers that allow to uniquely identify

resources within the Semantic web; literals are used for val-

ues such as strings, numbers, and dates; while blank nodes

are used to represent resources for which an IRI or literal is

not given. A triple (s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called

an RDF triple. In this tuple, s is the subject, p the predicate

and o the object. An RDF graph is a set of RDF triples.

BGP [61]. In the rest of the paper we will denote with IL
the union I ∪ L. If we additionally assume the existence of

an infinite set X of variables disjoint from the above sets, a

triple pattern is an element of (I ∪ X) × (I ∪ X) × (IL ∪ X).

A basic graph pattern (BGP) is a finite set of triple patterns:

{t1, . . . , tn}.
A SPARQL query is constituted of a graph pattern along

with a solution modifier that specifies the answer variables.

For a BGP P and a vector ®x of variables occurring in P , a
SPARQL query may have the form SELECT ®x WHERE P . The
SELECT clause identifies the variables to appear in the query

results and the WHERE clause provides the BGP to match

against the RDF graph. The variables in ®x are called distin-

guished variables. SPARQL queries constituting of a SELECT
and a BGP WHERE clause are equivalent to conjunctive queries
for RDF graphs. Therefore, we will say RDF conjunctive

queries and BGP queries to denote SPARQL queries with

the aforementioned form. For a BGP P , a SPARQL query

may also have the form ASK WHERE P . This type of query

corresponds to an RDF Boolean conjunctive query.

Query answering. A solution to a BGP query Q with a

SELECT clause on an RDF graphG is amappingm : vars(Q) →

IL ∪ B from the variables inQ to IRIs, Blank nodes, and liter-

als in G such that the substitution of variables would yield a

subgraph of G. For a BGP query, the substitutions of distin-

guished variables constitute the answers to the query. ASK
queries have a yes (or no) answer if a corresponding mapping

m : vars(Q) → IL ∪ B exists (or not).

Query Containment. [17] A query Q is contained in a

queryW , denoted Q ⊑ W , if the answer set of Q is con-

tained in the answer set ofW for every possible RDF graph.

Containment Mapping. A containment mapping or homo-

morphism σ : W → Q from a queryW to a query Q is a

mapping σ from the variables ofW into the variables, IRIs,

and literals ofQ , such that every triple in the graph pattern of

W is mapped to a triple in Q . Chandra and Merlin [17] have

proved that for Boolean conjunctive queries, a containment

mapping fromW to Q implies that Q is contained inW [17].

Example 2.1. An RDF graph G contains information re-

lated to songs and albums represented as triples:

(s1,name, “Masquerade”), (s1, f romAlbum,al1), (al1,

name, “The Phantom of the Opera”), (al1,artist ,ar3), (ar3,

name, “Andrew L. Webber”), (ar3, type,MusicalArtist)

In the corresponding RDF graph, we use quotation marks to

distinguish literals from IRIs.

For our running example, we will ask for information

related to a specific song. We ask for the name and the album

name of a song that is contained within an album in which a

musical artist participates. In the following query, elements

with a question mark correspond to variables in X :

(1)

Q : SELECT (? sN , ?aN) WHERE {(? snд, name, ? sN),

(? snд, fromAlbum, ?alb), (?alb, name, ?aN),

(?alb, artist, ?art), (?art , type,MusicalArtist)}

The answer to the query if applied on the sample graph

database will be the pair (“Masquerade", “The Phantom of

the Opera").

Suppose we want to examine containment between the

query Q and the viewW :

(2)
W : SELECT (?y, ?w) WHERE {(?x , name, ?y),

(?x , fromAlbum, ? z), (? z, name, ?w)}

The containment mapping σ : W → Q such that σ (?x) =

? snд, σ (?y) =? sN , σ (? z) =?alb, σ (?w) =?aN , indicates that

Q ⊑W .

View Materialisation & Query Containment. A view is

a stored query, while a materialised view is the result set of

the stored query on a specific database instance. A query Q ′

is a rewriting of Q that uses the views W = {W1, . . . ,Wm}

if Q and Q ′
are equivalent, i.e., they have the same answer

set and Q ′
contains one or more occurrences of materialised

views inW.

Levy et al. [45] prove that for the conjunctive queries Q
andW , there is a rewriting of Q usingW iff π∅(Q) ⊑ π∅(W),

i.e., the projection ofQ onto the empty set of columns is con-

tained in the projection ofW onto the empty set of columns

(the projections π∅(Q), π∅(W) are actually Boolean conjunc-

tive queries). Additionally, they provide the methodology

for finding the rewritings of Q based on every containment

mapping σ : π∅(W) → π∅(Q) withW ∈ W. Given a queryQ ,

a set of views W, and their corresponding materialisations,

a query optimiser that utilises the existing view material-

isations has to: (i) identify the available rewritings of Q ;
(ii) determine the rewriting Q ′

that is less costly w.r.t. total

execution time; (iii) decide whether it is beneficial to execute

Q ′
instead of Q .

3 F-GRAPH QUERIES & QUERY
CONTAINMENT

The objective of this paper is the construction of an indexing

structure that will allow to: (i) efficiently store a set of BGP

queries into an index W; (ii) given a BGP query Q discover

every queryW ∈ W for whichQ ⊑W applies alongwith the

corresponding containmentmapping. Our indexing structure

can be employed in view-materialisation scenarios, allowing

the query optimiser to identify the rewritings of a query Q
that employ the materialised views in W.

Without loss of generality, we will focus on finding con-

tainment mappings for Boolean queries. For the non-Boolean

queries Q andW , when checking if the containment Q ⊑W
applies, we just need an extra step that maps the SELECT
clause ofW to the SELECT clause of Q .

3.1 F-Graph Queries
The containment problem between two BGP queries is it-

self hard to solve, specifically it belongs to the NP-complete

complexity class. In order to solve the containment problem

and build the corresponding indexing structure, we initially

focus on its variationQf ⊑W whereQf belongs to a special

class of BGP queries that we name f-graph queries andW
belongs to the class of BGP queries that have only IRIs as

predicates. What motivates the choice of f-graph queries in

the left-hand side of a query containment is that: (i) contain-

ment for f-graph queries can be solved in PTime; (ii) f-graph

queries appear with a very high percentagewithin real-world

as well as synthetic query workloads; (iii) f-graph queries

can be employed as representatives of arbitrary queries and

they provide us with invaluable information and a partial

solution to the containment problem.

F-graph Query. An f-graph query Qf is a BGP query for

which: (i) For every pair of terms o1,o2 ∈ IL ∪ X such that

o1 ̸= o2, the triple patterns (s,p,o1), (s,p,o2) cannot both

appear in Qf ; (ii) For every pair of terms s1, s2 ∈ I ∪ X such

that s1 ̸= s2, the triple patterns (s1,p,o), (s2,p,o) cannot both

appear in Qf . We name these queries f-graphs because of

the functional and inverse functional characteristics of their

predicates.

Example 3.1. When checking for the query containment

Q ⊑W in Example 2.1, the queryW in Formula 2 does not

have a variable in its predicate position, while the query Q
is an f-graph query. Therefore as it will be later shown, the

corresponding containment can be computed in PTime.

DBpedia-Query Workloads Analysis. To stress out the

importance of f-graph queries, we examine a query work-

load
1
on the DBpedia semantic knowledge graph [8]. DBpedia

allows users to semantically query relationships and prop-

erties of Wikipedia resources, including links to other re-

lated datasets. The DBpedia query workload is constituted

of 1, 291, 489 conjunctive queries. It should be noted that

99.707% of all the BGP queries appearing in DBPedia have

only IRIs in the predicate position, while 73.158% of all the

BGP queries hold the f-graph property. The previous anal-

ysis exemplifies that users tend to perform simple f-graph

queries that can be computed in PTime. Thus, an indexing

1
https://github.com/AKSW/SPARQL2NL/tree/master/resources/

dbpediaLog

Algorithm 1 The algorithm for writing a BGP to its seri-

alised form.

1: function Serialisation(Query W , Predicate/In-

versePredicate r, Vertex v)
2: v .examined = True

3: if r = Null then
4: nForm:= v
5: else
6: nForm:= ⟨r ,v⟩

7: Ev := {(p,o)|(v,p,o) ∈ W , o.examined = False} ∪

{(p−1, s)|(s,p,v) ∈W , s .examined = False}

8: if Ev = ∅ then
9: return nForm

10: else
11: nForm.append(()

12: for all (r ,u) in Ev do
13: nFormSubGraph := Serialisation(W , r ,u)

14: nForm.append(nFormSubGraph)

15: nForm.append())

16: return nForm

strategy that focuses on f-graph queries would effectively

expedite query processing in a typical workload.

We will now introduce the algorithm for query contain-

ment between an f-graph and a BGP query and prove its

polynomial complexity. The algorithm uses a serialised form

of BGP queries. As we will explain in Section 4, the corre-

sponding serialised form also allows to represent a set of

queries in a compact form by using Radix trees.

3.2 Serialised Form of BGP Queries
The serialisation rewrites each BGP query as a list of ele-

ments corresponding to IRIs, literals, and parenthesis sym-

bols as delimiters that denote a subgraph structure. The

serialisation operates by choosing a specific vertex of the

BGP query as the starting point of the serialisation procedure.

We will call this vertex the anchor vertex of the serialisation.

Algorithm 1. The serialisation procedure is presented in

Algorithm 1. The Serialisation function takes as input the

queryW that needs to be serialised, a predicate or inverse

predicate symbol r , and a vertex v ofW . The call of the func-

tion Serialisation(W ,Null,va) will return the serialised

form of the queryW with va being the anchor of the serial-

isation. Intuitively, the serialisation algorithm rewrites the

conjunctive query in the form of a list by performing a depth

first traversal of its vertices. Opening and closing parenthesis

(,) are used to indicate the serialised form of a subgraph

structure, while ⟨p, t⟩ and ⟨p−1, t⟩ pairs are used to indi-

cate outgoing and incoming edges to the anchor vertex. A

parenthesis following a pair of elements ⟨r , t⟩ (. . .) is

https://github.com/AKSW/SPARQL2NL/tree/master/resources/dbpediaLog
https://github.com/AKSW/SPARQL2NL/tree/master/resources/dbpediaLog

used to indicate the serialisation of the subgraph having t as
its anchor vertex.

Example 3.2. With W being the query in Example 2.1

and ?x being a variable inW that we choose as an anchor

vertex, the execution of Serialisation(W ,Null, ?x) will

output the serialised form of the query:

?x (⟨fromAlbum, ? z⟩ (⟨name, ?w⟩) ⟨name, ?y⟩)

Reading the serialised form of the query from left to right, we

ask for a variable ?x . The opening parenthesis and the first

pair appearing in it indicates that ?x belongs to an album

? z. The next opening parenthesis indicates that information

about the variable ? z will be asked. Specifically, we ask for

the name of the album ? z which is ?w . The closing parenthe-

sis indicates that we move back to examining the subgraph

that has ?x in its anchor position and the next pair indicates

that we are asking for the name of the song ?x . The final
parenthesis indicates that our query has been completed.

Execution Time. Based on the study of the depth-first tra-

versal problem [21], the serialisation can be performed in

O(|W |) time with |W | being the size of the queryW . The

output of the serialisation is also linear w.r.t. the size ofW .

Note. The serialisation procedure and the rest of the algo-

rithms in this paper focus on BGP queries whose undirected

graph constitutes of a single connected component, i.e., we

do not allow queries that express Cartesian product opera-

tions. Our algorithms and structures for handling queries

that express Cartesian product operations can be straightfor-

wardly extended to BGP queries of more than one connected

components by separately examining each BGP’s connected

component.

3.3 Containment Checking
Algorithm 2 provides the functionContainment that is used

for checking containment between an f-graph query Qf and

the serialised form of a BGP queryW namedWs. It takes as in-

put: (i) the serialised form of the BGP queryWs; (ii) an f-graph

queryQf ; (iii) a vertexv
′
inQf . If Containment(Ws,Qf ,v

′
)

returns True, then there exists a containment mapping from

W to Qf such that the anchor vertex ofW is mapped to the

term v ′
.

While examining if there exists a containment mapping

from the queryW to the f-graph query Qf , each opening

parenthesis in its serialised formWs indicates that we cur-

rently focus on finding containment mappings for one ofW ’s

subgraphs. Each serialised subgraph that is enclosed between

parentheses inWs has a corresponding anchor vertex. Addi-

tionally, there exists a specific path of edges leading from the

anchor vertex ofWs to the anchor vertex of the examined

subgraph. Suppose that ®path is the corresponding vector of

Algorithm 2 The algorithm for checking containment be-

tween a BGP and a graph.

1: function Containment(SerialisedFormWs, FGraphQf ,

Vertex v ′
)

2: σ (t) := t for every t ∈ IL
3: Stack ®mpath := ϵ
4: for i := 1 to |Ws | do
5: ifWs(i) = t with t ∈ IL ∪ X then
6: σ (t) := v ′

7: Vertex v ′
next

:= v ′

8: else ifWs(i) = ⟨p,o⟩ and (v ′,p,o′) ∈ Qf then
9: σ (o) := o′

10: Vertex v ′
next

:= o′

11: else ifWs(i) = ⟨p−1, s⟩ and (s ′,p,v ′
) ∈ Qf then

12: σ (s) := s ′

13: Vertex v ′
next

:= s ′

14: else ifWs(i) = (then
15: ®mpath.push(v ′

)

16: v ′
:= v ′

next

17: else ifWs(i) =) then
18: v ′

:= ®mpath.pull()
19: else
20: return False

21: return True

vertices inW that leads to the anchor of the subgraph that is

currently being examined. ®mpath denotes the corresponding

vector of vertices in Qf such that each element in ®path is

mapped to its corresponding element in ®mpath by the exam-

ined containment mapping. Vector ®mpath is implemented as a

stack that allows to focus attention to different parts within

the f-graph by pushing and pulling vertices ofQf in it. Push-

ing is performed when examining a nested subgraph after

an opening parenthesis, while pulling is performed when

a nested subgraph has just been examined and its closing

parenthesis has appeared.

Algorithm 2. The algorithm Containment checks if there

exists a containment mapping for all triples in the queryW
with each triple inW being represented inWs by a corre-

sponding pair of terms. If there exists a containmentmapping

fromW to Qf , the algorithm will return True and σ is the

corresponding containment mapping, otherwise it will re-

turn False. Checking is performed in the following steps:

The algorithm initially defines a mapping σ that maps all

IRIs and literals to themselves and is undefined for all vari-

ables in X (line 2) and creates an empty stack ®mpath (line 3).

Then the algorithm proceeds to examine all the elements

inWs (line 4) considering different cases: (i) The first case

appears when the anchor vertex t ofWs is examined, in that

case the mapping σ is extended to σ (t) := v ′
(line 6). (ii) The

next case appears when a pair ⟨p,o⟩ is read inWs with p ∈ I ,

o ∈ IL ∪ X and a corresponding triple (v ′,p,o′) also appears

in Qf . Then the mapping σ will be extended to σ (o) := o′

(line 9). (iii) The next case appears when a pair ⟨p−1,o⟩ is
read inWs with p ∈ I , o ∈ IL ∪ X and a corresponding triple

(s ′,p,v ′
) also appears in Qf . Then the mapping σ will be ex-

tended to σ (s) := s ′ (line 12). (iv) It should be noted that in the
three previous cases (lines 6, 9, 12), the algorithm will return

False when t , s or o cannot be mapped to the corresponding

term because they have already been mapped to another

term. (v) When an opening parenthesis is met, a subgraph

mapping has to be examined (lines 14 to 16). The subgraph

W ′
s
appears between an opening and a closing parenthesis.

The first step is to push the term that is being currently ex-

amined into the ®mpath stack (line 15). The next step is to tell

the algorithm that we are interested in finding a mapping

betweenW ′
s
and Qf that maps the anchor variable ofW ′

s
to

v ′
next

. Thus, v ′
takes the variable of v ′

next
(line 16) and our

algorithm checks containment forW ′
s
. (vi) Pushing the term

v ′
into ®mpath (line 15) allows to continue examining v ′

when

a containment mapping for the subgraph ofW ′
s
is found and

a closing parenthesis has been met (line 17). Thenv ′
takes its

previous value from ®mpath (line 18). (vii) The algorithm will

return False in the cases that: ⟨p,o⟩ appears inWs but no

corresponding triple (v ′,p,o′) appears inQf ; ⟨p
−1, s⟩ appears

inWs but no corresponding triple (s ′,p,v ′
) appears in Qf .

Finally, when all the elements ofWs have been examined and

matched, the algorithm returns True (line 21).

Proposition 3.3. For (i) a BGP query W with only IRI

predicates, (ii) its serialised formWs, (iii)W ’s anchor vertex

va , (iv) an f-graph query Qf , and (v) a vertex v
′
a in Qf : there

exists a containment mapping σ from the variables ofW to the

variables of Qf for which σ (va) = v ′
a applies iff the function

Containment(Ws,Qf ,v
′
a) returns True.

Example 3.4. WithWs being the serialised query in Exam-

ple 3.2, Q being the f-graph query in Example 2.1, and ? snд
being a vertex in Q , executing Containment(Ws,Q, ? snд)

will be performed in the following steps. Initially a partial

mapping σ is created so that σ (?x) :=? snд. Then, because
of the opening parenthesis, the subgraph of ?x is examined.

The algorithm finds that the pair ⟨fromAlbum, ? z⟩ inWs is

matched and sets σ (? z) :=?alb. Then because of the second

opening parenthesis, the algorithm examines the subgraph

of ? z and focuses on the vertex ?alb of Q . It finds that the
pair ⟨name, ?w⟩ is matched and sets σ (?w) :=?aN . Next,

reading the closing parenthesis will put focus on the anchor

vertex ?x inWs and the corresponding vertex ? snд in Q .
The pair ⟨name, ?y⟩ will be matched by setting σ (?y) :=? sN .

The algorithm finally reads the last closing parenthesis of

Ws and σ is a containment mapping fromW to Q .

Execution Time. To study the execution time of the algo-

rithm for containment checking, we observe that every exe-

cution cycle of the algorithm examines a different element

ofWs. Steps 8 and 12 of Algorithm 2 examine if a predicate

or inverse predicate appears in the related triple patterns. By

definition of an f-graph query, when examining a certain ver-

texv ′
within the f-graph, there exists at most one such triple

pattern about v ′
. This step can be performed in O(log|Qf |)

time by building the appropriate index for incoming and out-

going edges, e.g., a red-black tree [21]. Thus the algorithm

terminates inO(|W |· log|Qf |) time. To check for containment

Qf ⊑W between an f-graph query Qf and a BGP queryW
we need to apply the Containment(Qf ,Ws,v

′
) function for

every term v ′
appearing in Qf . Thus, the time for checking

containment is O(|W |·|Qf |· log|Qf |) in the worst case.

We should point out that the proof of the polynomial al-

gorithm for query containment can be performed without

the serialisation step. Intuitively, because of the strong re-

quirements of the f-graph structure, once a variable v in

W has been mapped to a term v ′
in Q , there is a single de-

terministic choice for the remaining variables appearing in

W . Nevertheless, the serialisation step is required for insert-

ing queries and containment checking into the mv-index

structure presented in Section 4.

4 MV-INDICES
In the previous section, we showed how to efficiently check

for containment between two queries. In the case that we

want to check for containment between a single f-graph

queryQf and a set of BGP queriesW, it would be inefficient

to make each and every comparison. For that reason, we have

introduced the “Materialised-View Index” structure, denoted

with mv-index, that allows to store a set of queriesW and

use it to check for containment. Our structure is based on

Radix trees, ordered tree data structures that are used in

string matching [52].

4.1 Mv-index
An mv-index M is a tree structure (V ,E,L) where: (i) V is

a set of vertices; (ii) E ⊆ V 2
is a finite set of edges; (iii) L

is a labelling function that maps each edge to a non-empty

ordered list of distinct elements (IRIs, literals, and parenthesis

symbols) and each vertex to the serialised form of an f-graph

query; (iv) LQ is another vertex labelling function: it takes

the value of True when a vertex corresponds to an actual

query inserted intoM and False when that vertex does not

correspond to such a query and was rather created during

the insertion procedure.

The intuition for this form of representation is that queries

are represented by their serialised form in the mv-index

structure, either as intermediate or leaf vertices, using the

Figure 1: A simple mv-index.
labelling function L. For a vertex α in the mv-index structure,

L(α) is its corresponding query in serialised form. The seri-

alised form of the query represented by a vertex can be also

obtained by following the path from the root of the mv-index

to the specific vertex and concatenating the corresponding

edge labels. Therefore, in our actual implementation we only

store edge labels.

During the insertion phase, mv-indices are treated as reg-

ular Radix trees that instead of strings or numbers are used

to represent queries in their serialised form. Therefore, in-

stead of characters within a string, or digits within a number,

mv-indices use IRIs, literals, variables and separators such as

parenthesis symbols in order to represent serialised queries.

More information on how insertion works in Radix trees can

be found in the literature [52].

Example 4.1. Fig. 1 represents an mv-index. For space

purposes we use the initial letters f A,n,a,MA,C to depict

the IRIs fromAlbum, name, artist,MusicalArtist, andComposer

respectively. The figure displays only edge labelings, vertex

labelings can be inferred accordingly. The corresponding

mv-index is used to represent 5 queries in total: Vertex ρ
corresponds to an empty query and is the root of the mv-

index. Vertex β corresponds to the serialised query

?x1 (⟨artist, ?x2⟩ (⟨type,Composer⟩

⟨type,MusicalArtist⟩))

asking for some ?x1 (probably as song) that has an artist

whom is both a composer and a musical artist. The labelling

of vertex β is the concatenation of the labelings of the edges

L(ρ,α), L(α , β). Vertex ζ corresponds to a query that is similar

to that presented in Example 3.2, but the name of the song is

not asked. The labelling of vertex ζ is the concatenation of

the labelings L(ρ,α), L(α ,γ), L(γ ,δ), L(δ , ζ). The other two

vertices that are used to represent queries are η and ε .

4.2 Query Containment using Mv-indices
In order to check for query containment using mv-indices,

we have devised an algorithm that takes advantage of the

properties of an f-graph. In Algorithm 3, the ContQueries

function takes as input (i) an mv-indexM; (ii) a vertex α in

Algorithm 3 The algorithm for checking containment be-

tween queries within an mv-index and an f-graph query

Qf .

1: function ContQueries(MVIndexM, Vertex α , FGraph-
Query Qf , Term v ′

, Term v ′
next

, Stack ®mpath, Mapping σ)
2: for all β s.t. (α , β) ∈ E do
3:

®λ := L(α , β)

4: (toContinue,v ′,v ′
next
, ®m′

path
,σ) :=

Containment(Qf , ®λ,v
′,v ′

next
, ®m′

path
,σ)

5: if toContinue = True then
6: Vcont := Vcont∪

ContQueries(M, β ,Qf ,v
′,v ′

next
, ®m′

path
,σ)

7: if LQuery (β) = True then
8: Vcont := Vcont ∪ L(β)

9: return Vcont

1: function Containment(SerialisedFormWs, FGraphQf ,

Term v ′
, Term v ′

next
, Stack ®mpath, Mapping σ)

2: ®mpath = CopyOf(®mpath)

3: σ = CopyOf(σ)

▷ The rest of the function is identical to the Contain-

ment function in Algorithm 2

20: return (True,v ′,v ′
next
, ®mpath,σ)

the mv-index; (iii) an f-graph query Qf ; (iv) a term v ′
that

appears in Qf ; (v) a term v ′
next

that appears in Qf ; (vi) the

stack ®mpath; (vii) and a partial mapping σ . The ContQueries

function is used to acquire the set of vertices Vcont ⊆ V such

that: for every vertex ζ ∈ Vcont with L(ζ) representing the

serialised form of a queryW , it applies that Qf ⊑W .

Each path from the root ρ to a vertex γ of the mv-index

such that LQ (γ) = True corresponds to the serialised form

of some f-graph queryW , with L(γ) being the corresponding

serialised form. When examining an mv-index path, on the

transition from one vertex to another, the initial serialised

form of the query is split up between the labelings of con-

secutive edges. Thus, when transitioning, we need to know

what has happened so far. Therefore, we have made some

minor changes in the Containment function of Algorithm 2

that are presented in Algorithm 3 (only the changed parts).

The new version of the Containment function will return a

quintuple of values. Along with the True value, it will return

the terms v ′
and v ′

next
along with the ®m′

path
stack and the σ

partial mapping (line 20). The new version allows to transfer

all the information that was conveyed in the previous steps

to the next execution step of the algorithm.

Algorithm 3. Algorithm 3 presents the ContQueries pro-

cedure. For each vertex α of the mv-index, its corresponding

serialised query is partially mapped for containment to Qf .

The algorithm proceeds as follows: (i) If a vertex α in the

mv-index has been partially matched for containment, then

all of its child vertices should be examined for a containment

mapping (lines 2 to 8). (ii) Initially, the vector
®λ takes the la-

belling of the corresponding edge (line 3). (iii) Subsequently,

it is examined whether the corresponding edge violates the

containment mapping or not (line 4). (iv) If there is a vio-

lation the Containment function will return (False,Null,
Null,Null,Null) and the variable toContinue will take the
value of False. Since the variable toContinue is False, we

know that neither β nor any of its successors corresponds to

a query containing Qf and therefore they won’t be further

examined (line 5). (v) If, on the other hand, a containment

mapping exists, the Containment function will return a

quintuple of values that correspond to the current state of

the mapping process. In such a case, the variable toContinue

takes the value of True and the algorithmwill also be applied

for all the outgoing vertices of β (line 6). (vi) Additionally,

if the vertex β corresponds to a query inserted into the mv-

index (line 7), the corresponding vertex will be added to the

vertices whose query contains Qf (line 8). The algorithm

terminates when there are no more vertices to be examined.

Theorem 4.2. For the MVIndex M, its root vertex α , an
f-graph query Qf , a vertex v

′
a appearing in the triple patterns

of Qf , an initially empty stack ®mpath, and a partial mapping

σ that maps each IRI and literal to itself, the execution of

ContQueries(M,α ,Qf ,v
′
a ,Null, ®mpath,σ)

will return every vertex ζ that appears inM such that: L(ζ) =

Wsζ ;Wsζ being the serialised form of the queryWζ ; and a

containment mapping σ : Wζ → Qf exists such that σ (va) =

v ′
a also applies, with va being the anchor vertex ofWsζ .

Based on the previous theorem, in order to find all the

containment mappings, we need to call the ContQueries

function for every vertex appearing in Qf .

Optimisations. In order to reduce the size of the corre-

sponding mv-index and the execution time of the Cont-

Queries function, we have made the following optimisa-

tions: (I)When writing queries into their serialised form, we

impose an ordering on ⟨r ,o⟩ pairs where r is a predicate or
an inverse predicate and o ∈ IL ∪ X . The latter implies that

if a vertex s has two outgoing edges (s,p1,o1) and (s,p2,o2)

such that p1 ≺ p2, when writing the serialised form of the

subgraph of s , the pair ⟨p1,o1⟩ will appear before the pair

⟨p2,o2⟩. The corresponding total ordering ≺ may be based

on the lexicographical order between IRIs and literals, or

some other metric such as the frequency of their appear-

ance within an RDF graph. (II)When inserting a serialised

queryWs into the mv-index, our algorithm rewritesWs’s

variables in such a way that the first variable appearing in

Ws is mapped to ?x1, the second to ?x2, etc.. (III) We build a

hash map from each mv-index vertex to its corresponding

edges with IRIs, literals, and variables as key values.

Optimisations (I) and (II) allow our algorithm to repre-

sent a set of queries in a compact form by revealing some of

the patterns that are shared between multiple queries. The

latter allows the same mv-index edge being used to encode

triple patterns for multiple queries, making more efficient

the search for containment mappings. E.g., in Figure 1, Exam-

ple 4.1, the optimisations step ensures that the edges (ρ,α)

and (α ,γ) encode the triple (?x1, f romAlbum, ?x2) that is

shared in all three queries represented in the verticesη, ζ , and
ε . The additional step of ordering elements in the serialised

form can be performed in O(n log(n)) on average and O(n2
)

on the worst case if we employ the Quicksort algorithm [21].

Optimisations (III) and (I) allow to quickly access specific

edges of the mv-index, via hashing, that are meaningful for

the part of the f-graph query currently being examined. E.g.,

if we have just examined a triple pattern (v ′,p,o′) in Qf , be-

cause of the ordering of elements within the serialised form

of the queries inserted in the mv-index, we only need to ex-

amine the mv-index for triple patterns (v ′,p ′,o′′) inQf such

that p ⪯ p ′. Optimisation III additionally expedites insertion

of serialised queries into the mv-index.

ExecutionTime. Theworst case execution of our algorithm
arises when all the queries in the mv-index can be mapped to

the f-graph queryQf . In each execution of theContQueries

we need to compare the f-graph Qf against all the elements

inM. The specific step will take O(|M |· log|Qf |) time to be

executed, |M | being the size of the mv-index. Since we have

to repeat the process for all the terms that appear in Qf ,

otherwise we may miss containments, the time needed to

find all containments is O(|M |·|Qf |· log|Qf |).

The complexity of inserting a query into the mv-index is

related to the complexity of inserting “words” into a Radix

tree [52]. For a typical Radix Tree, that would be O(|Ws |·|Σ|)

whereWs is the serialised form of the inserted query and Σ

the alphabet for writing queries, i.e. the IRIs, literals, and

variables appearing in the workload W. Since our variation

of the Radix Tree adopts a hash map for accessing mv-index

edges, insertion time is performed in O(|Ws |) on average and

O(|Ws |·|Σ|) in the worst case.

5 INDEXING & CONTAINMENT FOR
ARBITRARY BGP QUERIES

Sections 3 and 4 focus on solving the problem of query con-

tainment between an f-graph and a BGP query with only

IRIs in the predicate position, i.e., Qf ⊑W , withW either

being a single query, or belonging to a set of queries W.

We will now discuss how to extend the existing structures

to represent queries for which the two aforementioned re-

strictions do not apply. For each extension, we explain how

name

artist artist

type

?sng?alb

?aN

?art

MusicalArtist

(a) Initial query

artist

type

?aN

?art

?sng
?alb

MusicalArtist

name

(b) F-graph witness

Figure 2: ABGPquery and its correspondingwitnesses
the problem is solved for query containment between two

queries and then describe how the mv-index structure needs

to be extended in order to accommodate the aforementioned

changes.

5.1 F-Graph Witnesses for BGP Queries
We first examine how to extend our algorithm for represent-

ing more expressive BGP queries in the left hand side of a

query containment. In order to perform the specific task,

we have introduced f-graph witnesses. The intuition is that

each BGP query can be represented in the form of an f-graph

when checking for query containment.

For a BGP queryQ , its corresponding f-graph witness can

be obtained by merging terms that violate conditions (i), (ii)

in the definition of f-graph queries. To perform the afore-

mentioned task, we initially define the equivalence relation

∼ on variables, IRIs, and literals in Q such that o1 ∼ o2

when there exists a term s for which either the triple pat-

terns (s,p,o1) and (s,p,o2) both appear in Q , or the triple

patterns (o1,p, s) and (o2,p, s) both appear in Q . For a term
s in Q , [s] denotes its equivalence class on the ∼ relation

that contains all the terms that are merged with s . Finding
all equivalence classes is performed in polynomial time in

the size of the graph (by reduction to the connected com-

ponent problem). The f-graph witness Qw of the query Q is

obtained by replacing each triple pattern (s,p,o) in the body

of Q with a triple pattern ([s],p, [o]) where s,o are terms,

[s], [o] their corresponding equivalence classes, and p is a

predicate. By construction, there is a unique witness for each

query Q . It should be noted that for a containment mapping

σ : W → Qw , Qw being the f-graph witness of a query Q ,
each a ∈ IL inW can be mapped only to its corresponding

equivalence class [a] in Qw .

Proposition 5.1. For a BGP query Q , its corresponding
f-graph witness Qw and a BGP queryW , the following impli-

cation applies: Q ⊑W ⇒ Qw ⊑W .

Proposition 5.2. For a BGP query Q , its corresponding
f-graph witnesses Qw and a BGP queryW , for each contain-

ment mapping σ : W → Q for which σ (s) = s ′ applies,

there exists a containment mapping σw :W → Qw such that

σw (s) = [s ′] applies.

Containment Checking. What Proposition 5.1 conveys is

that we need to check for containment Q ⊑W only when

the containment relation for the witness of Q is satisfied,

i.e., Qw ⊑ W . The latter finding is of great importance for

the following reason: checking Qw ⊑W can be performed

in PTime as presented in Section 3.3, while checking Q ⊑

W is in the worst case a NP-complete problem. Therefore,

we pay a PTime budget to solve specific instances of a NP-

complete problem. The intuition is that we “postpone” non-

deterministic checks that need to be performed in favour of

a proof, computed in PTime, thatQ ⊑W does not apply. The

non-deterministic check has to be performed only if there

exists no such proof.

What Proposition 5.2 says is that every containment map-

ping σ : Q →W in NP can be inferred from a containment

mapping σw : Qw →W that is computed in PTime. It should

be noted that each σw may result in more than one contain-

ment mappings σ . Suppose that Dσw is the domain of the

mapping σw , a non-deterministic algorithm for finding every

containment mapping σ from σw can be defined as follows.

For each variable ?x ∈ Dσw , σw (?x) is an equivalence class

of variables, IRIs, and literals. A non-deterministic process

chooses some arbitrary s ′ ∈ σw (?x) and defines σ (?x) := s ′.
Each suchmappingσ has additionally to be checked in PTime

if it actually is a containment mapping. It should be noted,

that the aforementioned procedure can be adjusted whenW
is an acyclic BGP so that containment is checked in PTime.

ND-Degree.With |·| denoting the elements within an equiv-

alence class, we define the non-determinism degree (ND-

degree) of a containment mapping from a queryW to an

f-graph witness Qw as follows:

∏
?x ∈Dσw

|σw (?x)|. The ND-

degree is equal to the number of containment mappings

that can result from σw . In a similar way, we may define

the ND-degree of a query as the product of the sizes of all

the equivalence classes that appear in its f-graph witness.

Obviously f-graphs have a ND-degree that is equal to 1.

Example 5.3. Fig. 2b displays the f-graph witness corre-

sponding to the query in Fig. 2a. The corresponding f-graph

witness has a ND-degree that equals 2 since it contains ex-

actly one equivalence class with two variables. When check-

ing for a containment between the f-graph witness Qw and

the queryWs in serialised form:

?x1 (⟨ artist, ?x2⟩ (⟨type,MusicalArtist⟩))

Algorithm 2 will create in PTime the containment map-

ping σw : σw (?x1) = {?alb, ? snд}, σw (?x2) = {?art}. In or-

der to acquire from σw the actual containment mapping(s)

σ : W → Q we need to clarify the non-deterministic parts

of the mapping σw (σ is the same for the other parts). For

the mapping of the variable ?x1 there are two alternatives

based on σw , either σ1(?x1) =?alb or σ2(?x1) =? snд. Since
they both satisfy the triple pattern (?x1, artist, ?x2) ap-

pearing inWs, there exist two containment mappings σ1, σ2

such that: σ1(?x1) =?alb, σ1(?x2) =?art and σ2(?x1) =? snд,
σ2(?x2) =?art .

Containment Checking for mv-indices. While check-

ing for containment for a query Q against an mv-index,

in case it’s not an f-graph, we first need to find its corre-

sponding f-graph witness Qw . Then, we find everyW in the

mv-index for which it applies that Qw ⊑ W . Finally, we

compute whether Q ⊑W actually applies based on Proposi-

tions 5.1, 5.2.

5.2 Unrestricted Predicates
This section focuses on how to extend the existing algorithms

and structures to handle containments of the form Q ⊑W
for which a variable may appear in the predicate position of

a triple pattern inW . The intuition is that we first solve the

containment problem ignoring every triple pattern (s, ?p,o)

inW with a variable in its predicate position and then filter

out solutions that do not satisfy the aforementioned triple

patterns.

Containment Checking. The containment mapping is cre-

ated in the following steps: (i) All triple patterns that have

a variable in the predicate position are removed from the

initial queryW . The resulting query comprises of one or

more subqueriesW1, . . . ,Wn each corresponding to a differ-

ent connected component inW . (ii) A connected component

Wi is chosen and our algorithm finds every containment

mapping σi : Wi → Q . For every triple pattern (s, ?p,o) with

s,o both appearing inWi the algorithm filters out solutions

σi for which there exists a triple (s, ?p,o) inWi but no triple

(σi (s),p
′,σi (o)) in Q . (iii) Then, the algorithm proceeds to

examine a connected componentWj such that there exists a

triple pattern (s, ?p,o) in the initialW with s appearing in

Wi and o appearing inWj . For every containment mapping

σi : Wi → Q , we say that the mapping σi and the triple

(s, ?p,o) bound the mapping of o to one of the following

values: {o′ |(σi (s),p
′,o′) ∈ Q}. A similar bounding occurs

for every triple pattern (s, ?p,o) in the initialW with o ap-
pearing inWi and s appearing inWj . (iv) Then, for every

σi : Wi → Q we find every σj : Wj → Q that respects every

bounding for σi . It is straightforward how to build a con-

tainment mapping combining σi and σj and our algorithm
inductively builds a containment mapping that includes all

the connected components inW .

Containment Checking for mv-indices. In order to em-

bed the preceding algorithm into the mv-index structure,

we need to encode the different connected components of a

queryW into the mv-index. This is easy to achieve since they

can be represented as consecutive lists of elements within

the mv-index structure. Additionally we encode the bound-

ing information so that when an answer has been found

for the ith connected component of the query the variable

mappings for the (i + 1)
th
connected component are bounded

accordingly.

6 MV-INDICES & RDFS REASONING
Our algorithm so far does not take into consideration the

implicit information that can be inferred based on the ter-

minological knowledge that is expressed in the form of an

RDF Schema (RDFS) [14]. The problem of query containment

becomes more complicated with the presence of class inclu-

sions, property inclusions, domain and range restrictions.

Our objective is to extend the corresponding algorithm

for containment checking, without burdening the mv-index

structure. This can be accomplished by introducing an addi-

tional step for containment checking. In order to check for

containment Q ⊑W between two queries, we first extend

the query Q based on the semantic relationships that appear

within an RDFS. This extension is performed by treating the

variables in the query as if they were IRIs and reasoning is

performed on the assertional knowledge that is extracted

from the query. Then, we add the intensional knowledge that

is acquired through the former reasoning step. Example A.1

in Appendix A shows how the previous algorithm works

in practice. Additionally, Proposition 6.1 allows to utilise

Algorithm 4.2 for finding containments into the mv-index

structure by replacing Q with its extended form:

Proposition 6.1. The query containment Q ⊑R W ap-

plies w.r.t. to the RDF schema R, iff there exists a containment

mapping fromW to the extended form of the query Q .

7 EXPERIMENTAL EVALUATION
The aim of our evaluation section is to examine the perfor-

mance of mv-indices during the insertion and query con-

tainment phases (Section 4). For the insertion scenario, the

application takes as input a query workloadW and produces

the corresponding mv-index that encodes all queries inW.

For the containment testing scenario, the application takes

as input an mv-index data structure that encodes a workload

W and a query Q . The application will return every query

W ∈ W such that Q ⊑ W . In a practical application, W

would comprise of all the views that have been materialised

or all the queries whose results have been cached, while

everyW ∈ W such that Q ⊑ W would be a candidate for

rewriting the query Q usingW .

Hardware andmemory.We deployed our implementation

on a 2010 MacBook laptop, running on macOS High Sierra,

having a single 2.66GHz Intel Core i7 processor with 2 cores,

(a) Insertion time w.r.t. the mv-index size

1-
5

6-
10

11
-1

5

21
-2

5

Query Size

0.01

0.02

0.03

0.04

A
v
g

.
In

se
rt

io
n
 T

im
e
 (

m
se

c)

Acyclic Queries

BSBM

WatDiv

DBPedia

LUBM

LDBC

1-
5

6-
10

11
-1

5

16
-2

0

21
-2

5

Cyclic Queries

(b) Insertion time w.r.t. query size (number of triple patterns)

Figure 3: Query Insertion Evaluation

and 8GB of main memory. A single core was used during

the experimental evaluation.

Implementation Setup. We have implemented our algo-

rithm in Java 8 using the Apache Jena 3.6.0 open source

Semantic Web framework [35] to parse SPARQL query work-

loads. In our experimental evaluation, when checking in-

sertion and containment time, we have excluded the time

Apache Jena needs to parse each BGP query.

Benchmarks.We used 5 different benchmarks for the evalu-

ation of our implementation: (i) a real-world queryworkload
2

originating from the DBpedia semantic knowledge graph [8]

containing 1, 287, 711 BGP queries; (ii) a synthetic query

workload
3
originating from the WatDiv SPARQL diversity

test suite [4] containing 148, 800 generated BGP queries;

(iii) a synthetic query workload
4
originating from the Berlin

SPARQL Benchmark (BSBM) [9] containing 99, 800 generated

BGP queries; (iv) a synthetic query workload originating

from the Lehigh University Benchmark (LUBM) [28] contain-

ing 14 BGP queries; (v) a query workload
5
originating from

the LDBC social network benchmark [24] containing 53 BGP

queries. It should be noted that the queries created by the

BSBM query generator are based on a variation of 12 basic

query patterns, while the queries produced by WatDiv are

not based on specific patterns. The 5 datasets contain in to-

tal 1, 536, 708 queries of which 1, 071, 826 are f-graph and

acyclic queries, 378, 884 are acyclic queries (but not f-graph

queries), 67, 340 are f-graph queries (but not acyclic queries),

and 18, 658 are BGP queries that are neither acyclic, nor

f-graphs.

2
https://github.com/AKSW/SPARQL2NL/tree/master/resources/

dbpediaLog

3
http://dsg.uwaterloo.ca/watdiv/stress-workloads.tar.gz

4
https://github.com/h31nr1ch/the-berlin-benchmark/blob/master/

consults/rdf.sql

5
https://github.com/ldbc/ldbc_snb_implementations

7.1 Insertion Cost
We first examine how inserting queries into the mv-index

structure is affected by: the size of themv-index structure and

the size and the characteristics of the query. We performed

insertions to the mv-index using all the queries from the 5

query workloads (1, 536, 378 queries in total). The time to

insert all queries was 7.425 secs, while the insertion process

resulted in an mv-index with a total of 466, 576 intermediate

vertices, containing a total of 397, 507 distinct queries. This is

attributed to the fact that recurring queries appear within the

5 workloads. Query insertion takes on average 0.0028msec,

0.0098msec, 0.0065msec, 0.0070msec, and 0.0072msec for

the DBPedia, LDBC, WatDiv, BSBM, and LUBM query work-

loads, respectively.

Mv-index Size. In Fig. 3a we examine the query insertion

time w.r.t. the number of vertices in the mv-index structure.

The x-axis measures the vertices in the mv-index structure,

while the y-axis depicts the average and the minimum time

needed to insert each query. Since our mv-index structure

has almost half a million vertices, we measure the average

and the minimum insertion time per 5, 000 vertices. It should

be noted that not all insertions change the size of the struc-

ture, since they may correspond to queries that are already

represented in the mv-index. On analysing Fig. 3a we ob-

serve that there is not an apparent increase in insertion time

w.r.t. the size of the mv-index structure. We also observe that

insertion is slower during its initial phases. This is attrib-

uted to the fact that many changes occur during the initial

phases that include the addition of vertices and edges into

the mv-index and the corresponding changes in the internal

structures (such as hash maps) of our implementation.

Query Size. In our second experiment we observe that there

exists a more explicit relation between the query size, mea-

sured by the number of triple patterns within a query, and its

insertion time into the mv-index structure. Fig. 3b displays

https://github.com/AKSW/SPARQL2NL/tree/master/resources/dbpediaLog
https://github.com/AKSW/SPARQL2NL/tree/master/resources/dbpediaLog
http://dsg.uwaterloo.ca/watdiv/stress-workloads.tar.gz
https://github.com/h31nr1ch/the-berlin-benchmark/blob/master/consults/rdf.sql
https://github.com/h31nr1ch/the-berlin-benchmark/blob/master/consults/rdf.sql
https://github.com/ldbc/ldbc_snb_implementations

the average insertion time (y-axis) for different query sizes

(x-axis), for the 5 different query workloads, and for acyclic

or cyclic BGP queries. We observe that query insertions are

really fast, insertion time scales almost linearly w.r.t. query

size, as expected from the theoretical analysis presented in

Section 4.2.

7.2 Containment Cost
We now examine the query containment time for different

query parameters such as the size and the ND-degree of

the query. In our experimental analysis we will consider the

mv-index of the previous section that contains information

from all the 5 query workloads that were described. The

containment checking problem for an mv-index and a single

query Q returns every queryW that appears as a vertex in

the mv-index such that Q ⊑W .

In our experimental evaluation, we consider containment

time for different types of queries: f-graph & acyclic queries;

f-graph & cyclic queries; non-f-graph & acyclic queries; non-

f-graph & cyclic queries. It should be noted that for handling

non-f-graph queries we employed the algorithm described

in Section 5.1. We additionally compute the average time

for containment w.r.t. the five different query workloads.

The average time for query containment is 0.0092msec for

queries in the DBPedia workload, 0.0127msec for queries in

the WatDiv workload, 0.0166msec for queries in the BSBM

workload, 0.0409msec for queries in the LDBC workload,

and 0.0103msec for queries in the LUBM workload.

Query Size. Fig. 4 displays the relation between the size of

a queryQ and the time to check for containment. The size of

each query is measured as the number of triple patterns that

appear in it and the average time is measured in millisec-

onds. The average containment time is computed formultiple

queries of similar characteristics, therefore in the bar chart

of Fig. 4 we display the 95%-confidence interval [55] along

with each measurement. In the average case, we observe that

the query containment time increases with the size of the

query. We also observe that the average containment time

for queries of similar sizes tends to increase for non-f-graph

queries. This is attributed to the fact that containment check-

ing is computed in PTime for f-graph queries. Additionally,

acyclic queries need less time to be processed compared to

cyclic queries with similar characteristics.

ND-degree. Figure 5 depicts how the query containment

operation is affected by the ND-degree of a query. We have

a figure for acyclic queries and one for cyclic queries. By

definition of the ND-degree, we have that queries with a

ND-degree of 1 are also f-graphs and can be answered in

PTime, while queries with ND-degree greater than 1 are

arbitrary queries that can be answered in NP with the algo-

rithm presented in Section 5.1. It is evident from Figure 5

that the complexity of finding containments for a BGP query

increases along with its ND-degree.

RDFS Reasoning. In the last part of our experimental eval-

uation, we examine how the RDFS knowledge differentiates

the problem of query containment. We used the LUBM query

workload, since LUBM is the only benchmark associated

with RDFS knowledge. Since the original LUBM query work-

load is constituted of only 14 basic queries, we extended

the initial workload to one containing 1, 000 queries. The

extension was performed as follows: (i) each triple of the

form (s, type,A) either remains unchanged, or is replaced

with a triple (s, type,A′
) with A′

being a superclass or a sub-

class of A; (ii) each triple of the form (s,p,o) either remains

unchanged, or is replaced with a triple (s,p ′,o) with p ′ being
a superproperty or a subproperty of r ; (iii) for each (s,p,o)

triple within a query, the query generator may create addi-

tional triples based on domain and range restrictions within

the RDFS. The extended workload ensures that in order to

correctly answer to the containment problem, our algorithm

needs to take into account the RDFS knowledge and extend

the queries as described in Section 6.

Fig. 6a presents how the performance of the containment

algorithm is affected by the existence of an RDF schema. The

x-axis displays the size of the query, while the y-axis dis-
plays the average time needed to find all containments for the

case that the query under examination remains unchanged

(LUBM), or is extended according to the RDFS (LUBM ex-

tended). It should be noted, that in the case that Q is not

extended, the containment algorithm will result to an in-

complete solution, i.e. we miss some implicit containments.

We observe that the containment time increases w.r.t the

query size. This is attributed to the fact that, for complicated

ontologies, the size of the extended query increases signifi-

cantly. Moreover, the inference process, may result to some

of the queries losing their f-graph properties, thus, making

them harder to process. Finally, the number of answers to the

containment problem is increased as well. The latter effect is

evident in Figure 6b that displays the amortised cost over the

number of queriesW that appear into the mv-index and also

contain the query under examination Q . It should be noted

that for each initial query Q the algorithm ContQueries

finds on average 2.553 queriesW s.t.Q ⊑W , while for the ex-

tended form of the query, the algorithm ContQueries finds

on average 29.513 such queries. Thus, we observe that the

amortised cost actually decreases for LUBM’s extended form.

This is due to the mv-index’s ability to check for multiple

containments when checking a single mv-index’s edge.

8 RELATEDWORK
Our work is related to several fields of the Database and

Semantic Web communities:

1-5 6-10 11-15
Query Size

0.1

0.2

0.3

A
v
g

.
C

o
n
ta

in
m

e
n
t

T
im

e
 (

m
se

c)

F-Graph & Acyclic

Lubm

Berlin

DBPedia

Wsdts

LDBC

1-5 6-10 11-15 16-20

F-Graph & Cyclic

1-5 6-10 11-15 21-25

Non-F-Graph & Acyclic

1-5 6-10 11-15 21-25

Non-F-Graph & Cyclic

Figure 4: Containment Cost w.r.t. Query Size (number of triple patterns)

1 2 4
ND-Degree

0.1

0.2

0.3

0.4

0.5

A
v
g

.
C

o
n
ta

in
m

e
n
t

T
im

e
 (

m
se

c)

Acyclic Queries

1 2 3 9 12

Cyclic Queries

Lubm

Berlin

DBPedia

Wsdts

LDBC

Figure 5: Containment Cost w.r.t. ND-Degree

1 2 3 4 5 6 7 8 9 10
Query Size

1

2

3

4

A
v
g
.
C

o
n
ta

in
m

e
n
t

T
im

e
 (

m
se

c)

Lubm

Lubm_extended

(a) Overall Cost

1 2 3 4 5 6 7 8 9 10
Query Size

0.02

0.04

0.06

A
v
g
.
C

o
n
ta

in
m

e
n
t

T
im

e
 (

m
se

c)

Lubm

Lubm_extended

(b) Amortised Cost

Figure 6: Containment Cost for Extended Queries
RDF Stores. Much research effort has been invested in the

development of scalable centralised or distributed RDF stores,

techniques for indexing RDF data and for processing SPARQL

queries. Among the centralised approaches, native RDF stores

like Jena [48], Sesame [15], HexaStore [72], SW-Store [1],

MonetDB-RDF [64], RDF-3X [54], and BitMat [7] have been

carefully designed to keep up pace with the growing scale

of RDF collections. Systems like TriAD [30], RDFox [53],

H-RDF-3X [33], EAGRE [75] implement various optimisa-

tions for the distributed execution of joins. Mv-indices can be

exploited to accelerate query processing by building optimi-

sations based on view materialisations that benefit from mv-

indices. Additionally they can be combined with structural

indexes [49, 68] to accelerate query containment between

an incoming query and the existing RDF patterns that reside

within the indexes.

Query Containment. The mv-index structures are imme-

diately related to the query containment problem that has

been extensively studied by the Database community. Over

the years, the problem of query containment under set [17,

20, 36, 42, 62] and bag semantics [2, 18, 34] has been inves-

tigated in depth by many researchers. Restricted forms of

conjunctive queries that ensure the polynomial complexity

of the query containment problem have also been studied

w.r.t. set and bag semantics [2, 20, 36].

The results of the query containment problem can be trans-

ferred to SPARQL by proving its reducibility to relational

algebra expressions. The equivalences of SPARQL to Rela-

tional Algebra and its relation with Datalog with negation as

failure are studied in [5, 60]. In [63], query containment and

equivalence are studied w.r.t. the RQL [37] query language.

The problem of SPARQL query containment under the RDFS

entailment regime is studied in [19]. The problem is reduced

to the expressive logic of µ-calculus and a 2EXPTIME upper

complexity bound is proved. With a similar methodology, the

problem of SPARQL query containment under SHI ontolo-

gies is also proved to have a 2EXPTIME upper complexity

bound [73]. A complexity analysis of containment and equiv-

alence for several fragments of the SPARQL language, based

on different SPARQL operators, is performed in [44, 59] and

NP-complete to undecidable results are proved for different

SPARQL fragments. Our work complements past work in this

area by proposing an index that allows to simultaneously

compute from a set of queries the subset that contains a

specific query Q and can be used for the query’s rewriting.

The f-graph queries studied here and the acyclic queries

studied in [20, 27, 74] are two different classes of queries

for which the problem of query containment is tractable

based on different mechanisms. Firstly, f-graph queries have

a restricted form of incoming and outgoing edges which is

independent of acyclicity. Secondly, for the queriesQ andW ,

the containment problemQ ⊑W can be solved in polynomial

time when (i) eitherQ is an f-graph query andW belongs to

the class of BGP queries that have only IRIs as predicates;

(ii) orW is an acyclic Boolean query — for this case, Gottlob

et al. [27] have proved that the problem is LOGCFL complete.

Therefore, the two classes of queries are complementary

and allow to solve different instances of the query contain-

ment problem in PTime. The ND-degree (Section 5.1) and the

query width studied in [20] express the deviation from the

ideal query type: (i) f-graph queries have a ND-degree of 1,

while non-f-graph queries have a ND-degree greater than

1; (ii) acyclic queries have a query width of 1, while cyclic

queries have a query width greater than 1. However, the

ND-degree is a different measure than the query width and

there exists no dependence between the two. I.e., there exist

queries with a ND-degree of 1 and a query width greater than

1 and vice versa. Furthermore, “it is open whether there is a

polynomial-time algorithm for finding the query width” [20],

while we show that the ND-degree of a query can be com-

puted in linear time. An interesting open problem is whether

the algorithms in [20] for containment checking, exploiting

the acyclicity of queries, can be extended into an indexing

structure for computing multiple containment mappings.

F-graph queries for RDF data are related to the class of

fan-out free queries for relational databases [36]. The main

intuition for both types of queries is that the containment

mapping from a queryW to a query Q can be determined

from the containment mapping between their corresponding

parts. For fan-out queries this means that there can exist a

single containment mapping that maps a conjunct inW to

a conjunct in Q , while for f-graph queries there can exist

at most one containment mapping that maps a variable in

W to an term in Q . The main differences between the two

formalisms are that: the fan-out free property refers to pairs

of queries rather than being a property of a single query as

for f-graph queries; fan-out queries focus on the problem of

query equivalence (not query containment) and therefore

they do not allow containment mappings from variables to

constants (IRIs or literals in RDF terminology).

SPARQLWorkload Analysis. In Section 3, we studied the

DBPedia query workload w.r.t. the f-graph property. For a

detailed analysis of SPARQL queries, the reader may refer

to the existing bibliography. The SPARQL-query workload

of DBPedia is studied in [58] and an analysis of the different

SPARQL operators that appear within DBPedia queries is

performed. For various workloads, the structural character-

istics related to the graph and hypergraph representation of

SPARQL queries are studied in [12], along with the evolution

of SPARQL queries over time. Finally, a study of theWikidata

knowledge graph is presented in [47], while the different

SPARQL operators appearing in Wikidata’s workload are

also analysed.

View Materialisation & Caching. View Materialisation

and Caching techniques have been extensively studied by re-

lational databases [3, 29, 45, 45, 50] and data warehouses [32,

43, 51]. They have recently gained attention by the Semantic

Web community and graph data systems. In [23], an approach

for the materialisation of shortcuts that reduces the execu-

tion cost of path queries is suggested. In [26], a different

materialisation strategy where an initial query workloadW

is transformed to a set of simpler viewsV along with a set

of rewritings is presented. In [56], a strategy that caches

SPARQL-query results and uses them to rewrite queries is

studied. Caching strategies for graph query processing have

been studied in [69–71]. The caching algorithms in [56] and

[69–71] are based on finding subgraph-isomorphisms be-

tween incoming and cached queries. The approach in [56] is

based on a canonical labelling algorithm, while [69–71] adopt

a filter then verify strategy where candidate graphs for iso-

morphism are filtered out based on certain features and then

the actual test for isomorphism is performed, e.g. [25, 41]. It

should be noted that subgraph-isomorphism cannot be used

for solving the query containment problem since it would

provide for an incomplete solution. For example, if we have

the indexed BGP {(?x , r1, ?y), (?y, r2, ? z)} and want to use

it for answering the BGP {(?x ′, r1, ?y
′
), (?y ′, r2, ?x

′
)}, our

algorithm will find the containment mapping σ (?x) =?x ′
,

σ (?y) =?y ′
, σ (? z) =?x ′

, while it can be checked that there

exists no corresponding subgraph isomorphism. The mv-

index structure we propose is complementary to the existing

caching systems and techniques and can be used to improve

their performance.

9 CONCLUSIONS AND FUTUREWORK
Our study introduces f-graph queries and demonstrates that

the containment problemQf ⊑W between an f-graph query

and a BGP query can be solved in PTime. We also present

the mv-index structure, a novel indexing structure for BGP

queries, that allows to check containment between an f-graph

query and a set of queries in worst case linear time w.r.t. the

size of the indexed queries. Finally we show how to apply

our algorithm for much more expressive queries with the

introduction of f-graph witnesses, i.e. graphs that can sub-

stitute an arbitrary query within the mv-index structure. In

our experimental evaluation we showed that containment

in practice runs much faster since most queries are not as

complicated as the worst case analysis assumes.

In future work, we plan to examine how mv-indices can

be exploited for view materialisation and query caching ap-

plications and to extend mv-indices for arbitrary queries

on relational databases. Additionally, we intend to examine

mv-indices and view materialisation techniques for provid-

ing semantic access to combined streaming and static in-

formation [38–40, 67], enhancing performance of end-user

oriented query interfaces [6, 65], and study if our indexing

structures can be extended for more expressive formalisms

that introduce uncertainty to the problem of query answer-

ing and containment [13, 16, 46]. Exploiting the mv-index

structure for graph indexing purposes [10, 11, 66] is another

promising direction for future work.

REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Sw-store: a

vertically partitioned dbms for semantic web data management. VLDB

J., 18(2):385–406, 2009.

[2] F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query containment

under bag and bag-set semantics. Information Processing Letters,

110(10):360–369, 2010.

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection

of materialized views and indexes in sql databases. In VLDB, volume

2000, pages 496–505, 2000.

[4] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress

testing of rdf data management systems. In ISWC, pages 197–212,

2014.

[5] R. Angles and C. Gutierrez. The expressive power of sparql. ISWC,

pages 114–129, 2008.

[6] M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska, and

D. Zheleznyakov. Faceted search over rdf-based knowledge

graphs. J. Web Sem., 37-38:55–74, 2016.

[7] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix bit loaded: a

scalable lightweight join query processor for rdf data. InWWW, pages

41–50. ACM, 2010.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.

Dbpedia: A nucleus for a web of open data. ISWC/ASWC, pages 722–

735, 2007.

[9] C. Bizer and A. Schultz. The berlin sparql benchmark. International

Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1–24,

2009.

[10] D. Bleco and Y. Kotidis. Graph analytics on massive collections of

small graphs. In EDBT, pages 523–534. Citeseer, 2014.

[11] D. Bleco and Y. Kotidis. Using entropy metrics for pruning very large

graph cubes. Information Systems, 81:49–62, 2019.

[12] A. Bonifati, W. Martens, and T. Timm. An analytical study of large

sparql query logs. PVLDB, 11(2):149–161, 2017.

[13] S. Borgwardt, T. Mailis, R. Peñaloza, and A.-Y. Turhan. Answering

fuzzy conjunctive queries over finitely valued fuzzy ontologies. Journal

on Data Semantics, 5(2):55–75, 2016.

[14] D. Brickley and R. V. Guha. Rdf vocabulary description language 1.0:

Rdf schema. https://www.w3.org/TR/rdf-schema/ , 2004.

[15] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A generic

architecture for storing and querying rdf and rdf schema. In ISWC,

pages 54–68, 2002.

[16] B. Cautis and E. Kharlamov. Answering queries using views over

probabilistic XML: complexity and tractability. PVLDB, 5(11):1148–

1159, 2012.

[17] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunc-

tive queries in relational data bases. In STOC. ACM, 1977.

[18] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries.

In PODS, pages 59–70. ACM, 1993.

[19] M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda. Sparql query

containment under rdfs entailment regime. In IJCAR, 2012.

[20] C. Chekuri and A. Rajaraman. Conjunctive query containment revis-

ited. ICDT, pages 56–70, 1997.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to algorithms. MIT press, 2009.

[22] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan, et al. Se-

mantic data caching and replacement. VLDB, 96:330–341, 1996.

[23] V. Dritsou, P. Constantopoulos, A. Deligiannakis, and Y. Kotidis. Opti-

mizing query shortcuts in rdf databases. ESWC, pages 77–92, 2011.

[24] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,

M.-D. Pham, and P. Boncz. The ldbc social network benchmark: Inter-

active workload. In SIGMOD, pages 619–630. ACM, 2015.

[25] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and

D. Shasha. Grapes: A software for parallel searching on biological

graphs targeting multi-core architectures. PloS one, 8(10):e76911, 2013.

[26] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection

in semantic web databases. PVLDB, 5(2):97–108, 2011.

[27] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic

conjunctive queries. Journal of the ACM, 48(3):431–498, 2001.

[28] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge

base systems. J. Web Semant., 3(2-3):158–182, 2005.

[29] A. Gupta, I. S. Mumick, et al. Maintenance of materialized views:

Problems, techniques, and applications. IEEE Data Eng. Bull., 18(2):3–

18, 1995.

[30] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad: a dis-

tributed shared-nothing rdf engine based on asynchronous message

passing. In SIGMOD, pages 289–300. ACM, 2014.

[31] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, and J. Pérez. Foundations

of semantic web databases. JCSS, 77(3):520–541, 2011.

[32] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data

cubes efficiently. ACM SIGMOD Record, 25:205–216, 1996.

[33] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql querying of large rdf

graphs. PVLDB, 4(11):1123–1134, 2011.

[34] Y. E. Ioannidis and R. Ramakrishnan. Containment of conjunctive

queries: Beyond relations as sets. TODS, 20(3):288–324, 1995.

[35] A. Jena. semantic web framework for java, 2007.

[36] D. S. Johnson and A. Klug. Optimizing conjunctive queries that contain

untyped variables. SIAM Journal on Computing, 12(4):616–640, 1983.

[37] G. Karvounarakis, A. Magganaraki, S. Alexaki, V. Christophides,

D. Plexousakis, M. Scholl, and K. Tolle. Querying the semantic web

with rql. Computer networks, 42(5):617–640, 2003.

[38] E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis, S. Lam-

parter, T. Mailis, C. Neuenstadt, Ö. L. Özçep, C. Pinkel, C. Svingos,

D. Zheleznyakov, I. Horrocks, Y. E. Ioannidis, and R. Möller. Ontology-

based integration of streaming and static relational data with optique.

In SIGMOD, pages 2109–2112, 2016.

[39] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou,

Ö. Özçep, C. Svingos, D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E.

Ioannidis, S. Lamparter, and R. Möller. Towards analytics aware ontol-

ogy based access to static and streaming data. In ISWC, pages 344–362,

2016.

[40] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou,

Ö. Özçep, C. Svingos, D. Zheleznyakov, Y. Ioannnidis, S. Lamparter,

R. Möller, and A. Waaler. An ontology-mediated analytics-aware ap-

proach to support monitoring and diagnostics of static and streaming

data. J. Web Semant., 2019.

[41] K. Klein, N. Kriege, and P. Mutzel. Ct-index: Fingerprint-based graph

indexing combining cycles and trees. In ICDE, pages 1115–1126, 2011.

[42] A. Klug. On conjunctive queries containing inequalities. JACM,

35(1):146–160, 1988.

[43] Y. Kotidis and N. Roussopoulos. A case for dynamic view management.

TODS, 26(4):388–423, 2001.

[44] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and

optimization of semantic web queries. TODS, 38(4):25, 2013.

[45] A. Y. Levy, A. O. Mendelzon, and Y. Sagiv. Answering queries using

views. In PODS, pages 95–104. ACM, 1995.

[46] T. Mailis, G. Stoilos, and G. Stamou. Expressive reasoning with horn

rules and fuzzy description logics. Knowledge and information systems,

25(1):105–136, 2010.

[47] S. Malyshev, M. Krötzsch, L. González, J. Gonsior, and A. Bielefeldt.

Getting the most out of wikidata: Semantic technology usage in

wikipedia’s knowledge graph. In ISWC, pages 376–394, 2018.

[48] B. McBride. Jena: Implementing the rdf model and syntax specification.

In ISWC, pages 23–28. CEUR-WS. org, 2001.

https://www.w3.org/TR/rdf-schema/

[49] M. Meimaris, G. Papastefanatos, N. Mamoulis, and I. Anagnostopou-

los. Extended characteristic sets: graph indexing for sparql query

optimization. In ICDE, pages 497–508, 2017.

[50] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized

view selection and maintenance using multi-query optimization. In

ACM SIGMOD Record, volume 30, pages 307–318. ACM, 2001.

[51] K. Morfonios, S. Konakas, Y. Ioannidis, and N. Kotsis. Rolap implemen-

tations of the data cube. ACM Computing Surveys (CSUR), 39(4):12,

2007.

[52] D. R. Morrison. Patricia—practical algorithm to retrieve information

coded in alphanumeric. JACM, 15(4):514–534, 1968.

[53] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and J. Banerjee. Rdfox:

A highly-scalable rdf store. In ISWC, pages 3–20, 2015.

[54] T. Neumann and G. Weikum. x-rdf-3x: fast querying, high update

rates, and consistency for rdf databases. PVLDB, 3(1-2):256–263, 2010.

[55] J. Neyman. X—outline of a theory of statistical estimation based on the

classical theory of probability. Phil. Trans. R. Soc. Lond. A, 236(767):333–

380, 1937.

[56] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris. Graph-aware,

workload-adaptive sparql query caching. In SIGMOD, pages 1777–1792.

ACM, 2015.

[57] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of

sparql. In ISWC, pages 30–43, 2006.

[58] F. Picalausa and S. Vansummeren. What are real sparql queries like?

In SWIM, page 7. ACM, 2011.

[59] R. Pichler and S. Skritek. Containment and equivalence of well-

designed sparql. In PODS, pages 39–50. ACM, 2014.

[60] A. Polleres. From sparql to rules (and back). In WWW, pages 787–796.

ACM, 2007.

[61] E. Prud, A. Seaborne, et al. Sparql query language for rdf. https:

//www.w3.org/TR/rdf-sparql-query/ , 2006.

[62] Y. Sagiv andM. Yannakakis. Equivalences among relational expressions

with the union and difference operators. JACM, 27(4):633–655, 1980.

[63] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen. Containment

and minimization of rdf/s query patterns. In ISWC, 2005.

[64] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold.

Column-store support for rdf data management: not all swans are

white. PVLDB, 1(2):1553–1563, 2008.

[65] A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jiménez-Ruiz, M. Giese,

M. G. Skjæveland, D. Hovland, R. Schlatte, S. Brandt, H. Lie, and I. Hor-

rocks. Optiquevqs: A visual query system over ontologies for industry.

Semantic Web, 9(5):627–660, 2018.

[66] V. Spyropoulos and Y. K. Kotidis. Digree: Building a distributed graph

processing engine out of single-node graph database installations.

ACM SIGMOD Record, 46(4):22–27, 2018.

[67] C. Svingos, T. Mailis, H. Kllapi, L. Stamatogiannakis, Y. Kotidis, and

Y. Ioannidis. Real time processing of streaming and static information.

In IEEE Big Data, pages 410–415, 2016.

[68] T. Tran, G. Ladwig, and S. Rudolph. Managing structured and

semistructured rdf data using structure indexes. IEEE Transactions on

Knowledge and Data Engineering, 25(9):2076–2089, 2013.

[69] J. Wang, Z. Liu, S. Ma, N. Ntarmos, and P. Triantafillou. GC: A graph

caching system for subgraph/supergraph queries. PVLDB, 11(12):2022–

2025, 2018.

[70] J. Wang, N. Ntarmos, and P. Triantafillou. Indexing query graphs to

speedup graph query processing. In EDBT, pages 41–52, 2016.

[71] J. Wang, N. Ntarmos, and P. Triantafillou. Graphcache: A caching

system for graph queries. In EDBT, pages 13–24, 2017.

[72] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing

for semantic web data management. PVLDB, 1(1):1008–1019, 2008.

[73] M. Wudage, J. Euzenat, P. Genevès, and N. Layaıda. Sparql query

containment under shi axioms. In Proceedings 26th AAAI Conference

on Artificial Intelligence, pages 10–16, 2012.

[74] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB,

volume 81, pages 82–94, 1981.

[75] X. Zhang, L. Chen, Y. Tong, and M. Wang. Eagre: Towards scalable i/o

efficient sparql query evaluation on the cloud. In ICDE, 2013.

A PROOFS & EXAMPLES
Proof of Proposition 3.3. For convenience, we will use

s, t ,v to denote terms appearing in the serialised form of a

BGP queryWs and its initial queryW , while s ′, t ′,v ′
will

denote terms appearing in the f-graph Qf .

Soudness. Because of nested subgraphs, we will show the

soundness of the proposition by induction in the structure

of the serialised form ofWs. In the rest of the proof, σ is

the mapping being created by the Containment function

in Alg. 2.

Claim ♠. We first need to prove that if (i) the func-

tion Containment is examining the ith element ofWs;

(ii)Wnest is the nested subgraph appearing from the ith

to the jth position ofWs; (iii) v
′
is the vertex in Qf cur-

rently being examined; (iv) v is the anchor vertex of

Wnest; (v) σ (v) = v ′
applies; (vi) and the Containment

function does not return False during its execution

from position i to j then σ is a containment mapping

σ : Wnest → Qf .

We will prove the claim by induction in the structure of

nested subgraphs.

Induction Basis. For the induction basis we need to show

that the claim applies when there are no parenthesis sym-

bols within the elements ofWnest. For the previous case, the

“substring” from the ith to the jth position ofWs has the form:

⟨ri , ti ⟩ . . . ⟨r j , tj ⟩ (3)

with rl either being a predicate pl or an inverse predicate p−1

l .

In the previous formula, all predicate assertions are related

to the same anchor term v by construction ofWs. Therefore

⟨rl , tl ⟩ corresponds to the triple (v,pl , tl) inWnest if rl is a

predicate pl or to the triple (tl ,pl ,v) inWnest if rl is p
−1

l . Since

the Containment function does not return False, every

triple (v,pl , tl) inWnest is mapped by the constructed σ to

a triple (v ′,pl , t
′
l) in Qf (line 9 of Alg. 2) and every triple

(tl ,pl ,v) is mapped to a triple (t ′l ,pl ,v
′
) in Qf (line 12 of

Alg. 2). Since every triple pattern inWnest is mapped to a

triple pattern in Qf via σ , σ is a containment mapping from

Wnest to Qf .

Induction Step. We now extend the proof for the case that

sequences of the form ⟨pl , tl ⟩ (Wnest2) appear inWnest of

Equation 3 where pl is a predicate IRI andWnest2 is a nested

subgraph inWnest with tl its corresponding anchor vertex. By
construction ofWs, ⟨pl , tl ⟩ corresponds to a triple (v,pl , tl)

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

inWnest and it is shown same way as before that the triple

is mapped by σ to a triple in Qf . When reading the opening

parenthesis, the vertex v ′
of Qf is pushed in ®mpath and v ′

,

the currently examined vertex of Qf , will take the value of

σ (tl) (lines 15 and 16). By construction of the serialised form

ofWnest2, tl is its corresponding anchor vertex while it is also
mapped to the currently examined element of Qf . Therefore

the premises in Claim ♠ and the induction hypothesis en-

sure that σ is also a containment mapping σ : Wnest2 → Qf .

The closing parenthesis (line 18) ensures that when all the

elements ofWnest2 have been checked, v ′
will take its previ-

ous value and the rest of theWnest will be correctly mapped

as before. In a similar way we prove the induction step in

the case that sequences with inverse predicates: ⟨p−1

l , tl ⟩ (

Wnest2) appear inWnest.

Our algorithm is sound, because the first element inWs is

its anchor vertex va , and the rest of the graph information

is encoded after an opening parenthesis. Since the algorithm

does not return False when examining the first element of

Ws and σ (va) = v ′
a , because the premises of Claim ♠ also

apply, the constructed σ will be a containment mapping and

the algorithm is sound.

Completeness. For the opposite direction, suppose that there

exists a containment mapping µ from the variables ofW to

the variables of Qf for which µ(va) = v ′
a , we need to show

that the Containment(Ws,Qf ,v
′
a) will return True.

The soundness of the containment algorithm along with

the f-graph properties ensure that during the ith execution
step of Alg. 2, the constructed mapping σ agrees with the

containment mapping µ. This means that for every variable

?x such that σ (?x) is defined, it applies σ (?x) = µ(?x). In

order to complete our proof, we need to show that none of

the lines that return False will be accessed.

▷ If line 20 was accessed for a pair ⟨p,o⟩ in Ws, there

should exist a triple (v,p,o) inW with σ (v) already been

defined and no corresponding triple (σ (v),p,o′) appearing in
Qf . The latter cannot apply because of the existence of the

containment mapping µ and the fact that σ (v) = µ(v). With

a similar argumentation, line 20 cannot be accessed for pairs

of the form ⟨p−1, s⟩ inWs.

▷ The Containment function cannot return False in

line 6 since that would imply that t ∈ IL and t ̸= v ′
. The latter

cannot occur because of the existence of the containment

mapping µ.
▷ The Containment function cannot return False in

line 8 since that would imply that the triple (v,p,o) appears

inW ; σ (v) = v ′
; the triple (v ′,p,o′) ∈ Qf ; and σ (o) ̸= o′. The

latter cannot apply because σ agrees with µ, i.e. σ (v) = µ(v ′
),

σ (o) = µ(o), and the fact that µ is a containment mapping.

With a similar argumentation, the Containment function

cannot return False in line 12. □

Proof of Theorem 4.2. In order to prove the soundness

and completeness of the theorem, we first need to show the

following claim:

Claim ♣. We assume thatWs is the serialised form of a

query and
®λ0, ®λ1 . . . ®λn are vectors of elements whose

concatenation equalsWs. For an f-graph Qf and one of

its terms v ′
a it applies that:

Containment(Ws,Qf ,v
′
a)

returns True if and only if the consecutive execution

of the function :

Containment(
®λi ,Qf ,v

′
i ,v

′
nexti , ®mpathi

,σi)

returns (True, s ′i+1
,v ′

nexti+1
, ®mpathi+1

,σi+1) for all 0 ≤ i ≤
n such that v ′

0
= v ′

a , v
′
next0

= Null, ®mpath
0

is an empty

stack of terms, and σ0 only maps IRIs and literals to

themselves. Each value of vi+1, v
′
nexti+1

, ®mpathi+1

, σi+1 is

inferred from the ith execution cycle of the function

Containment.

▷ It should be noted that the different calls of the

function Containment correspond to its two slightly

different forms described in Algorithms 2 and 3 respec-

tively. The previous claim applies because all the infor-

mation is passed between consecutive executions of the

Containment function. A detailed proof of the claim

can be based on induction in the size of the
®λ0, . . . , ®λn

list.

We now proceed to prove the soundness and completeness

of the theorem. For the proof we assume that there exists

some vertex bn and the corresponding path leading from the

root vertex of the mv-index to bn is α ,b1, . . . ,bn . We also

assume that L(bn) = Ws which is the serialised form of some

queryW represented within the mv-index.

Soundness. Suppose that the execution of the function

ContQueries(M,α ,Qf ,v
′,Null, ®mpath,σ)

returns Vcont. If bn appears in Vcont, we have that L(bn) cor-

responds to a query inserted into the mv-index because

LQuery (bn) = True. We additionally need to show thatbn cor-
responds to the serialised form of a query that containsQf . If

bn appears in Vcont, based on line 4 in Algorithm 3, it applies

that consecutive executions of the Containment function

for the vectors L(α ,b1),L(b1,b2), . . . ,L(bn−1,bn) and the cor-

responding inputs v ′
0
, . . .v ′

n , v
′
next0
, . . . ,v ′

nextn , ®mpath
0

, . . . ,
®mpathn

, and σ0, . . . ,σn will all return True. The later along

with Claim ♣ and Proposition 3.3 imply the soundness of the

theorem.

Completeness. For the completeness proof let’s assume that

the queryW corresponding to L(bn) contains Qf . By Propo-

sition 3.3 and Claim ♣ we have that the consecutive execu-

tions of the Containment function for the vectors L(α ,b1),
L(b1,b2), . . . ,L(bn−1,bn) and the corresponding inputs v ′

i ,

v ′
nexti , ®mpathi

, and σi will all return True. Line 2 in Algo-

rithm 3 ensures that all vertices α ,b1, . . . ,bn are examined

therefore vertex bn will be examined. Since LQuery (bn) was

set to True during the insertion phase of the query, line 8

of the algorithm will return vertex bn to the corresponding

answer set Vcont. □

Proof of Propositions 5.1 & 5.2. We only need to prove

Proposition 5.2. Proposition 5.1 directly follows from it. Sup-

pose that σ :W → Q is a containment mapping fromW to

Q . We build the mapping σw fromW to Qw such that if s is
a term inW , s ′ is a term in Qw , and σ (s) = s ′ then we set

σw (s) := [s ′]. It should be noted that Qw differentiates from

traditional containment mappings since instead of mapping

IRIs and literals to themselves, it maps them to a (possibly

nominal) set that contains them.

We now need to show that σw is itself a containment map-

ping. This is an immediate consequence of the fact that, by

construction ofQw , for every triple pattern (s,p,o) appearing

inQ , the triple pattern ([s],p, [o]) appears inQw and no more

additional triple patterns are added to Qw . □

Example A.1. Suppose that we have the BGP Q andW

Q : SELECT ?x WHERE (?x , type, Car), (?x , type, Red)

W : SELECT ?x WHERE (?x , type, Vehicle), (?x , type, Red)

and the class inclusion that each car is a vehicle. In order to

examine if Q ⊑ W applies, we first extend Q based on the

corresponding terminological knowledge. This will add the

triple pattern (?x , type, Vehicle) in the extended form ofQ ,

i.e. Qe . With the additional triple pattern it is obvious that

our algorithm will return that there exists a containment

mapping fromW to Qe and thus Q ⊑W also applies.

Proof of Proposition 6.1. In the rest of the proof we

will denote with R the RDFS schema under consideration.

We will say that a query Q is contained in queryW under

the RDFS R, i.e.Q ⊑R W , if the answer set ofQ is contained

in the answer set ofW for every graphG that also satisfies

the RDFS R.

If Direction. Suppose that there exists a containment map-

ping fromW to the extended form of a query Q named Qe ,

we need to show thatQ ⊑R W also applies. The existence of

a containment mapping σ : W → Qe implies that Qe ⊑W
for every RDF graph G. For an RDF graph G that also satis-

fies R, a solution to the query Q is a mappingm from the

variables ofQ to the elements in IL∪B such that every triple

in Q is mapped to a corresponding triple in G. SinceG satis-

fies R, because of the restricted form of the RDFS language

it is straightforward to show that m is also a solution for

Qe . Therefore, it applies that Q ⊑R Qe . Since Q ⊑R Qe and

Qe ⊑W apply, based on the transitivity of the ⊑R relation,

we have that Q ⊑R W as we wanted to show.

Only If Direction. Suppose that Q ⊑R W , we want to show

that there exists a containment mapping from Qe toW . We

build a graphG fromQe as follows: (i) f : Vars(Qe) → IRIs is

an bijective function that maps each variable inQe to a fresh

IRI (i.e. an IRI not already appearing inQe); (ii) for each triple

pattern inQe a corresponding triple is added toG where each

variable x has been replaced with f (x). By construction of

Qe and G, it is obvious that the newly created RDF graph G
satisfies R. By construction ofG , it is also obvious that there
exists at least one solution to the query Q when applied to

the graph G, the specific solution maps every variable x in

Q to f (x) in G,m(x) := f (x). Since Q ⊑R W also holds and

G satisfies R, we have that there also exists a solution for

the queryW on the graph G, m′
: W → G. The solution

m′
allows to infer a containment mapping σ : W → Qe by

setting for every variable x inW , σ (x) := f −1
(m′

(x)) and our

proof has finished. □

	Abstract
	1 Introduction and motivation
	2 Preliminaries
	3 F-Graph Queries & Query Containment
	3.1 F-Graph Queries
	3.2 Serialised Form of BGP Queries
	3.3 Containment Checking

	4 MV-Indices
	4.1 Mv-index
	4.2 Query Containment using Mv-indices

	5 Indexing & Containment for Arbitrary BGP Queries
	5.1 F-Graph Witnesses for BGP Queries
	5.2 Unrestricted Predicates

	6 MV-Indices & RDFS Reasoning
	7 Experimental Evaluation
	7.1 Insertion Cost
	7.2 Containment Cost

	8 Related Work
	9 Conclusions and Future Work
	References
	A Proofs & Examples

