
Query-Based Entity Comparison in Knowledge
Graphs Revisited

Alina Petrova, Egor V. Kostylev, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford
{alina.petrova, egor.kostylev, bernardo.cuenca.grau,

ian.horrocks}@cs.ox.ac.uk

Abstract. Large-scale knowledge graphs are increasingly being used in
applications, and there is a growing need for tools that can effectively
support users in analysis and exploration tasks. One such important task
is entity comparison—to describe in an informative way the similarities
between two given entities as described in a knowledge graph. In our
previous work the result of entity comparison is modelled as a similar-
ity query—that is, a SPARQL query having the input entities as part
of the answer over the input graph; for instance, one can describe the
similarity between two companies such as Telenor and Vodafone in the
YAGO graph as a query asking for all telecom companies based in Eu-
rope. In this paper, we extend the results of our prior work in different
ways. First, we expand the language of similarity queries to consider a
richer fragment of SPARQL allowing for numeric filter expressions; this
enables us to express that Telenor and Vodafone are also similar in that
they both have at least 30,000 employees. We then propose algorithms for
computing similarity queries satisfying certain additional desirable prop-
erties, such as being as specific as possible. Such algorithms are, however,
impractical; hence, we also propose and implement a scalable algorithm
that is guaranteed to compute a similarity query, but not necessarily a
most specific one.

1 Introduction

Large-scale knowledge graphs are increasingly being used in applications, and
there is a growing need for tools that can effectively support users in analysis and
exploration tasks. One such important task is entity comparison—to describe in
an informative way the similarities and differences between two given entities as
outlined in a knowledge graph. This is in stark contrast to the computation of
a similarity measure, where the output is a number indicating how similar the
given entities are likely to be rather than a human-readable explanation.

To make our discussion concrete, consider a small excerpt from the YAGO
knowledge graph [19] (in RDF format) about European companies that is de-
picted in Figure 1. We would like a tool to assist us in comparing Telenor with

2 A. Petrova et al.

Telenor Vodafone

Telecom company

Norway UK

Europe

Vodafone Italy

Betavine

Norges Televisjon

TV 2 Sport

33220 91272

1855 1991

links to

isa isa

loc in loc in

loc in loc in

links to

owns

owns

created

owns

owns
owns

has people has people

created on created on

Fig. 1: An excerpt of the YAGO knowledge graph

Vodafone. In particular, the tool should be able to automatically report that Te-
lenor and Vodafone are similar in that they are both telecom companies located
in Europe which own other companies, have at least 25 years of operating expe-
rience and more than 30,000 employees on payroll; however, they are different
in that Telenor is located in Norway whereas Vodafone is based in the UK.

Entity comparison is used routinely across multiple domains and applica-
tions, from online shopping to food and nutrition comparison widgets, to Face-
book’s ‘see what you have in common’ pages. Existing tools typically focus on
a constrained application domain (e.g., used cars) and provide a side-by-side
comparison of the given entities based on a fixed set of relevant attributes (e.g.,
price, engine size, or colour). We are, however, interested in the generic entity
comparison support in knowledge graphs, in which case it is no longer possible
to fix a relevant set of attributes or relationships upfront.

In our previous work, we proposed a logical framework for entity comparison
in knowledge graphs represented in RDF format [17]. The description of simi-
larities and differences is given in terms of SPARQL queries in the conjunctive
fragment. In particular, a similarity query is a query containing the two given
entities to compare as answers. A more specific such query is seen as more in-
formative: for example, knowing that both Vodafone and Telenor are telecom
companies is more informative than just knowing that they are both companies.

We previously showed that, for any given RDF graph and pair of entities to
compare, there exists a unique most specific similarity query (MSSQ), which can
be computed in polynomial time in the size of the input graph [17]. The algorithm
in that work, however, has two important practical limitations. First, it was
designed for a fragment of SPARQL without numeric filter expressions, which
significantly limits its applicability to graphs containing numeric information;

Query-Based Entity Comparison in Knowledge Graphs Revisited 3

for instance, the algorithm would not be able to report as a similarity that both
Vodafone and Telenor have at least 30,000 employees. Second, the running time
of the algorithm is quadratic in the size of the input graph (even in the best
case), which makes it impractical even for moderately-sized inputs.

In this paper, we first extend the previously proposed framework and algo-
rithms so as to produce more informative similarity queries. In particular, we
consider a richer fragment of SPARQL allowing for numeric filter expressions,
and also study a new type of similarity queries that we call exact. We then
show that both most-specific and exact similarity queries can be computed us-
ing an extension of the algorithm proposed in [17]; this algorithm is, however,
also impractical. To address this issue, we then propose a practical and scalable
algorithm for computing similarity queries. Although our algorithm does not en-
sure that the computed similarity query is the most specific one, our empirical
evaluation suggests that it is a reasonable approximation in many cases.

2 Preliminaries

Let U, L, and B be pairwise disjoint, countably infinite sets of IRIs, literals, and
blank nodes, respectively. We assume that L includes all integers Z. We will refer
to IRIs and literals collectively as entities. An RDF triple (or simply a triple)
is a tuple (s, p, o) from (U ∪ B) ×U × (U ∪ L ∪ B), where s is called the subject, p
the predicate, and o the object. An (RDF) graph is a finite set of triples.

Let X be a countable infinite set of variables disjoint from U, B, and L. A
term is an element from U∪L∪X. A triple pattern is a triple of terms from the
set (U∪X)×(U∪X)×(U∪L∪X). A basic graph pattern is a non-empty finite set of
triple patterns. An arithmetic comparison is an expression of the form (?Y C n),
where ?Y is a variable in X, n is an integer (i.e., a literal), and C is a comparison
symbol in {<, ≤, >, ≥}. A (arithmetic) filter condition is a finite (possibly empty)
set of arithmetic comparisons. For E an expression such as a pattern or a filter
condition we denote with var(E) and term(E) the sets of variables and terms,
respectively, occurring in E. A basic graph pattern P is connected if for every
pair t, t ′ ∈ term(P) there is a sequence of triple patterns T1, . . . ,Tm in P such that
t ∈ term(T1), t ′ ∈ term(Tm) and term(Ti) ∩ term(Ti+1) , ∅ for all i = 1, . . . ,m − 1.

In this paper, we concentrate on (SPARQL) queries of a very specific form.
In particular, in the context of this paper, a query is an expression of the form

Select ?X Where P Filter C, (1)

where P is a connected basic graph pattern, ?X ∈ var(P) is the answer variable
of the query and C is a filter condition satisfying var(C) ⊆ var(P). Such queries
essentially correspond to connected monadic conjunctive queries with arithmetic
comparisons (CQACs) [15] restricted to signatures over a single ternary relation
and using no comparisons between variables.

A valuation of a finite set of variables ?X̄ from X is a mapping from ?X̄ to
U∪L∪B. An element from U∪L∪B is an answer to a query Q of the form (1) over
a graph G if there exists a valuation ν of var(P) so that ν(P) ⊆ G and ν(?Y) C n

4 A. Petrova et al.

holds for each comparison (?Y C n) in C. We denote by [Q]G the set of all
answers to Q over G. A query Q1 is subsumed by a query Q2, written Q1 ⊆ Q2,
if [Q1]G ⊆ [Q2]G for every graph G. Query Q1 is strictly subsumed by query Q2,
denoted by Q1 ⊂ Q2, if Q1 ⊆ Q2 and Q2 * Q1. Finally, Q1 and Q2 are equivalent,
denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1. Subsumption and equivalence
allow us to compare queries relative to their specificity, so we sometimes say that
Q1 is (strictly) more specific than Q2 if Q1 is (strictly) subsumed by Q2.

We conclude this section with an observation that we restrict the filter con-
ditions to only arithmetic comparisons between variables and constants. This
is justified by the fact that all other comparisons, such as general inequalities
between variables and IRIs, have very little meaning in the context of entity com-
parisons, and moreover may flood similarity queries hiding the essential parts.

3 Entity Comparison Using Similarity Queries

There are two main proposals for capturing similarities between entities in the
literature: either by queries [17] that have given entities as answers or by explicit
paths in the graph originating in given entities and converging into the same
node [6,11,14]. As discussed in our previous work [17], queries contain variables,
which allow us to represent similarities at a higher level of abstraction, so we
adopt the first approach. We start by extending the notions of similarity and
most specific similarity queries of [17] to also consider filter conditions.

Definition 1. A query Q is a similarity query for entities a and b in a graph G
if {a, b} ⊆ [Q]G. A similarity query Q for a and b in G is most specific (MSSQ)
for a and b if there is no similarity query Q′ for a and b in G such that Q′ ⊂ Q.

For example, the following query Qex asking for all telecom companies located
in Europe is a similarity query for Vodafone and Telenor in the graph in Figure 1:

Select ?X Where {(?X, isa,Telecom company),

(?X, loc in, ?Y), (?Y, loc in, Europe))}.

Query Qex is, however, not an MSSQ since the following query Q′ex is also a
similarity query, and it is strictly more specific as it adds the information that
both companies were created between 1855 and 1991:

Select ?X Where {(?X, isa,Telecom company),

(?X, loc in, ?Y), (?Y, loc in, Europe), (?X, created on, ?Z)}

Filter {(?Z ≤ 1991), (?Z ≥ 1855)}.

It is not difficult to see that a similarity query exists, provided the input
entities appear at the same position (i.e., subject, predicate, or object) in the
input graph. Moreover, as the above example suggests, there may be multiple
(even infinitely many) similarity queries for a pair of entities in a graph. We next
show, however, that MSSQs are unique modulo equivalence. Intuitively, this is
the case because the conjunction of similarity queries is also a similarity query.

Query-Based Entity Comparison in Knowledge Graphs Revisited 5

Proposition 1. MSSQs are unique up to equivalence.

Proof. Let a and b be entities in a graph G. Consider two arbitrary MSSQs
Qi = Select ?X Where Pi Filter Ci, i ∈ {1, 2}, for a and b in G. Then query

Q = Select ?X Where P1 ∪ P2 Filter C1 ∪ C2

is a similarity query, which is also more specific than both Q1 and Q2. Note that
P1 ∪ P2 is connected because P1 and P2 are both connected and both mention
?X. Therefore, Q1, Q2, and Q are all equivalent MSSQs. ut

The notion of MSSQ relies on query subsumption, which is a data-independent
relationship between queries. It would clearly also make sense to look for sim-
ilarity queries that are as discriminating for input entities a and b as possible
over the specific input graph G at hand—that is, those similarity queries that
return only a and b as answers when evaluated over G.

Definition 2. A query Q is an exact similarity query (ESQ) for entities a and
b in a graph G if {a, b} = [Q]G.

For instance, our example query Qex is an ESQ for the example graph from
Figure 1 because Vodafone and Telenor are the only telecom companies in Eu-
rope represented in the graph. However, as already discussed, Qex is not an
MSSQ because it is not minimal with respect to subsumption. Furthermore, if
we were to consider the whole of YAGO instead of our example excerpt, Qex

would certainly no longer be an ESQ since YAGO contains many other Euro-
pean telecom companies. So, MSSQs and ESQs are incomparable in general.
The following proposition, however, establishes a useful link between ESQs and
MSSQs, which we exploit in the algorithms proposed in following sections.

Proposition 2. If Q is an MSSQ for entities a and b in a graph G such that
[Q]G , {a, b}, then no ESQ for a and b in G exists.

Proof. Let Q′ be an ESQ for a and b in G—that is, Q′ is a similarity query with
[Q′]G = {a, b}. So, Q′ is a similarity query that is not subsumed by the MSSQ
Q, which contradicts Proposition 1. ut

4 Computing Most Specific and Exact Similarity Queries

In this section, we present an algorithm that computes an MSSQ, if one exists,
and reports failure otherwise. We also show how a simple modification of this
algorithm can be used for computing an ESQ. Our algorithm for MSSQ extends
the one in [17], where changes are needed to deal with filter conditions.

Our algorithm relies on the following notion of the (tensor) product graph.

Definition 3. Given triples τ1 = (s1, p1, o1) and τ2 = (s2, p2, o2), let

τ1 × τ2 = (〈s1, s2〉, 〈p1, p2〉, 〈o1, o2〉).

The product G1 ×G2 of graphs G1 and G2 is the set {τ1 × τ2 | τ1 ∈ G1, τ2 ∈ G2}.

6 A. Petrova et al.

Algorithm 1: Compute MSSQ

Input: graph G, entities a and b in G
Output: MSSQ for a and b in G, or fail

1 compute G × G;
2 if 〈a, b〉 does not occur in a triple in G × G then return fail ;
3 compute the connected component G× of 〈a, b〉 in G × G;
4 let P be the pattern obtained from G× by replacing each pair 〈c1, c2〉 with

either variable ?Xc1,c2 , if c1 , c2 or c1 ∈ B, or with c1 otherwise;
5 if a = b then
6 add to P all triple patterns obtained from triple patterns already in P

by replacing at least one occurrence of a with ?Xa,a;

7 let C be
{(?Xn1,n2 ≤ max(n1, n2)), (?Xn1,n2 ≥ min(n1, n2)) | ?Xn1,n2 ∈ var(P); n1, n2 ∈ Z};

8 return Select ?Xa,b Where P Filter C.

Algorithm Compute MSSQ (given in Algorithm 1) accepts as input a graph
G, and entities a and b in G. In the first step, it computes the product graph
G×G and checks whether the node 〈a, b〉 occurs in G×G; if it does not, then the
algorithm determines that a similarity query (and hence an MSSQ) for a and b
in G does not exist, and reports failure. In contrast, if 〈a, b〉 occurs in the product
graph G ×G, then the algorithm computes the connected component of 〈a, b〉 in
the product graph and constructs the output query based on it. Specifically, the
algorithm computes the pattern P in the query by replacing each element of a
product triple in G ×G with either a constant or a variable (uniquely associated
with the element), and the filter condition C by adding suitable inequalities for
those variables representing pairs of numeric literals in the product graph.

Since the size of G × G is quadratic in the size of G, the algorithm works in
polynomial time. Correctness is established by the following theorem.

Theorem 1. Compute MSSQ is a polynomial time procedure that returns an
MSSQ for its input entities and graph, if it exists, or fail otherwise.

Proof. First, recall that a similarity query of entities a and b in a graph G exists
if and only if both a and b appear in the same position in triples in G, which
happens precisely when 〈a, b〉 appears in a triple in G × G by construction. So,
if Compute MSSQ returns fail in line 2 then there is no MSSQ for a and b.

Next, algorithm Compute MSSQ extends our previously proposed algo-
rithm from [17] that computes a most specific similarity query without filter
conditions for two entities in an RDF graph. So, if the MSSQ (in the extended
language) does not contain integers, then Compute MSSQ returns this MSSQ,
with the filter condition C being empty. If the MSSQ contains integers, then the
algorithm first generates the most specific basic graph pattern P in lines 1–6 as
before and then computes the filter condition C in line 7; moreover, C contains
the arithmetic comparisons for all possible numeric variables in P, and these
comparisons are constrained in the tightest way possible by the integer values.

Finally, as already mentioned, all steps can be done in polynomial time. ut

Query-Based Entity Comparison in Knowledge Graphs Revisited 7

The correctness of the algorithm implies that an MSSQ is always guaranteed
to exist whenever a similarity query exists for the given input. Furthermore,
checking whether a similarity query exists can be done efficiently.

Despite running in polynomial time, Algorithm 1 is impractical. Indeed, real-
life graphs G of interest tend to contain millions of triples, and the algorithm
explicitly constructs the product graph G×G, which is of quadratic size in the size
of G. Moreover, large MSSQs are often incomprehensible and practically useless
for entity comparison. Hence, it makes sense to design approximation algorithms,
which, on the one hand, construct reasonably specific similarity queries and, on
the other hand, can scale to large input graphs. In Section 5 we devise one such
algorithm. We next show, however, that checking whether a query (e.g., a query
output by an approximation algorithm) is an MSSQ is computationally hard.

Theorem 2. The problem of checking whether a query is an MSSQ for two
entities in a graph is ΠP

2 -complete.

Proof (Sketch). To check whether a query Q is an MSSQ for entities a and b
in a graph G, we proceed as follows. First, we apply Algorithm 1 to obtain (in
polynomial time) an MSSQ Q′ for a and b in G. By Proposition 1, Q is an MSSQ
if and only if it is equivalent to Q′. So, second, we check equivalence of Q and
Q′; since all MSSQs are essentially CQACs, the check is feasible in ΠP

2 [15].
In turn, the lower bound is obtained by reduction of the equivalence problem

for connected CQACs with a restricted form of comparisons, which can be shown
to be ΠP

2 -complete by a similar technique as in [15]. The idea of the reduction is
to first construct a graph G with entities a and b using the first CQAC q1 such
that q1 corresponds to an MSSQ for a and b in G; then, to rewrite the second
CQAC q2 into a query Q syntactically compatible with G; and finally to show
that Q is the MSSQ for a and b in G if and only if q1 and q2 are equivalent. ut

We next observe that Algorithm 1 can be easily modified to compute an
ESQ, if one exists. Indeed, let algorithm Compute ESQ be the same as Com-
pute MSSQ except that it additionally evaluates the constructed query at the
end, and returns the query only if the result is precisely a, b, and fail otherwise.

Theorem 3. Compute ESQ is a procedure that returns an ESQ for its input
entities and graph if it exists, or fail otherwise.

Proof. If the algorithm returns a query Q, then Q is an ESQ for the input
entities a and b in the input graph G since this is explicitly checked in the last
step. Assume now that the algorithm returns fail ; we argue that no ESQ exists.
If it returns fail in line 2, then by the correctness of Algorithm 1 we can conclude
that no similarity query (and hence no ESQ) exists for a and b in G. In turn, if
the algorithm returns fail in the last step, we know that the constructed query
Q is not an ESQ. Furthermore, by the correctness of Algorithm 1, we know that
Q is an MSSQ for a and b in G, so, by Proposition 2, no ESQ exists. ut

Note that the evaluation step in Compute ESQ does not work in (deter-
ministic) polynomial time. As the following proposition says, no ESQ can be
computed in polynomial time (assuming P , NP).

8 A. Petrova et al.

Theorem 4. The problem of checking whether an ESQ for two entities in a
graph exists is coNP-complete.

Proof (Sketch). The upper bound follows from the algorithm: first it computes,
in polynomial time, a candidate query Q and then universally guesses an entity
different from a and b verifying that it is not an answer to Q. The last can be
done in coNP by usual query evaluation algorithms.

The lower bound is obtained by reduction of the coNP-complete problem of
checking whether there exists a difference comparison-free query Q for an entity
a relative to an entity b in an RDF graph G—that is, such that Q has the empty
filter condition and has a as an answer over G but not b [17]. In particular, given
G, a, and b as instance to the difference existence problem, consider the graph
G′ = G ∪ {(a, d, c), (b, d, c)} for fresh entities d and c not occurring in G. Then it
is not difficult to check that there exists a difference query for a relative to b in
G if and only if there exists an ESQ for a and a in G′. ut

We conclude the section with the complexity of checking if a query is an ESQ.

Theorem 5. The problem of checking whether a query is an ESQ for two enti-
ties in a graph is DP-complete.

Proof (Sketch). To establish the upper bound, consider the algorithm that
checks in NP that both input entities are answers to the query on the input
graph and checks in coNP that there are no other answers. For the lower bound,
we first show that the verification problem for comparison-free difference queries
is DP-hard, and then reduce this problem to ESQ verification in a way very
similar to the one presented in the proof of Theorem 4. ut

5 Computing Approximated MSSQs

As discussed in Section 4, algorithm Compute MSSQ is impractical even for
moderately-sized input graphs G since the algorithm computes upfront the prod-
uct graph G × G of the input graph G with itself, which is of quadratic size. In
this section, we propose a practical algorithm that computes a similarity query
for two entities in a graph (if one exists). Although the query computed by
the algorithm is not guaranteed to be an MSSQ, we will verify empirically in
Section 6 that it is a reasonable approximation in practice. Before going to the
details, we make two important observations. First, in the rest of the paper we
concentrate on MSSQs leaving similar treatment of ESQs for future work. Sec-
ond, the theoretical framework and the exact algorithm Compute MSSQ treat
subjects, predicates, and objects in the same way; however, in practice we would
like to compare subject and object entities, considering predicates as relations,
and hence our approximation algorithm assumes that the compared entities ap-
pear in the graph either both as subjects or both as objects at least once (and
hence an MSSQ exists).

Our algorithm relies on the notion of a similarity tree for entities a and b in a
graph G, which we define next. Roughly speaking, a similarity tree is a labelled

Query-Based Entity Comparison in Knowledge Graphs Revisited 9

directed tree, where each node is labelled with a pair of sets of entities (appearing
in subject and object positions in G), with the first set in a pair corresponding
to a and the second to b; the root node is labelled with the pair ({a}, {b}). Each
edge in the tree is labelled with two sets of entities (appearing in the predicate
position in triples from G) and a direction of triples;. Furthermore, we require
that the tree is consistent with the structure of G in that each edge in the tree
is justified by corresponding triples in G.

Definition 4. A pair tree is a rooted labelled directed tree such that

– each node v is labelled with a pair (V1,V2), where each Vi is a non-empty set
of entities satisfying either V1 ∩ V2 = ∅ or V1 = V2 = {c} for an entity c;

– each edge e is labelled with a tuple (E1, E2, dir), where each Ei is a set of
entities satisfying either E1 ∩ E2 = ∅ or E1 = E2 = {c} for an entity c, and
where dir ∈ {→,←}.

An edge e = (v, v′) in a pair tree T is justified in a graph G if the following
properties hold for both i = 1, 2, where (V1,V2), (E1, E2, dir), and (V ′1,V

′
2) are labels

of v, e, and v′, respectively:

– for each entity c ∈ Vi there is a triple justifying e in G for c—that is, a triple
(s, p, o) such that p ∈ Ei and either s = c and o ∈ V ′i when dir is →, or s ∈ V ′i
and o = c otherwise.

Pair tree T is a similarity tree for entities a and b in graph G if the root is
labelled with ({a}, {b}) and all edges in T are justified in G.

Consider Figure 2, where a graph Gex and two pair trees T1 and T2 are
depicted (for brevity, g, f , and r in the trees abbreviate ({g}, {g}), { f }, { f }, and
{r}, {r}, respectively). Note that the roots in both trees are labelled by ({a}, {b}).
In T1 the edge between the root and the node labelled ({c}, {d, d ′}) is justified:
for both a and b there exists a triple in G that has this entity as the subject, f as
the predicate, and c and d (or d ′), respectively, as the object. However, neither
of the other two edges in T1 is justified, because of the {d, d ′} component in the
parent node label: there are no triples (g, r, d ′) and (d, f , d) in G. In contrast,
every edge in T2 is justified, and hence T2 is a similarity tree.

Similarity trees are relevant since they have corresponding similarity queries.

Definition 5. Let T be a similarity tree for entities a, b in a graph G. For each
node or edge u in T labelled with (L1, L2) or (L1, L2, dir), respectively, let tu be

– a variable ?X if u is the root of the tree;
– the entity c if L1 ∩ L2 = {c}; and
– a fresh variable otherwise.

The query corresponding to T is Select ?X Where P Filter C with

– P containing, for each edge e = (v, v′) in T , the triple pattern (tv, te, tv′) or
(tv′, te, tv) if e is labelled with → or ←, respectively; and

– C containing, for each node v in T labelled (V1,V2) with each Vi consisting of
only integers, the arithmetic comparisons (tv ≥ min) and (tv ≤ max), where
min and max are the minimal and the maximal, respectively, values in V1∪V2.

10 A. Petrova et al.

Gex:

a

b

c

d

d′

g

f

f

f

f
f

r

r

T1:

({a}, {b})

({c}, {d, d′})

g ({a}, {d})

(f ,→)

(r,←) (f ,→)

T2:

({a}, {b})

({c}, {d}) ({c}, {d′})

g ({a}, {d})

(f ,→) (f ,→)

(r,←) (f ,→)

Fig. 2: An example graph Gex and two pair trees T1 and T2

The query corresponding to the similarity tree T2 from Figure 2 is

Qsim = Select ?X Where {(?X, f , ?Y1), (g, r, ?Y1), (?X, f , ?Y2), (?Y2, f , ?Y3)}.

The following proposition establishes that the query corresponding to a sim-
ilarity tree is indeed a similarity query.

Proposition 3. The query corresponding to a similarity tree for entities a and
b in a graph G is a similarity query for a and b in G.

Proof (Sketch). Given a similarity tree T for a and b in G, let us first traverse
T from the root to the leaves and recursively associate each node and edge in
T with a pair of entities such that the first is from the first component of the
label of the node or edge and the second is from the second component, as well
as the following holds:

– the root is associated with (a, b), and,
– for each edge e = (v, v′) with v associated with (ca, cb), e and v′ are associated

with pairs of entities (da, db) and (c′a, c
′
b
), respectively, from the labels of e

and v′ such that the triples (ca, da, c′a) and (cb, db, c′b), if e is labelled by →,
or the triples (c′a, da, ca) and (c′

b
, db, cb) otherwise, justify e in G for ca and

cb, respectively (such justifying triples exist by Definition 4).

Let Q be the query corresponding to similarity tree T . Consider the valua-
tions νa and νb that send ?X to a and b, respectively, and every other variable
?Y of Q to the entities ca and cb, respectively, in the pair (ca, cb) associated to
the node or edge u such that tu is ?Y according to Definition 5. It is immediate to
check that valuations νa and νb justify a and b as answers to Q, as required. ut

We are ready to present algorithm Compute Approx MSSQ (given in Al-
gorithm 2), which computes a similarity query of a given depth dep (i.e., a
natural number) for given entities a and b in a given graph G according to the
three steps described next. In the first step (line 2), we create a preliminary pair

Query-Based Entity Comparison in Knowledge Graphs Revisited 11

Algorithm 2: Compute Approx MSSQ

Input: graph G, entities a and b in G, depth dep
Output: similarity query for a and b in G

1 let T0 be pair tree with a single root node v0 labelled ({a}, {b});
2 let Tgen := Generate Tree(T0, v0, G, dep);
3 let Tsim := Uncouple Nodes(Tgen, G);
4 return the query corresponding to Tsim.

tree Tgen. For example, for the input graph Gex from Figure 2, for the entities a
and b in that graph and for depth 2 the pair tree Tgen is T1. As in this example,
Tgen may not yet be a similarity tree. Hence, in the second step (line 3), we
uncouple some of the nodes in Tgen, making all edges in the tree justified, and
thus creating a similarity tree Tsim. For example, we uncouple the node from
T1 labelled ({c}, {d, d ′}) into two new nodes, labelled ({c}, {d}) and ({c}, {d ′}),
respectively. The former becomes the parent node for the node labelled g, while
the latter becomes the parent node for the node labelled ({a}, {d}). As the result,
in this example Tsim is T2. Finally (in step 4), we turn Tsim into a similarity query
corresponding to this tree; for example we turn T2 into Qsim.

Let us look at each of the steps in more detail. In the first step (line 2), the
algorithm constructs, by means of the recursive subroutine Generate Tree,
a pair tree Tgen of depth at most dep. In particular, in lines 1–2 of Com-
pute Approx MSSQ a root labelled ({a}, {b}) is created and passed to the
recursion. When a node v in T labelled (V1,V2) is received in a recursive call of
Generate Tree, the following extensions are performed, where (s, p, o)→ and
(s, p, o)← denote (s, p, o) and (o, p, s), respectively:

– first, for each direction dir ∈ {→,←} and each pair of entities c, d such that,
for both i = 1, 2, there are triples (ci, d, c)dir ∈ G with ci ∈ Vi, a new edge
labelled ({d}, {d}, dir) from v to a new node labelled ({c}, {c}) is added to T ;

– second, for each dir ∈ {→,←} and each entity c such that, for both i = 1, 2,
there exists (ci, di, c)dir ∈ G with ci ∈ Vi the sets

Ei = {di | (ci, di, c)dir ∈ G for ci ∈ Vi}

are considered; if the sets E1 \ E2 and E2 \ E1 (i.e., the sets of edge entities
not covered in the previous case) are both non-empty, then an edge labelled
(E1 \ E2, E2 \ E1, dir) from v to a new node labelled ({c}, {c}) is added;

– third, for each dir ∈ {→,←} and each d such that, for both i = 1, 2, there are
triples (ci, d, c′i)

dir ∈ G with ci ∈ Vi the sets

V ′i = {c
′
i | (ci, d, c

′
i)
dir ∈ G for ci ∈ Vi}

are considered; if V ′1 \V
′
2 and V ′2 \V

′
1 (i.e., the sets of not covered node entities)

are non-empty, then an edge labelled ({d}, {d}, dir) from v to a new node v′

labelled (V ′1 \V
′
2, V ′2 \V

′
1) is added; moreover, if the depth of v is non-zero, then

Generate Tree is recursively called for v′;

12 A. Petrova et al.

– finally, for both dir ∈ {→,←} the sets

Ei = {di | (ci, di, c′i)
dir ∈ G for ci ∈ Vi} and

V ′i = {c
′
i | (ci, di, c

′
i)
dir ∈ G for ci ∈ Vi and di ∈ Ei \ E3−i}

are considered for both i = 1, 2; if the sets E1 \ E2, E2 \ E1, V ′1 \V ′2 , and V ′2 \V ′1
are all non-empty, then an edge labelled (E1 \ E2, E2 \ E1, dir) from v to a
new node v′ labelled (V ′1 \ V ′2, V ′2 \ V ′1) is added; moreover, if the depth of v is
non-zero, then Generate Tree is called for v′.

After all these extensions, T is returned to the previous level of recursion.
As mentioned above, the resulting Tgen is a pair tree; however, it may not be

a similarity tree for a and b, since some edges may not be justified in G. So, in
the second step (line 3) of Compute Approx MSSQ, pair tree Tgen is refined
from the leaves upwards using subroutine Uncouple Nodes, which ensures
that each edge in the tree is suitably justified, and hence yields a similarity tree
Tsim for a and b in G. In particular, this subroutine considers nodes of its input
pair tree T from leaves to the root, and for each node v under consideration
and each child v′ of v—that is, a node with an edge e = (v, v′)—the following
is performed, where (V1,V2), (E1, E2, dir), and (V ′1,V

′
2) are labels of v, e, and v′,

respectively:
– a node v∗ and an edge (v∗, v′) labelled (V∗1 ,V

∗
2) and (E∗1, E

∗
2, dir), respectively,

are added to T , for maximal sets V∗i ⊆ Vi and E∗i ⊆ Ei, i = 1, 2, with (v∗, v′)
justified by G;

– if v is not the root then an edge (vp, v
∗) labelled as the incoming edge (vp, v)

to v is added to T ;
– when all children of v are processed, each group of children with the same

label are merged to one, and v is removed.

Note that, by construction, the resulting Tsim is a pair tree as well; moreover, we
will see that, contrary to Tgen, it is a similarity tree.

Finally, in the last step (line 4), algorithm Compute Approx MSSQ con-
structs the query corresponding to the similarity tree according to Definition 5,
which is guaranteed to be a similarity query by Proposition 3.

Overall, we arrive to the following correctness theorem.

Theorem 6. For each positive integer dep, Compute Approx MSSQ com-
putes a similarity query for entities a and b in a graph G.

Proof (Sketch). The claim follows from the construction and Proposition 3.
Indeed, the pair tree Tsim is a similarity tree for input G, a, and b because the root
is labelled with ({a}, {b}), while all the edges are processed in Uncouple Nodes
in the bottom-up manner and explicitly verified to be justified by G. ut

We next briefly discuss the running time of the algorithm. One execution
of the Generate Tree subroutine runs in O(ρ · |G |), where ρ is the number
of different entities appearing in the predicate position in triples from G. Gen-
erate Tree is recursively called at most (2ρ)dep−1 times, hence the full run-
time of these calls is O(ρdep · |G |). Then the subroutine Uncouple Nodes per-
forms a check on O(ρdep · |G |) pair tree nodes, each check being in O(|G |). Hence,

Query-Based Entity Comparison in Knowledge Graphs Revisited 13

Compute Approx MSSQ runs in O(ρdep · |G |2) in the worst case. Note that ρ
for a graph G is typically much smaller in practice than the number of triples in
G (e.g., ρ = 128 for full YAGO), and the checks in Uncouple Nodes are made
for all triples in G containing the current entity, which usually constitute only
a small fraction of G. This makes the algorithm suitable for real-case scenarios,
which we will demonstrate in the next section.

Finally, we observe that it is possible to find an example where the approx-
imating SQ has arbitrary many answers while the MSSQ has just two (i.e., the
input entities). So, there is no constant approximation ratio for our algorithm.
However, the same can be said about any approximation algorithm that outputs
a SQ that is not an MSSQ, so we cannot hope for such theoretical guarantees.
Instead, we evaluate the quality of our approximation empirically in Section 6.

6 Evaluation

We implemented our two similarity algorithms Compute MSSQ and Com-
pute Approx MSSQ in Python. We then evaluated the performance of our
implementations and estimated to what extent the similarity queries computed
by algorithm Compute Approx MSSQ approximate MSSQs computed by al-
gorithm Compute MSSQ in practical cases. We used the following three RDF
graphs (datasets) in our experiments:

– the synthetic graph LUBM1 [12] consisting of 100, 543 triples over 26, 437
entities, out of which 17 appear in the predicate positions;

– a subset of the anonymised Twitter follower graph (TFG) [18] consisting of
713, 319 triples over 404, 719 entities, only one of which (i.e., entity follows)
appears in the predicate positions; and

– a subset of YAGO graph [19] consisting of 1, 069, 072 triples over 604, 905
entities, out of which 42 appear in the predicate positions.

The graphs are different in size and nature: YAGO has a rich set of property
entities, while TFG uses only one; LUBM1 has a regular structure and resembles
data typically encountered in databases, whereas YAGO is more heterogeneous.

All experiments were performed on a MacBook Air laptop with macOS 10.14,
1.6 GHz Intel Core i5 processor, and 16 GB 2133 MHz LPDDR3 memory.

6.1 Performance Analysis

We evaluated the runtime of our implementation of Compute Approx MSSQ
for increasing values of the depth parameter. For this, we randomly selected 100
pairs of entities in each graph and, for each such pair, we ran the implemented al-
gorithm for values of the depth parameter ranging from 1 to 4. For each graph
and each depth value, we recorded the average, median and maximum runtime as
well as the average number of triple patterns in a query amongst all the selected
pairs of entities. We limited the maximum depth to 4, since queries beyond that
depth are very difficult to comprehend due to their size and structure; indeed,
psychologists established precise limitations in the human capacity to store and

14 A. Petrova et al.

runtime size

RDF graph depth avg median max timeouts avg

LUBM1
1 0.000851 0.000346 0.006910 − 1.88
2 0.002690 0.000971 0.036051 − 11.25
3 0.072132 0.001389 2.101702 − 463.00
4 0.348439 0.002058 8.558924 − 3235.02

TFG
1 0.000811 0.000356 0.045334 − 0.75
2 0.001115 0.000373 0.045334 − 3.54
3 0.058080 0.000415 3.540030 − 592.86
4 67.203592 11.308518 352.100547 − 35904.21

YAGO
1 0.000918 0.000327 0.056005 − 0.73
2 0.006476 0.000338 0.175918 − 7.81
3 8.318439 0.000347 461.952534 − 149.63
4 84.950921 0.640530 488.342738 3 1287.67

Table 1: Runtime (in seconds) and output query size (in number of triples) of Com-
pute Approx MSSQ on the LUBM1, TFG, and YAGO graphs

process information, where experiments show that most people would have trou-
ble keeping in memory chains of related pieces of information longer than 4 [8].

Our results for LUBM1, TFG, and YAGO are summarised in Table 1. We can
observe that our similarity queries can be computed efficiently with sub-second
average running times in most cases; in contrast our implementation of exact
Compute MSSQ timed out in all cases. The average runtime becomes larger
for depth 4 for larger datasets, such as TFG and YAGO; in case of YAGO the
algorithm reached 3 timeouts for 500 seconds threshold. However, we can also
observe that output queries tend to become very large (and hence difficult to
interpret, verbalise, and comprehend) for depths greater than 3. Therefore, it is
only practical to consider approximated MSSQs of depth up to 3, for which our
algorithm can always compute a similarity query.

6.2 Query Specificity Analysis

In this section we report the results of an experiment that aims to estimate how
different the similarity queries computed using Compute Approx MSSQ are
from the actual MSSQs computed by the exact algorithm Compute MSSQ.
Unfortunately, our implementation of Compute MSSQ timed out and hence
failed to produce a query for all inputs in our datasets; thus, a direct comparison
of the answers to the similarity queries produced by the algorithms is not feasible.
To circumvent this limitation, we have designed an experiment consisting of the
following steps for each of the LUBM1, TFG, and YAGO graphs:

1. we first created 40 random connected graphs, called pattern graphs, such
that each of them consists of 4 triples, and exactly 20 are acyclic;

2. for each pattern graph G, we created its copy G′ with all entities renamed
to fresh entities;

Query-Based Entity Comparison in Knowledge Graphs Revisited 15

RDF graph
MSSQs Approximations

dep = 1 dep = 2 dep = 3
avg % avg % avg % avg %

LUBM1
A 7983.15 30.20 12157.45 45.97 10360.35 39.19 10332.05 39.08

C 33.65 0.13 6697.00 25.33 2960.45 11.20 2522.35 9.54

TFG
A 156566.47 38.69 161958.50 40.02 161345.60 39.87 156566.47 38.69

C 42838.20 10.58 83284.95 20.59 82541.10 20.39 78122.65 19.30

YAGO
A 147284.37 24.51 207236.80 34.26 175541.00 29.02 169331.26 27.99

C 7175.25 1.19 83641.85 13.83 44372.90 7.34 41518.15 6.86

Table 2: Average number of answers (avg) and average percentage of all entities in
answers (%) to MSSQs and the approximating queries, computed over acyclic (A) and
cyclic (C) pattern graphs and evaluated on the LUBM1, TFG, and YAGO graphs

3. we then picked an entity a from each such G at random and the corresponding
a′ in the copy G′ and ran both algorithms on G ∪G′ as a graph and a, a′ as
input entities; the approximation algorithm was run for depths 1 to 3;

4. finally, we evaluated the resulting queries on the considered graph (LUBM1,
TFG, or YAGO) and compared the answers.

Intuitively, each pattern graph G represents a ‘pattern’ that may occur in the
real data (and hence a pattern that will be reflected in the MSSQ). The approxi-
mation algorithm Compute Approx MSSQ constructs a tree-like query where
variables in the predicate positions of triple patterns occur at most once, and
hence the query returned by Compute Approx MSSQ on a graph G∪G′ may
not faithfully reflect the data pattern encoded by G. By evaluating the resulting
queries in step 4 we are also assessing how common each pattern is in the graph
(based on the number of answers to the MSSQ) as well as how faithfully the
approximated query reflects the pattern.

Our results are summarised in Table 2. As can be seen from the average per-
centage of entities contained in query answer sets, similarity queries computed
by Compute Approx MSSQ become more specific and closer to MSSQs as
the depth grows. Unsurprisingly, the approximating queries evaluated on the
TFG graph are almost identical to MSSQs, since the graph contains a single
relation. The approximation error consistently goes below 10% for both cyclic
and acyclic pattern graphs for depth 3 on all datasets, as can be seen from the
percentage for MSSQs and approximated queries of dep = 3. This makes Com-
pute Approx MSSQ suitable for real-world applications of entity comparison.

7 Related Work

Exploring relationships between entities in RDF graphs is a recent and growing
research topic. Some approaches focus on general relatedness and connectedness
of entities. They explore paths connecting given entities together and analyse
patterns in these paths [1,6,11,14,16]. More generic approaches look at patterns

16 A. Petrova et al.

that are common for several entities in a graph. An approach by El Hassad et al.
[9,10] attempts to find commonalities between Web resources by computing the
least general generalisation (lgg) of the RDF data containing these resources.
The computation is based on the RDFS entailment rules, and an lgg is itself an
RDF graph that entails subgraphs of the input RDF dataset that contain the
target Web resources. To the best of our knowledge, our recent work [17] is the
only one focussing not only on patterns common for input entities (see Sec. 3),
but also on patterns that differentiate input entities from each other.

The problem of computing similarity and difference queries can be viewed
as an instance of the query reverse engineering (QRE) problem; in case of exact
similarities, the problem becomes an instance of the definability problem, a more
restricted version of QRE. In particular, the QRE problem for a query language
takes as input a dataset and two disjoint sets of positive and negative example
tuples of constants, and decides whether there exists a query in the language
whose answers over the dataset contain all the positive examples but none of
the negative examples. The definability problem is the same except there are no
negative examples, but the answers to the query should be exactly the positive
examples. Both problems have been studied for various query languages [5, 13,
20, 22, 23], including SPARQL [2] and CQs [4, 21]. Hence, our work contributes
to the field by setting complexity bounds for monadic unary CQACs.

Finally, computing MSSQs is related to the problem of finding the least
common subsumer for description logic (DL) concepts [3,7], which, for two indi-
viduals and a set of concept and role names, requires to compute a DL concept
that contains both individuals and is most specific modulo concept subsumption.

8 Conclusion and Future Work

We investigated the problem of entity comparison in knoweldge graphs, taking
as the basis our recently proposed framework [17], in which entity comparison
is modelled via similarity queries. In particular, we extended the language of
similarity queries to consider a richer fragment of SPARQL allowing for numeric
filter expressions, and studied the complexity of computing various similarity
queries in this fragment. We also proposed and implemented a scalable algorithm
that is guaranteed to compute a similarity query and can be used on large
knowledge graphs. An immediate step of future research is to study difference
queries in the extended query language, and to create scalable algorithms for
computing difference queries that are as generic as possible for the given entities
in a graph. Another important problem is to present similarity and difference
queries to the user in a comprehensible way, which is not trivial given their size
and complicated structure. Possible solutions include splitting the queries into
subqueries and ranking, visualising or verbalising them, and allowing the users
to iteratively expand only the parts of queries they are interested in. Once these
problems are solved, a comprehensive entity comparison tool would be possible.

Acknowledgements This research was supported by the SIRIUS Centre for
Scalable Data Access and the EPSRC projects DBOnto, MaSI3, and ED3.

Query-Based Entity Comparison in Knowledge Graphs Revisited 17

References

1. C. Aebeloe, G. Montoya, V. Setty, and K. Hose. Discovering diversified paths in
knowledge bases. Proceedings of the VLDB Endowment, 11(12):2002–2005, 2018.

2. M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse engineering SPARQL queries.
In Proc. of WWW, pages 239–249, 2016.

3. F. Baader and A.-Y. Turhan. On the problem of computing small representations
of least common subsumers. In Proc. of KI, pages 99–113, 2002.

4. P. Barceló and M. Romero. The complexity of reverse engineering problems for
conjunctive queries. In Proc. of ICDT, pages 7:1–7:17, 2017.

5. A. Bonifati, R. Ciucanu, and A. Lemay. Learning path queries on graph databases.
In Proc. of EDBT, pages 109–120, 2015.

6. G. Cheng, Y. Zhang, and Y. Qu. Explass: exploring associations between entities
via top-K ontological patterns and facets. In Proc. of ISWC, pages 422–437, 2014.

7. S. Colucci, F. M. Donini, S. Giannini, and E. Di Sciascio. Defining and computing
least common subsumers in RDF. Web Semant., 39:62–80, 2016.

8. N. Cowan. The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behav. Brain Sci., 24(1):87–114, 2001.

9. S. El Hassad, F. Goasdoué, and H. Jaudoin. Learning commonalities in RDF. In
Proc. of ESWC, pages 502–517, 2017.

10. S. El Hassad, F. Goasdoué, and H. Jaudoin. Learning commonalities in SPARQL.
In Proc. of ISWC, pages 278–295, 2017.

11. V. Fionda and G. Pirrò. Explaining and querying knowledge graphs by relatedness.
Proc. of the VLDB Endowment, 10(12):1913–1916, 2017.

12. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semant., 3(2-3):158–182, 2005.

13. V. Gutiérrez-Basulto, J. C. Jung, and L. Sabellek. Reverse engineering queries in
ontology-enriched systems: The case of expressive horn description logic ontologies.
In Proc. of IJCAI, pages 1847–1853, 2018.

14. P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stegemann. RelFinder:
Revealing relationships in RDF knowledge bases. In Proc. of SAMT, pages 182–
187, 2009.

15. A. Klug. On conjunctive queries containing inequalities. J. ACM, 35(1):146–160,
1988.

16. J. Lehmann, J. Schüppel, and S. Auer. Discovering unknown connections - the
DBpedia relationship finder. Proc. of CSSW, 113:99–110, 2007.

17. A. Petrova, E. Sherkhonov, B. Cuenca Grau, and I. Horrocks. Entity comparison
in RDF graphs. In Proc. of ISWC, pages 526–541, 2017.

18. R. A. Rossi and D. F. Gleich. A dynamical system for PageRank with time-
dependent teleportation. Internet Math., 10(1), 2014.

19. F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A large ontology from
Wikipedia and Wordnet. Web Semant., 6(3):203–217, 2008.

20. W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. Reverse engineering
aggregation queries. PVLDB, 10(11):1394–1405, 2017.

21. B. ten Cate and V. Dalmau. The product homomorphism problem and applica-
tions. In Proc. of ICDT, pages 161–176, 2015.

22. Y. Y. Weiss and S. Cohen. Reverse engineering SPJ-queries from examples. In
Proc. of PODS, pages 151–166, 2017.

23. M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava. Reverse engineering
complex join queries. In Proc. of SIGMOD, pages 809–820, 2013.

	Query-Based Entity Comparison in Knowledge Graphs Revisited

