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Abstract To investigate the effect of possible changes to decarbonise the
economy, a detailed picture of the current production system is needed.
Material/energy flow analysis (MEFA) allows for building such a model.
There are, however, prohibitive barriers to the integration and use of
the diverse datasets necessary for a system-wide yet technically-detailed
MEFA study. Herein we describe a methodology exploiting Semantic Web
technologies to integrate and reason on top of this diverse production
system data. We designed an ontology to model the structure of our
data, and developed a declarative logic-based approach to address the
many challenges arising from data integration and usage in this context.
Further, this system is designed for easy access to the needed data in
terms relevant for additional modelling and to be applied by non-experts,
allowing for a wide use of our methodology. Our experiments with UK
production data confirm the usefulness of this methodology through a
case study based on the UK production system.

Keywords: Semantic Technology · Resource efficiency · Rule-based ap-
proach · Data integration · Material Flow Analysis · Ontology · Decision
Support System

1 Introduction

A whole-systems understanding of production systems is essential to navigating
the necessary rapid transition to a zero-carbon economy. Identifying opportunities
and monitoring progress relies on having access to data about the production
and consumption of physical resources (materials, products, energy, etc.) and
their associated environmental impacts. However, due to the economy-wide yet
detailed nature of these questions, they cannot be answered from single datasets
collected by one entity, but must instead be based on many pieces of data from
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different international and national organisations, individual companies, and
academic research.

This data is incomplete, and defined using inconsistent categorisations of
the types of resource and activities. It is thus challenging to obtain the clear,
complete and robust picture that is needed of how our economies are functioning
and could change [18]. In addition, the lack of well-defined data models for this
type of data is limiting to data reuse and holding back academic research [17,8].

Efforts have been made to develop shared data models [15,16,10,7] and data
catalogues [14,12]. While these databases bring essential improvements in access to
and reuse of relevant datasets, they do not yet confront the fundamental challenge
of resolving conflicts where individual datasets are defined in inconsistent ways.

In this paper, we propose and develop a solution using a domain ontology
and the RDFox triple store to efficiently implement Datalog rules integrating
diverse data points into a consistent structure. This forms part of the “Physical
Resources Observatory” (PRObs) system, being developed within the UK FIRES
research programme3, where it supports a wider research agenda on resource
efficiency and decarbonisation in UK industrial strategy.

2 The need for monitoring the physical economy

Understanding how we produce and consume physical resources is fundamental
to understanding the impacts human activity has, and how we can operate more
efficiently. The following examples illustrate a range of uses for this knowledge.

Example 1 (Innovation in material efficiency). About half of industrial CO2

emissions are due to production of just five major bulk materials [1]. Reducing
scrap created during manufacturing processes would reduce overall demand
for materials and hence emissions. But identifying the potential savings and
opportunities for new manufacturing processes requires an understanding of how
and where scrap is currently produced in the supply chain.

Example 2 (Reuse of building components). Components of buildings could be
reused when the building is no longer needed [2], which would reduce emissions
from recycling and production. But doing this requires knowledge of what com-
ponents are available in existing buildings, which is generally not known directly.
By monitoring materials going into construction and from demolition, the current
composition of the building stock can be estimated.

Example 3 (Supply constraints). Biomass is in demand for low-carbon energy
supply and as a low-carbon building material, but supply is limited [6]. Reconciling
this requires a whole-system view of total quantities of materials produced,
together with all uses.

Since all the important characteristics of these systems cannot generally be
measured directly, models are used to fill gaps and reconcile conflicts in data.
Information is sparse, meaning that every piece of relevant data is valuable to
confirm or improve our understanding of the system.
3 https://ukfires.org
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Figure 1: MEFA system showing rock processing stages in the UK. Processes are
shown by boxes. The arrows represent flows. The types of materials are shown by
dots, with the vertical flows representing trade flows across the system boundary.

2.1 Material/Energy Flow Analysis

Although the general challenges of data access apply to a broader range of
sustainability assessment methods, our focus is on system-level issues studied
through Material/Energy Flow Analysis (MEFA). This is a systematic approach
to understanding the flows (movements) and stocks (accumulations) of material
within a system, typically defined by a spatial area (such as a country) and a
time period (such as a year). It gives a clearer technological understanding of the
system than economic models of the economy, and the principles of conservation of
mass and energy allow for checking and reconciliation of the model [3]. Essentially
an MEFA is an abstract representation of a system in terms of processes, stocks
and flows. A process is a part of the system where material/energy is transformed,
transported or stored. A stock is the accumulation of material within a process.
A flow represents the transfer of material/energy between processes, or between
a process within the system and the surrounding environment. The system of
processes and flows can be seen as a bipartite directed graph [15], as in Figure 1.

Once the system is defined in this way, the available data can be mapped
onto the relevant parts of the system. The MEFA approach is then essentially
a constrained optimisation problem to find the size of the flows, subject to
the constraints set by conservation of mass/energy and the known technical
characteristics of the processes, while matching as closely as possible the known
data [4]. In this paper we are concerned with the first step: finding and querying
the available data in a form that can act as an input to the subsequent model
solving stage.

2.2 Use cases and research problems

To guide the development of the PRObs system, we identified use cases from the
literature and from needs of researchers within the UK FIRES project.
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Use case 1 (Data integration including “system context”). It is important that
resource data can be associated with its “system context” [18], so it can be
linked into a MEFA system and integrated with other data. This means that,
for example, government statistics on material production should not be viewed
simply as a table of numbers, but each value should be associated with the region
and time period for which it was measured, and explicitly linked to the edge(s)
in a system diagram like Figure 1 to which it relates. However, datasets vary in
the completeness and format of this metadata. A general data model for resource
data has been proposed [14] which is largely sufficient to meet these requirements.
The main barrier to allow its use with Semantic Technologies is the formalisation
into a proper ontology which exploits the characteristics of this data model.

Use case 2 (Access diverse data in a consistent and flexible structure). Different
data sources classify their information in different ways, and these classifications
may evolve over time. Long-term time-series data are critical to understand
the dynamics of past and future resource use, so it is important to be able to
convert data published in different classification systems into one consistent set
of categories. Differences in the measurement units also need to be harmonised.

Even if data were already reported in fully-consistent classification systems,
there is still a need to alter the structure, since some data is more detailed than
is needed for modelling the system. For example, production statistics provide
information on pharmaceuticals at a high level of detail which is unnecessary
and should be aggregated for a model focused on high-mass materials.

To enable flexible queries at the desired level of detail to be answered, a
system is needed which can take account of the hierarchical structure of processes
and materials/goods classification to aggregate data as needed. Aggregation must
avoid double-counting values where data already exists at different levels of the
hierarchy, and deal with missing values, which occur frequently in statistics due
to confidentiality concerns or other lack of coverage.

Use case 3 (Tracking the provenance and uncertainty of data). Confidence in
modelling results increases when data can be validated against independent
sources. Different datasets are more or less credible or uncertain, depending on
their source and measurement methodology, and when aggregation is involved,
uncertainty may increase due to missing data or dependence on lower-quality
datasets. It is important to track the providence of values returned by queries,
so that they can be associated with a suitable quality or uncertainty indicator
based on their source, and independent data for validation can be identified.

Use case 4 (Streamline usage of semantic web tools for domain experts). The
PRObs system is intended to be used to support MEFA modelling by domain
experts who are not familiar with semantic web technologies. As such, they
should be supported to enter information (e.g. about materials of interest and
their hierarchical structure) and retrieve results without becoming experts in
RDF and complex SPARQL queries. Because defining the system is subjective (it
could be done in different ways or at different levels of detail to achieve different
goals), the implementation should support users in clearly documenting this
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Figure 2: The core concepts and relations in the PRObs ontology.

input information. It should be possible to use the system as far as possible on
typical researchers’ computers without many cores and RAM, and integrate with
typical modelling workflows involving e.g. Python scripts and notebooks.

The rest of this paper addresses these use cases as follows:

Use case 1: An ontology, building on an existing data model for the domain,
for describing specific data points and their relationships (Section 3)

Use cases 2 & 3: Datalog rules/algorithms to infer new information and con-
vert data between different classification systems (Section 4).

Use case 4: A system wrapping the RDFox implementation with Python pack-
ages to ease application by domain experts (Section 5).

3 The PRObs ontology

To allow quantified data points on resource use to be expressed in RDF, we build
on the data model proposed by Pauliuk et al [14]. This describes three components
of a data point: value, metadata, and “system location”. The value is commonly a
simple numerical value with associated physical units, while more sophisticated
representations can account for uncertain values by e.g. defining probability
distributions or bounds. The metadata includes provenance information. The
system location is the component specific to resource data and MEFA: it associates
the data point with its system context as described in Use Case 1 above.

To represent this in RDF, we introduce the concept of an Observation to
represent an individual data point and its value, linked to its system location
(Figure 2). We then introduce concepts describing types of materials/goods, and
how they are related. Full details are available online4. The ontology links to
several external vocabularies: PROV 5 for data provenance, QUDT 6 for physical
units, Geonames7 for spatial regions, and OWL-Time8 for time.
4 https://github.com/ukfires/probs-ontology
5 http://www.w3.org/TR/prov-o
6 http://qudt.org/2.1/vocab/citation
7 https://www.geonames.org/ontology
8 https://www.w3.org/TR/owl-time
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Figure 3: Example observations representing data from the Prodcom database.

Example 4 (Stone, sand and gravel example). To explain the ontology, we use a
small subset of a model of the UK production system as a running example. This
example describes the production of “crushed stone” and “sand & gravel”. To
illustrate the way that data can be expressed at a coarser or finer level of detail,
three sub-types of “crushed stone” are distinguished, and all these materials are
collectively described as “aggregates”. Two datasets are used in the example,
“Prodcom” and “BGS”9, and full details are given in the accompanying example
repository10. This example features in Figures 3–5, described below.

3.1 Observations

An Observation represents a single data point. Every Observation is associated
with the geospatial location and time period for which it was measured (defined
using terms from the Geonames and OWL-Time vocabularies). Figure 3 shows
how two example data points from the Prodcom database are represented,
describing equivalent data for the United Kingdom recorded in different years.

The system context (i.e. the edge(s) in a system diagram like Figure 1 to
which the data relates) is defined by a Role, Process and/or Object. Object refers
generically to any type of thing, including materials, goods and substances, but
also non-material things that can flow through the system such as energy and
services. Process refers to a type of activity. Role defines which element of the
MEFA system is being measured. For simplicity all examples in this paper use
“sold production”, i.e. the total production of an Object.

The way in which the data is measured is defined by the Metric (e.g. mass or
volume), represented using the QuantityKind concepts from the QUDT vocabu-
lary. Since conversions between alternative physical units for a given Metric are
lossless and well-defined (e.g. to convert kilograms to tonnes), we normalise all
values to a single reference unit for each metric type. The value is described by
the measurement property. The presence of data whose value has been redacted
(e.g. for confidentiality) is represented by an Observation with no measurement.

9 Prodcom provides statistics on the production of manufactured goods in the EU.
BGS refers to the British Geological Survey Minerals Yearbook.

10 https://github.com/ukfires/probs-ontology-example
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Figure 4: Composition (a) and equivalence (b) of objects from Example 4, with
only original observations shown. In (c–d) new inferred observations are included.

3.2 Composition and equivalence of Objects

The next set of relations in Figure 2 describes the relationships between Objects.
This allows the relationship between data from different sources described at
different levels of detail to be defined.

Composition When an Object can be broken down into several smaller cat-
egories, the composite object is linked to the component objects via the ob-
jectComposedOf object property. This relationship is stronger than simply a
part-whole relationship. The components are implied to be Mutually Exclusive,
Collectively Exhaustive (MECE) with respect to the composite; i.e., there are no
other components of the composite parent which are not explicitly mentioned.

This allows compatible observations of the components to be aggregated to
infer new observations for to the composite. Observations are compatible if they
share the same Role, Region, Time Period, and Metric. The aggregation must
consider that if any components are missing measurement values, the result is
only a lower bound, and if any components have multiple conflicting compatible
observations (e.g. from independent data sources), there are multiple possible
aggregated values that can be inferred.

In the running example, data on production of Crushed stone is reported in
Prodcom as a single category, but the equivalent data in BGS is also split into three
smaller categories. Figure 4a shows how the component and composite Objects are
related. The three observations Obs A, Obs B, and Obs C are compatible and can
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in Figure 4d. Those at the top arise from the different combinations of components .
The TimePeriod is shown in square brackets, above the measurement.

be aggregated to infer a new observation (Obs 3 ) for the composite object Crushed
stone in BGS, as shown in Figure 4c. We use the relations objectDirectlyDefinedBy
and objectInferredDefinedBy to denote, respectively, the observations we load
directly from the datasets, and those we infer using equivalence or composition.
They are subclasses of objectDefinedBy.

Equivalence Different Object instances may be used in different datasets which
in fact refer to the same type of thing. The matching instances are linked by
the objectEquivalentTo relation, which is an equivalence relation (it is reflexive,
symmetric, and transitive). When an Observation is linked to an Object, it should
also be linked to any Object that is equivalent to the original (i.e. equivalent
objects share the same observations).

In the running example, there are two dataset-specific Object instances for
“crushed stone”. To easily refer to these, a ReferenceObject is defined which gives
the canonical representation of several equivalent individuals. In Figure 4b, there
is a ReferenceObject called simply Crushed stone which is equivalent to both
the dataset specific instances. Figure 4d shows that both the original direct
observations (Obs 1 and Obs 2 ) and the inferred observation generated by
composition (Obs 3 ) are propagated to the equivalent objects. In this way, the
original data can be accessed via alternative terms.

Further example of composition and equivalence Figure 5 shows more
complex cases of composition. The object Crushed stone and the object Sand &
Gravel have 4 observations that are all compatible with each other (Obs 2–5 ).
They are combined in all possible ways, generating 4 observations (shown in
the upper part of the figure). On the other hand, the observation Obs 1 of
the object Crushed stone is not compatible with any observation of the object
Sand & Gravel, being defined for a different time period, so it generates a lower
bound observation. If this lower bound observation is used to generate other
observations, then they will also be lower bound observations.
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Classification systems While not every dataset is linked to well-defined clas-
sification systems for Objects, there are several important systems in use, for
example for international trade data. In these cases the classification system has
been used to create the composition and equivalence relations described above.

4 Reasoning with the PRObs ontology

The ontology described in the previous section provides a data model for Observa-
tions, allowing data from sources in diverse formats to be integrated together with
the necessary system context (Use case 1). However, if different data points have
been defined with respect to different classification systems, they cannot yet be
easily and transparently retrieved for reuse in new analyses (Use case 2 & 3). New
information needs to be inferred from the raw data using rules that implement
the semantics of MEFA systems. Generally, this might involve converting data
between different definitions of time, location, activity and object type. In this
section, we describe our approach to this, focusing specifically on converting
definitions of object types, since this is by far the most pressing issue in practice
in the application of the system so far.

We decided to use the Datalog language with stratified negation and aggregates
to perform these computations. This allows the complex behaviours required to
be expressed in simple rules, while benefiting from the efficient solvers available
for evaluating Datalog programs. Although more expressive/complex logic-based
language exist, they are not likely to work in our scenario due to the large amount
of data and the huge number of combinations that arise from their evaluation.

4.1 Equivalence and Composition

Equivalence As described in Section 3, equivalent objects are linked by the
:objectEquivalentTo object property. These objects should share the same
observations (Figure 4d). Although this may seem trivial, it has several subtleties
reflected in the Datalog rule we used:

1 [?Obs , :objectInferredDefinedBy , ?O1] :-
2 [?O1, :objectEquivalentTo , ?O2] ,
3 FILTER (?O1 != ?O2) ,
4 [?Obs , :objectDefinedBy , ?O2] ,
5 NOT [?Obs , :objectDirectlyDefinedBy , ?O1] .

Rule set 1.1: Equivalence propagation

Propagation of observations has several advantages over duplication; for instance,
it allows saving memory and to have more consistent answers. In rule 1.1 we
identify the equivalent objects ?O1 and O2 (line 2), avoiding the reflexive links
(line 3), and for each observation of ?O2 (line 4), that is not a direct observation
of ?O1 (line 5), we add it as a new inferred observation of ?O1.

This rule may seem overcomplicated for the simple task of sharing the obser-
vations among equivalent objects, but it is required to avoid unwanted behaviours.
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In particular, given that :objectEquivalentTo is an equivalence relation, nega-
tion as failure is required to avoid deriving :objectInferredDefinedBy relations
for objects that are already defined by direct observations. In Figure 4 is shown
an example of the correct behaviour needed in this case; a naive definition of
this rule would have derived that two additional :objectInferredDefinedBy
relations from Obs 1 and Obs 2 to Crushed stone in Prodcom and Crushed stone
in BGS respectively.

Composition If an object is composed of multiple component objects, we want
to create new inferred aggregated observations derived from all combinations of
compatible observations of the components, as explained in Section 3.2.

Although this type of computation is not possible in Datalog in general, we
found the peculiar characteristics of our problem do allow a solution. To confirm
this, we designed and implemented an “algorithm” called PCSC, discussed below.

If each object had always had only one observation, then we could have used
the aggregation feature of Datalog to infer the composed observations, but, as
Figure 5 shows, in general this is not the case. Finding all possible results requires
aggregating values from the Cartesian product of an unbounded number of facts,
but unfortunately Datalog, as most logic-based languages, does not include an
operator to do this.

Moreover, since what we are computing is inherently recursive, we cannot
achieve it using stratified rules. Aggregation and negation-as-failure are non-
monotonic extensions of Datalog [5], but a simple stratification condition ensures
a monotonic behaviour. Languages with non-monotonic operators are known to
be much harder to evaluate, and thus not suitable for applications involving large
amounts of data that may be involved in a combinatorial explosion.11

PCSC “algorithm” The main idea behind PCSC is to avoid the unboundedness
over the branches of the :objectComposedOf relation by building a tree (T ) that
transposes the breadth of the composition hierarchy into the depth of T . This
solves the aggregation issue mentioned in Section 4.1. In particular, starting from
a root node that represents the composite, after choosing an order among its
components, we iteratively add as children the Observations of each component .
Figure 6a shows the T constructed from the example shown in Figure 4c. After
building the tree T of the composite object O, aggregating the measurement in
each path from the root to a leaf produces the new inferred observations of O.

To handle the case where some components have missing or ‘not compatible’
Observations, we add an EmptyObservation for each ‘missing node’ in T . The
EmptyObservations do not affect the measurement value of the inferred obser-
vations, and are useful to identify the lower bound observations. The tree T
constructed from the example shown in Figure 5 is shown in Figure 6b.
11 A detailed explanation of the reasons to prefer monotonic reasoning over a non-

monotonic one is beyond the scope of this paper, but we want to point out that in
the context of this paper we are running specific calculations over our data while
non-monotonic approaches are typically designed to solve combinatorial problems.
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Figure 6: Examples of trees build by the PCSC “algorithm”. (a) and (b) show the
trees corresponding to the examples in Figure 4c and Figure 5, respectively.

In order to compute the new aggregated inferred observations using stratified
programs we create a copy of all the classes and properties involved in the
composition into a different named graph, and then we use them to infer the
information about the new observations. In addition, we employed a multi-step
approach to be able to derive all the inferred observations even for multi-level
hierarchies of composed objects. We can use this technique because in our specific
scenario we know in advance how many iterations we need to perform to be
able to derive all the possible inferred observations. This solves the monotonic
behaviour issue mentioned in Section 4.1. The example demonstrates this: we
first derive Obs3 for Crushed stone in BGS from its components (Figure 4c) and
then this inferred observation is used in turn to derive the inferred observations
of Aggregates (Figure 5).

We designed and implemented several improvements, both from the conceptual
and the technical sides, to make this “algorithm” work with a large amount of data.
The complete version also derives additional relations capturing the provenance of
the inferred observations. The full code can be found in the ontology repository.

5 System Implementation

Our system is composed of a frontend interface for defining and documenting the
system definitions as input RDF data, and the backend implementation based
on RDFox.

5.1 Defining and documenting input RDF data

It should be possible to set up and use the PRObs system without a detailed
knowledge of semantic web technologies (Use Case 4). To achieve this, we adopt
a literate programming approach to produce code (RDF) and documentation
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(HTML) from a single source, by extending the Sphinx documentation system12

with domain-specific extensions13. This allows for full documentation-writing
features, including concept indices, cross-references, text formatting, and biblio-
graphies, within Python executable notebooks.

5.2 Running RDFox to answer queries

The PRObs system runs RDFox scripts to load the input data and answer queries,
supported by Python utilities to embed this within a testing or analysis workflow.
The input data consists of system definitions in RDF as described above, with
external datasets provided in the form of tabular data files and mapping scripts
which are read during processing by RDFox.

RDFox was originally developed at the University of Oxford and is now being
commercialised by a spin-out company, Oxford Semantic Technologies14. RDFox
supports the RDF graph data model, the OWL 2 RL ontology language and the
SPARQL query language. Rules in RDFox can be represented using a powerful
extension to the Datalog language allowing, e.g., the use of much of SPARQL in
rule bodies [13]. RDFox has a small memory footprint, is very efficient in its use
of memory to store RDF triples, and exploits modern multi-core architectures
for fast parallel reasoning. RDFox reasons by materialising all the triples implied
by the data and rules, which allows for fast query answering [11]. RDFox has a
scripting language which can sequentially run commands covering all features of
the system15, and exposes a REST API, which includes a SPARQL endpoint.

PRObs ontology and RDFox scripts The ontology (Section 3) and the
RDFox scripts implementing the rules and algorithm (Section 4) are published
online4. To streamline use in a MEFA analysis, we have developed Python
wrappers that manage the process of setting up the RDFox scripting language
commands to load the relevant datasets, and running RDFox as part of a wider
workflow to answer queries accessing the relevant Observations which form the
input to subsequent modelling and analysis steps. A utility called rdfox_runner
provides generic support for interacting with RDFox processes16. A further
Python package uses this to map and load datasets and run the PRObs RDFox
scripts.

Our current pipeline is shown in Figure 7. We first run some preprocessing steps
to transform the data and the ontology into a format that is more compatible with
RDFox. Then we load the datasets and the ontologies, and we run the ‘Conversion’
phase to convert the data into RDF, enrich them with new information (for
instance, the new inferred Observations from equivalence and composition), and
save them. Finally, in the ‘Reasoning’ phase the whole PRObs Ontology is loaded
and a SPARQL endpoint is exposed to answer queries over it.
12 https://www.sphinx-doc.org
13 https://github.com/ricklupton/sphinx_probs_rdf
14 https://www.oxfordsemantic.tech
15 https://docs.oxfordsemantic.tech/command-line-reference.html
16 https://github.com/ricklupton/rdfox_runner
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6 Case study and evaluation

To illustrate the use of the system, we describe a case study of mapping flows
through the UK production system. As mentioned in Section 3, a working example
of the PRObs system containing this case study is available online10.

6.1 Case study: UK production system

This case study forms part of the ongoing research within the UK FIRES
programme, motivated by seeking opportunities for innovation in manufacturing
processes. The goal is to obtain a detailed understanding of how supply chains
are dependent on different manufacturing processes, and where scrap is currently
arising within the system, in order to quantify the benefits of innovation in
different areas. To this end, a MEFA model is used to define the structure of
supply chains and estimate the pattern of flows through the system which best
matches the available measurements. The role of the PRObs ontology described
here is to provide access to data from a diverse set of external datasets in a
coherent structure aligned to the required inputs of the optimisation model.

Since there is no standard system definition of UK manufacturing supply
chains at the level of technical detail required for this analysis, a major element
of the project is to describe a suitable set of Processes and Objects to which
the available data can be mapped, and which describe entities of relevance to
the study’s research questions. These are defined and documented using the
system described in Section 5.1. Figure 1 illustrates a very small extract of the
MEFA system; the whole project includes 701 processes and 617 object types.
The datasets used include Prodcom and Comtrade.

6.2 Queries

The example repository includes a set of queries which demonstrate how each of
the original use cases is satisfied. For example, all data about production of a
particular object can be retrieved by a query such as the following:
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1 SELECT ?Value
2 WHERE {
3 ?Observation :objectDefinedBy
4 [ a :ReferenceObject ;
5 :objectName "Crushed stone" ] ;
6 :hasRegion [gn:name "Great Britain"] ;
7 :hasTimePeriod
8 [ time:unitType time:unitYear ;
9 time:year "2014"^^xsd:gYear ] ;

10 :hasRole :SoldProduction ;
11 :hasMetric quantitykind:Mass ;
12 :measurement ?Value .
13 }

In the full case study dataset and model, we use similar queries to access data
linked to the processes and objects forming the MEFA model, enabling data from
different sources to be transparently and easily linked into the modelling process.

Due to the use of concepts from the ontology and the Datalog rules, the
queries are straightforward, easy to read and fast to evaluate.

7 Related work

The data model proposed by Pauliuk et al. [14] provided the starting point for
the ontology described here. A key difference is that the original data model
focused on describing results already in the form of a modelled, consistent MEFA
system, whereas we aim to represent raw data about the system. Because of
this, the PRObs ontology includes additional concepts such as :SoldProduction
which do not map one-to-one to the flows described by the original data model.
The original data model does not attempt to deal with the issues discussed here
about harmonising individual data points between datasets based on composition
and equivalence of objects and processes. On the other hand, the original data
model include some other data types such as ratios and metrics which are out of
scope of the PRObs ontology.

Within the broader field of sustainability assessment, several efforts have been
made to apply semantic web technologies for Life Cycle Assessment (LCA) in
particular. Kuczenski et al. [10] describe the history of ontology development
for LCA, and present an overall ontology for LCA based on previous “ontology
design patterns” ([9,19]). They demonstrate how multiple LCA datasets can
be catalogued and analysed using this metadata. While the ontology design
patterns have elements of overlap with the ontology presented here, especially
with regard to “spatio-temporal scope” of processes, their concepts are tightly
bound to the LCA modelling approach. More recently, the BONSAI project [7]
has been developing a broader ontology which aims to catalogue a range of
datasets relevant to sustainability assessment. They acknowledge the problems
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of working with actual data points defined with differing terminology, but also
stop short of harmonising individual data points.

8 Conclusion

We presented a novel solution to integrate and reason on different production
system data using Semantic Technologies. We introduced an ontology based on
a general data model for resource data, and we presented an original technique
to generate new information about related objects. Finally, we provided some
details about the implementation of our method and its effectiveness.

The proposed solution is the basis of the “Physical Resources Observatory”,
which has been developed and applied initially to support analysis within the
UK FIRES research programme. However, this approach is general enough to
cover broader application scenarios as shown by our case study.
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