
Computing CQ lower-bounds over OWL 2
through approximation to RSA ?

Federico Igne[0000−0002−2790−7513], Stefano Germano[0000−0001−6993−0618], and
Ian Horrocks[0000−0002−2685−7462]

Department of Computer Science, University of Oxford, Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract Conjunctive query (CQ) answering over knowledge bases is an
important reasoning task. However, with expressive ontology languages
such as OWL, query answering is computationally very expensive. The
PAGOdA system addresses this issue by using a tractable reasoner to
compute lower and upper-bound approximations, falling back to a fully-
fledged OWL reasoner only when these bounds don’t coincide. The ef-
fectiveness of this approach critically depends on the quality of the ap-
proximations, and in this paper we explore a technique for computing
closer approximations via RSA, an ontology language that subsumes all
the OWL 2 profiles while still maintaining tractability. We present a
novel approximation of OWL 2 ontologies into RSA, and an algorithm
to compute a closer (than PAGOdA) lower bound approximation using
the RSA combined approach. We have implemented these algorithms in
a prototypical CQ answering system, and we present a preliminary eval-
uation of our system that shows significant performance improvements
w.r.t. PAGOdA.

Keywords: CQ answering · combined approach · ontology approxima-
tion · RSA.

1 Introduction

Conjunctive query (CQ) answering is one of the primary reasoning tasks over
knowledge bases for many applications. However, when considering expressive
description logic languages, query answering is computationally very expensive,
even when considering only complexity w.r.t. the size of the data (data complex-
ity). Fully-fledged reasoners oriented towards CQ answering over unrestricted
OWL 2 ontologies exist but, although heavily optimised, they are only effective
on small to medium datasets. In order to achieve tractability and scalability for
the problem, two main approaches are often used: either the expressive power of
the input ontology or the completeness of the computed answers is sacrificed.
? This work was supported by the AIDA project (Alan Turing Institute), the
SIRIUS Centre for Scalable Data Access (Research Council of Norway, project no.:
237889), Samsung Research UK, Siemens AG, and the EPSRC projects AnaLOG
(EP/P025943/1), OASIS (EP/S032347/1) and UK FIRES (EP/S019111/1).

2 F. Igne et al.

Using the first approach, query answering procedures have been developed
for several fragments of OWL 2 for which CQ answering is tractable with respect
to data complexity [1]. Three such fragments have been standardised as OWL 2
profiles, and CQ answering techniques for these fragments have been shown to be
highly scalable at the expense of expressive power [2,11,12,17,19,18]. Using the
second approach, several algorithms have been proposed to compute an approx-
imation of the set of answers to a given CQ. This usually results in computing
a sound subset of the answers, sacrificing completeness. One such technique is
to approximate the input ontology to a tractable fragment, e.g., by dropping
all those axioms outside the fragment; a tractable algorithm can then be used
to answer CQs over the approximated ontology. This process is clearly sound
but possibly incomplete, and hence provides a lower-bound answer to any given
query.

A particularly interesting approach to CQ answering over unrestricted OWL 2
ontologies, using a combination of the aforementioned techniques, is adopted by
PAGOdA [21]. Its “pay-as-you-go” approach allows us to use a Datalog reasoner
to handle the bulk of the computation, computing lower and upper approxima-
tions of the answers to a query, while relying on a fully-fledged OWL 2 reasoner
like HermiT only as necessary to fully answer the query.

While PAGOdA is able to avoid the use of a fully-fledged OWL 2 reasoner in
some cases, its performance rapidly deteriorates when the input query requires
(extensive) use of the underlying OWL 2 reasoner. Results from our tests show
that whenever PAGOdA relies on HermiT to compute the bulk of the answers
to a query, computation time is usually prohibitive and sometimes unfeasible.
The computation of lower and upper bounds is achieved by under- and over-
approximating the ontology into OWL 2 RL so that a tractable reasoner can be
used for CQ answering. The tractability of OWL 2 RL is achieved in part by
avoiding problematic interactions between axioms that can cause an exponen-
tial blow-up of the computation (so-called and-branching). As it turns out, this
elimination of problematic interactions between axioms is rather coarse, and
PAGOdA often ends up falling back to the underlying OWL 2 reasoner even
when it is not really needed.

This work expands on this “pay-as-you-go” technique; it aims to improve the
lower-bound approximation in PAGOdA, tightening the gap between lower and
upper bounds and minimising the use of HermiT. We achieve this by (soundly)
approximating the input ontology into RSA [3], an ontology language that sub-
sumes all the OWL 2 profiles, for which CQ answering is still tractable, and for
which a CQ answering algorithm based on the combined approach has been pro-
posed in [5]. We present a novel algorithm for approximating the input ontology
into RSA, and an implementation [10] of the combined approach CQ answer-
ing algorithm adapted to the use of RDFox [16,15,13,14] as a backend Datalog
reasoner; this includes the design of an improved version of the filtering step for
the combined approach, optimised for RDFox. In addition, we streamline the
execution of the combined approach by factoring out those steps in the com-
bined approach that are query independent to make answering multiple queries

Computing CQ lower-bounds over OWL 2 through approximation to RSA 3

over the same knowledge base more efficient. To summarise (Figure 1), given an
OWL 2 ontology, we propose an algorithm to approximate it down to RSA, and
compute its canonical model as part of the combined approach algorithm for
RSA; we then derive an improved filtering program from the input query that,
combined with the canonical model produces a lower-bound of the answers to
the query over the original ontology.

Ontology

Conjunctive
Query

Approximation RSA
Ontology Augmentation

Filtering Answers

Figure 1. RSAComb Architecture.

We have integrated our improved lower bound computation into PAGOdA
and carried out a preliminary evaluation to assess its effectiveness. Our exper-
imental results show that the new technique yields significant performance im-
provements in several important application scenarios.

2 Preliminaries

PAGOdA is a reasoner for sound and complete conjunctive query answering over
OWL 2 knowledge bases, adopting a “pay-as-you-go” approach to compute the
certain answers to a given query. It uses a combination of a Datalog reasoner
and a fully-fledged OWL 2 reasoner ; PAGOdA treats the two systems as black
boxes and tries to offload the bulk of the computation to the former and relies
on the latter only when necessary. 1

To achieve this, PAGOdA exploits the Datalog reasoner to compute a lower
and upper bound to the certain answers to the input query. If these bounds
match, then the query has been fully answered; otherwise the answers in the
“gap” between the bounds are further processed and verified against the fully-
fledged reasoner. Lower and upper bounds are computed by approximating the
input ontology to a logic program and answering the query over the approxim-
ations.
1 The capabilities, performance, and scalability of PAGOdA inherently depend on the
ability of the fully-fledged OWL 2 reasoner in use, and the ability to delegate the
workload to a given Datalog reasoner. In the best scenario, with an OWL 2 DL
reasoner, PAGOdA is able to answer internalisable queries [8].

4 F. Igne et al.

In the following we provide a brief description of the computation of the lower
bound, since some details will be useful later on. See [21] for a more in-depth
description of the algorithm and heuristics in use.

Given an ontology O and a CQ q, the disjunctive Datalog subset of the input
ontology is computed, denoted ODD, by dropping any axiom that does not
correspond to a disjunctive Datalog rule. Using a variant of shifting [4], ODD

is polynomially transformed in order to eliminate disjunction in the head. The
resulting Datalog program shift(ODD) is sound but not necessarily complete
for CQ answering. A first materialisation is performed, and the resulting facts
are added to the input ontology to obtain O′. Next, the ELHOr

⊥ [18] subset of
O′ is computed2, denoted O′EL, by dropping any axiom that is not in ELHOr

⊥;
the final lower bound is then computed by applying the combined approach for
ELHOr

⊥ [12,19] to q over O′EL.
While PAGOdA performs really well on simpler queries over complex OWL 2

ontologies, it can struggle when addressing more complex queries that actually
make use of the complexity and expressivity of the underlying ontology language.

To improve PAGOdA’s performance and compute a tighter lower-bound we
approximate the input ontology to RSA, a tractable ontology language (more
expressive than ELHOr

⊥) based on the Horn-ALCHOIQ language with addi-
tional global restrictions on role interaction. To perform this approximation, we
proceed similarly to PAGOdA, by dropping any axiom in the input ontology
that is not part of a particular target DL language (ALCHOIQ in our case)
and remove any disjunction in the axioms by means of a shifting step. Finally,
we introduce a novel algorithm to approximate the resulting Horn-ALCHOIQ
ontology into RSA by weakening axioms as needed to ensure that the global
restrictions on role interactions are satisfied.

Logic programs We assume familiarity with standard concepts of first-order logic
(FO) such as term, variable, constant, predicate, atom, literal, logic rule, (strat-
ified) programs. See [5] and the extended version of this paper [9, Appendix A],
for a formal introduction to these concepts.

We will call a rule definite without negation in its body, and Datalog a
function-free definite rule. A Datalog rule is disjunctive if it admits disjunc-
tion in the head. A fact is a Datalog rule with an empty body. Given a stratified
program P, we denote its least Herbrand model (LHM) asM [P], and define P≈,>
the program extended with axiomatisation rules for equality (≈) and truth value
(>) in a standard way [5].

Ontologies and conjunctive query answering We define Horn-ALCHOIQ as
the set of axioms that are allowed in the language and specify its semantics
by means of translation to definite programs. The definition will fix a normal
form for this ontology language [5], and w.l.o.g. we assume any input ontology
in Horn-ALCHOIQ contains only these types of axioms.

2 ELHOr
⊥ is an OWL 2 EL fragment, for which CQ answering is tractable.

Computing CQ lower-bounds over OWL 2 through approximation to RSA 5

Table 1. Normalised Horn-ALCHOIQ axioms and their translation in definite rules.

Axioms α Definite rules π(α)
(R1) R− R(x, y)→ R−(y, x);R−(y, x)→ R(x, y)
(R2) R v S R(x, y)→ S(x, y)

(T1)
dn

i=1Ai v B
∧n

i=1Ai(x)→ B(x)
(T2) A v {a} A(x)→ x ≈ a
(T3) ∃R.A v B R(x, y) ∧A(y)→ B(x)
(T4) A v≤ 1R.B A(x) ∧R(x, y) ∧B(y) ∧R(x, z) ∧B(z)→ y ≈ z
(T5) A v ∃R.B A(x)→ R(x, fA

R,B(x)) ∧B(fA
R,B(x))

(A1) A(a) → A(a)
(A2) R(a, b) → R(a, b)

Let NC , NR, NI be countable disjoint sets of concepts names, role names and
individuals respectively. We define a role as an element of NR ∪{R− | R ∈ NR},
where R− is called inverse role. We also introduce a function Inv(·) closed for
roles s.t. ∀R ∈ NR : Inv(R) = R−, Inv(R−) = R. An RBox R is a finite set
of axioms of type (R2) in Table 1 where R,S are roles. We denote v∗R as a
minimal relation over roles closed by reflexivity and transitivity s.t. R v∗R S,
Inv(R) v∗R Inv(S) hold if R v S ∈ R. A TBox T is a set of axioms of type
(T1-5) where A,B ∈ NC , a ∈ NI and R is a role. An ABox A is a finite set of
axiom of type (A1-2) with A ∈ NC , a, b ∈ NI and R ∈ NR. An ontology is a set
of axioms O = A∪T ∪R. Finally, if we consider ALCHOIQ, the TBox is further
extended with an additional axiom type A v

⊔n
i=1Bi allowing disjunction on

the right-hand side.
A conjunctive query (CQ) q is a formula ∃~y.ψ(~x, ~y) with ψ(~x, ~y) a conjunction

of function–free atoms over ~x ∪ ~y, and ~x, ~y are called answer variables and
bounded variables respectively. Queries with an empty set of answer variables are
called boolean conjunctive queries (BCQ). Let π be the translation of axioms into
definite rules defined in Table 1; by extension we write π(O) = {π(α) | α ∈ O}.
An ontology O is satisfiable if π(O≈,>) 6|= ∃y.⊥(y). A tuple of constants ~c is an
answer to q if O is unsatisfiable or π(O≈,>) |= ∃~y.ψ(~c, ~y). The set of answers to
a query q is written cert(q,O).

3 Combined approach for CQ answering in RSA

RSA (role safety acyclic) ontologies and their combined approach for conjunctive
query answering were originally presented in [3,5]. In this section we recapitulate
a minimal set of definitions and theorems that will make the paper more self-
contained and help the reader better understand our contribution.

RSA is a class of ontology languages designed to subsume all OWL 2 profiles,
while maintaining tractability of standard reasoning tasks like CQ answering.
The RSA ontology language is designed to avoid interactions between axioms
that can result in the ontology being satisfied only by exponentially large (and
potentially infinite) models. This problem is often called and-branching and can

6 F. Igne et al.

be caused by interactions between axioms of type (T5) with either axioms (T3)
and (R1), or axioms (T4), in Table 1.

RSA includes all axioms in Table 1, restricting their interaction to ensure a
polynomial bound on model size [3].

Definition 1. A role R in O is unsafe if it occurs in axioms (T5), and there is
a role S s.t. either of the following holds:

1. R v∗R Inv(S) and S occurs in an axiom (T3) with left-hand side concept
∃S.A where A 6= >;

2. S is in an axiom (T4) and R v∗R S or R v∗R Inv(S).

A role R in O is safe if it is not unsafe.

Note that, by definition all OWL 2 profiles (RL, EL and QL) contain only
safe roles.

Definition 2. Let PE and E be fresh binary predicates, let U be a fresh un-
ary predicate, and let uAR,B be a fresh constant for each concept A,B ∈ NC

and each role R ∈ NR. A function πRSA maps each (T5) axiom α ∈ O to
A(x) → R(x, uAR,B) ∧ B(uAR,B) ∧ PE(x, uAR,B) and π(α) otherwise. The program
PRSA consists of πRSA(α) for each α ∈ O, rule U(x) ∧ PE(x, y) ∧ U(y)→ E(x, y)
and facts U(uAR,B) for each uAR,B, with R unsafe.

Let MRSA be the LHM of P≈,>RSA. Then, GO is the digraph with an edge (c, d)
for each E(c, d) in MRSA. Ontology O is equality-safe if for each pair of atoms
w ≈ t (with w and y distinct) and R(t, uAR,B) in MRSA and each role S s.t.
R v Inv(S), it holds that S does not occur in an axiom (T4) and for each pair
of atoms R(a, uAR,B), S(u

A
R,B , a) in MRSA with a ∈ NI , there is no role T such

that both R v∗R T and S v∗R Inv(T) hold.
We say that O is RSA if it is equality-safe and GO is an oriented forest.

The fact thatGO is a DAG ensures that the LHMM [PO] is finite, whereas the
lack of “diamond-shaped” subgraphs in GO guarantees polynomiality of M [PO].
The definition gives us a programmatic procedure to determine whether an Horn-
ALCHOIQ ontology is RSA.

Theorem 1 ([5], Theorem 2). If O is RSA, then the size of M [PO] is poly-
nomial in the size of O.

3.1 RSA combined approach

Following is a summary of the combined approach (with filtration) for conjunct-
ive query answering for RSA presented in [5]. This consists of two main steps to
be offloaded to a Datalog reasoner able to handle negation and function symbols.

The first step computes the canonical model of an RSA ontology over an
extended signature (introduced to deal with inverse roles and directionality of
newly generated binary atoms). The computed canonical model is not universal
and, as such, might lead to spurious answers in the evaluation of CQs.

The second step of the computation performs a filtration of the computed
answers to identify only the certain answers to the input query.

Computing CQ lower-bounds over OWL 2 through approximation to RSA 7

Canonical model computation The computation of the canonical model
for an ontology O is performed by computing the LHM of a translation of the
ontology into definite rules. The translation for each axiom type is given in [5]
and is an enhanced version of the translation given in Table 1 where axioms of
type (T5) are skolemised if the role involved is unsafe, and constant skolemised
otherwise3. We call this translation EO and denote the computed canonical
model as M [EO]. M [EO] is polynomial in |O| and if O is satisfiable; O |= A(c)
iff A(c) ∈M [EO] (see [5, Theorem 3]).

Filtering spurious answers For the filtering step, a query dependent logic
program Pq is introduced to filter out all spurious answers to an input query q
over the extended canonical model M [EO] computed in the previous section.

The program identifies and discards any match that cannot be enforced by a
TBox alone and hence correspond to spurious answers induced by the canonical
model. For more details on the construction of Pq, please refer to [9, Appendix B],
and [5, Section 4].

Let Pq be the filtering program for q, and PO,q = EO∪Pq, then we know that
M [PO,q] is polynomial in |O| and exponential in |q| (see [5, Theorem 4]). We
obtain a “guess and check” algorithm that leads to an NP-completeness result
for BCQs [5]. The algorithm first materialises EO in polynomial time and then
guesses a match σ to q over the materialisation; finally it materialises (PO,q)σ.

Theorem 2 ([5], Theorem 5). Checking whether O |= q with O an RSA
ontology and q a BCQ is NP-complete in combined complexity.

3.2 Improvements to the combined approach

In the following we give an overview of the improvements introduced in the RSA
combined approach, built on top of the original theory presented in the previous
sections.

RDFox adoption One first technical difference from the original work on the
RSA combined approach is the adoption of RDFox as a Datalog reasoner instead
of DLV. RDFox provides support for stratified negation but it does not provide
direct support for function symbols. We simulate function symbols using the
built-in Skolemisation feature, making it possible to associate a fresh term to a
unique tuple of terms. While doing so, we keep somewhat closer to the realm of
description logics since RDF triples are a first-class citizen and only atoms with
arity ≤ 2 are allowed.

Improved filtering program RDFox is primarily an RDF reasoner and its
ability to handle Datalog (with a set of useful extension) makes it able to capture
the entire RL profile. We were able to partially rewrite and simplify the filtering
3 A more detailed description of this step is provided in [9, Appendix B].

8 F. Igne et al.

step in the RSA combined approach: a first rewriting step gets rid of all atoms
with arity greater than 2; filtering rules are then greatly simplified by making
extensive use of the Skolemisation function provided by RDFox, hence avoiding
some expensive joins that would slow down the computation (see [5, Section 5],
especially the results for query q1).

Example 1. We show rule (3c) in the original filtering program (w.r.t. a query
q(~x) = ψ(~x, ~y) where ~x = x1, . . . , xm, ~y = y1, . . . , yn), along with its simplifica-
tion steps. Rule (3c) computes the transitive closure of a predicate id, keeping
track of identity between anonymous terms w.r.t. a specific match for the input
query.

id(~x, ~y, u, v), id(~x, ~y, v, w)→ id(~x, ~y, u, w) (1)

Provided we have access to a function KEY to compute a new term that uniquely
identifies a tuple of terms, we can reify any n-ary atom into a set of n atoms
of arity 2. E.g., an atom P (x, y, z) becomes P1(k, x), P2(k, y), P3(k, z), where
k = KEY(x, y, z) and Pn, for 1 ≤ n ≤ arity(P), are fresh predicates of arity 2.
Rule (1) then becomes

id1(k, x1), . . . ,idm+n(k, yn), idm+n+1(k, u), idm+n+2(k, v),

id1(j, x1), . . . ,idm+n(j, yn), idm+n+1(j, v), idm+n+2(j, w),

l := KEY(~x, ~y, u, w)→ id1(l, x1), . . . , idm+n(l, yn),

idm+n+1(l, v), idm+n+2(l, w)

(2)

Using the SKOLEM functionality4 in RDFox, we are able to reduce the arity of
a predicate P (see predicate id in Rule (3)) without having to introduce arity(P)
fresh predicates. Also note how joins over multiple terms (id joining over (~x, ~y)
in (1)) can now be rewritten into simpler joins (id joining over a single term k)5.

id(k, j), SKOLEM(~x, ~y, u, v, j), id(k, l),SKOLEM(~x, ~y, v, w, l),

SKOLEM(~x, ~y, u, w, t)→ id(k, t)
(3)

ut

Query independent computation One of the main features of the combined
approach for conjunctive query answering over knowledge bases is its two-stage
process. The first step, i.e., the computation of the canonical model, is notably
dependent solely on the input knowledge base; similarly the filtration step is
only dependent on the query.

The two-stage nature of the approach can be implemented directly in RDFox
using different named graphs to store the materialisation of the combined ap-
proach and the filtering step respectively. Assigning different named graphs (here
4 https://docs.oxfordsemantic.tech/tuple-tables.html#rdfox-skolem
5 Rule 3 showcases how the SKOLEM function can be used in both directions: given
a sequence of terms, we can pack them into a single fresh term; give a previously
skolemised term, we can unpack it to retrieve the corresponding sequence of terms.

Computing CQ lower-bounds over OWL 2 through approximation to RSA 9

essentially used as namespaces) to different parts of the computation allows us
to treat them independently, managing partial results of a computation, drop-
ping or preserving them. This means that for every new query over the same
knowledge base we only need to perform the filtering step. Once the answers to
a particular query are computed we can simply drop the named graph corres-
ponding to the filtering step for that query and start fresh for the next one.

Note that RDFox supports parallel computation as well, and since the fil-
tering steps for a set of queries are independent of each other we can execute
multiple filtering steps in parallel to take advantage of hardware parallelisation
(see Section 7).

Top and equality axiomatisation RDFox has built-in support for > (top,
truth or owl:Thing) and equality (owl:sameAs), so that > automatically sub-
sumes any new class introduced within an RDF triple, and equality between
terms is always consistent with its semantics.

In both cases we are not able to use these features directly: in the case of
top axiomatisation, we import axioms as Datalog rules, which are not taken into
consideration when RDFox derives new > subsumptions; in the case of equality
axiomatisation, the feature cannot be enabled along other features like aggregates
and negation-as-failure, which are extensively used in our system.

To work around this, we introduce the axiomatisation for both predicates
explicitly. For more details on the set of rules used for this, we refer the reader
to [9, Appendix C].

3.3 Additional fixes

Our work also includes a few clarifications on theoretical definitions and their
implementation.

In the canonical model computation in [5], the notIn predicate is introduced
to simulate the semantics of set membership and in particular the meaning of
notIn[a, b] is “a is not in set b”. During the computation of the canonical
model program we have complete knowledge of any set that might be used in
a notIn atom. For each such set S, and for each element a ∈ S, we introduce
the fact in[a,S] in the canonical model. We then replace any occurrence of
notIn[?X, ?Y] in the original program EO with NOT in[?X, ?Y], where NOT is
the operator for negation-as-failure in RDFox.

A similar approach has been used to redefine and implement predicate NI,
representing the set of non-anonymous terms in the materialised canonical model.
We enumerate the elements of this set introducing the following rule:

NI[?Y] :- named[?X], owl:sameAs[?X, ?Y] .

where named is a predicate representing the set of constants in the original on-
tology.

A final improvement has been made on the computation of the cycle func-
tion during the canonical model computation. The original definition involved a

10 F. Igne et al.

search over all possible triples (A,R,B) where A,B ∈ NC , R ∈ NR in the ori-
ginal ontology. We realised that traversing the whole space would significantly
slow down the computation, and is not necessary; we instead restrict our search
over all (A,R,B) triples that appear in a (T5) axiom A v ∃R.B in the original
normalised ontology.

4 Integration of RSA into PAGOdA

As described in Section 2 and in [21], the process of computing the lower-bound
of the answers to an input query involves (1) approximating the input ontology to
disjunctive Datalog and further processing the rules to obtain a Datalog program;
(2) approximating the input ontology to ELHOr

⊥ and applying the corresponding
combined approach presented in [18].

These two approximations are handled independently, by means of materi-
alisation in the first case, and the combined approach in the second; this allows
PAGOdA to avoid having to deal with and-branching and the resulting intract-
ability of most reasoning problems (see Definition 1). The RL and ELHOr

⊥ ap-
proximations used by PAGOdA eliminate all interactions between axioms (T5)
and either axioms (T4) or axioms (T3) and (R1)6. However, not all such in-
teractions cause an exponential jump in complexity, and PAGOdA’s filtering of
such cases is unnecessarily coarse. In RSA, interactions between these types of
axioms are allowed but limited, and the filtering of those cases that may lead
to and-branching is based on a fine-grained analysis of role safety ; hence the
lower-bound produced by the RSA combined approach is often larger than the
one computed by PAGOdA.

In the following we show how to integrate the aforementioned combined ap-
proach for RSA into the lower-bound computation procedure.

4.1 Lower-bound computation

We take different steps depending on how the input ontology can be classified.
We assume w.l.o.g. that the input ontology is consistent and normalised.

If the input ontology is inside one of the OWL 2 profiles, we simply use the
standard PAGOdA algorithm to compute the answers to the query. Note that
this check is purely syntactic over the normalised ontology.

If the first check fails (i.e., the ontology is not in any of the profiles), we
check whether the ontology is in RSA. This can be done using the polynomial
algorithm presented in [5] and reimplemented in our system (Section 3). If the
input ontology is inside RSA we are able to apply the combined approach for
query answering directly and collect the sound and complete set of answers to the
input query. Efficiency of the RSA combined approach, compared to PAGOdA,
mainly depends on the input ontology and the type of query; as explained earlier,

6 Note that OWL 2 RL does not allow axioms (T5) and OWL 2 EL (which contains
ELHOr

⊥) does not allow axioms (T4) or inverse roles (R1).

Computing CQ lower-bounds over OWL 2 through approximation to RSA 11

this new approach is particularly effective when query answers depend on inter-
actions between axioms that belong to different profiles. Based on our tests (see
Section 6 for more details), if PAGOdA is not able to compute the complete set
of answers by means of computing its lower and upper-bounds and instead relies
on HermiT to finalise the computation, then the RSA approach can be up to 2
orders of magnitude faster in returning the complete set of answers.

If the input ontology is not RSA, we approximate it to ALCHOIQ. The
approximation is carried out by removing any axiom in the normalised ontology
that is not part of ALCHOIQ. We then eliminate any axiom involving disjunc-
tion on the right-hand side using a program shifting technique. Note that this
approach is the same used by PAGOdA to handle disjunctive rules in the ori-
ginal lower-bound computation. This procedure guarantees to produce a sound
(but not necessarily complete) approximation w.r.t. CQ answering. The resulting
ontology is in Horn-ALCHOIQ .

The next step involves the approximation from Horn-ALCHOIQ to RSA.
We achieve this using a novel algorithm to approximate an Horn-ALCHOIQ
ontology to RSA in polynomial time (Section 5). Then, we can apply the RSA
combined approach to the resulting approximated ontology.

We can then summarise the overall procedure in the following steps:

1. If the input ontology is inside one of the OWL 2 profiles, we run the standard
PAGOdA algorithm. In this scenario, PAGOdA is able to compute complete
query answers using a tractable procedure for the relevant profile.

2. If the input ontology is in RSA, we run the combined approach algorithm
described in Section 3.1. This will return the complete set of answers to the
input query.

3. If the ontology is not RSA we substitute the lower-bound computation pro-
cess in PAGOdA with the following steps:

(a) We approximate the input ontology to Horn-ALCHOIQ by first dis-
carding any non-ALCHOIQ axioms, and then using a shifting technique
to eliminate disjunction on the right-hand side of axioms.

(b) We use a novel algorithm to approximate the Horn-ALCHOIQ ontology
to RSA (see Section 5).

(c) We apply the RSA combined approach to obtain a lower-bound of the
answers to the query.

(d) We continue with the standard PAGOdA procedure to compute the com-
plete set of answers.

The approximation algorithm guarantees that the combined approach applied
over the approximated RSA ontology will return a subset (lower-bound) of the
answers to the query over the original ontology, i.e., cert(q,ORSA) ⊆ cert(q,O),
where q is the input CQ, O is the original ontology and ORSA is its RSA ap-
proximation. Let `P be the lower-bound computed by PAGOdA, and `R be the
lower-bound computed by our procedure; then we have in general that lP ⊆ lR.

12 F. Igne et al.

5 Horn-ALCHOIQ to RSA approximation

One of the steps involved in the process of integrating the RSA combined ap-
proach in PAGOdA is the approximation of the input ontology to RSA. In the
original algorithm, PAGOdA would approximate the ontology by removing most
of the out-of-profile axioms and deal in a more fine-grained manner with exist-
ential quantification and union.

Note that we can’t directly apply this approach to the new system since the
definition of RSA is not purely syntactical and an approximation to RSA by re-
moving out-of-language axioms is not possible. Instead, we propose an algorithm
that first approximates the input ontology to an Horn-ALCHOIQ ontology O
and then further approximates O to RSA using a novel technique acting on the
custom dependency graph GO presented in Definition 2.

In the following we provide a description of the algorithm to approxim-
ate a Horn-ALCHOIQ ontology OS into an RSA ontology OT such that
cert(q,OT) ⊆ cert(q,OS).

Given an Horn-ALCHOIQ ontology O, checking if O is RSA consists of:

1. checking whether GO is an oriented forest ;
2. checking whether O is equality safe.

We first consider (1). If O is not RSA, then it presents at least one cycle
in GO. The idea is to disconnect the graph and propagate the changes into the
original ontology. A way of doing this is to delete some nodes uAR,B from the
graph to break the cycles. By definition of uAR,B , the node uniquely identifies
an axiom A v ∃R.B of type (T5) in O and hence, removing the axiom will
break the cycle in GO. We can gather a possible set of nodes that disconnect
the graph by using a slightly modified version of a BFS visit. The action of
deleting the nodes from the graph can be then propagated to the ontology by
removing the corresponding T5 axioms. Due to monotonicity of first order logic,
deleting axioms from the ontology clearly produces a lower-bound approximation
of the ontology w.r.t. conjunctive query answering. We summarise this process
in Algorithm 1.

Next, we need to deal with equality safety (2). The following step can be
performed to ensure this property:

– delete any T4 axiom that involves a role S such that there exists w ≈ t (with
w and y distinct) and R(t, uAR,B) in MRSA and R v Inv(S);

– if there is a pair of atoms R(a, uAR,B), S(u
A
R,B , a) in MRSA with a ∈ NI and

a role T such that both R v∗R T and S v∗R Inv(T) hold, then remove some
axiom (R2) to break the derivation chain that deduces either R v∗R T or
S v∗R Inv(T).

Note that the set of nodes that are computed by the graph visit to disconnect
all cycles in a graph is not, in general, unique, and hence might not guarantee
the tightest lower-bound on the answers to a given query. On the other hand
this gives us a simple way of determining whether the approximation will affect

Computing CQ lower-bounds over OWL 2 through approximation to RSA 13

Algorithm 1: Approximate an Horn-ALCHOIQ ontology to RSA
Input: Ontology dependency graph G

1 let N be the set of nodes in G;
2 let C be an empty set;
3 foreach node n in N do
4 if n is not discovered then
5 let S be an empty stack;
6 push n in S;
7 while S is not empty do
8 pop v from S;
9 if v is not discovered then

10 label v as discovered ;
11 let adj be the set of nodes adjacent to v;
12 if any node in adj is discovered then
13 push v in C;
14 else
15 foreach node w in adj do
16 push w in S;

17 remove C from G;

the resulting answer computation. It is easy to see that if the deleted axioms
are not involved in the computation of the answers to the input query, the set
of answers will be left unaltered and will correspond to the set of answers to the
query w.r.t. to the original ontology.

With reference to the PAGOdA approach, cert(q,OP) ⊆ cert(q,OT) for both
approximations OP to Datalog and ELHOr

⊥ used by PAGOdA for the lower-
bound computation.

6 Evaluation

Implementation details As part of this work, we introduce RSAComb, a new
and improved implementation of the combined approach algorithm for RSA,
released as free and open source software [10]. On the one hand, the imple-
mentation presented in [5] is not available, and on the other hand we wanted to
take advantage of a tight integration with RDFox and simplify the subsequent
integration in PAGOdA.

Our implementation is written in Scala and uses RDFox7 as the underlying
Datalog reasoner. At the time of writing, development and testing have been car-
ried out using Scala v2.13.5 and RDFox v4.1. Scala allows us to easily interface
with Java libraries and in particular the OWLAPI [7] for easy ontology manip-
ulation. We communicate with RDFox through the Java wrapper API provided
with the distribution.
7 https://www.oxfordsemantic.tech/product

14 F. Igne et al.

Testing environment All experiments were performed on an Intel(R) Xeon(R)
CPU E5-2640 v3 @ 2.60GHz with 16 real cores, extended via hyper-threading to
32 virtual cores, 512 GB of RAM and running Fedora 33, kernel version 5.8.17-
300.fc33.x86_64. While PAGOdA is inherently single core, we were able to make
use of the multicore CPU and distribute the computation across cores, especially
for intensive tasks offloaded to RDFox.

Comparison with PAGOdA To compare our system against PAGOdA, we
performed our tests on the LUBM ontology [6], for which the PAGOdA distri-
bution offers pre-generated datasets8. We performed our tests on three different
queries for which PAGOdA does require HermiT to complete the computation
(i.e., the query is classified as “FullReasoning”); the first two (31 and 34) were
used as they originally shipped with the PAGOdA distribution, while query 36
was chosen to show that even a simple query can be problematic for PAGOdA
and how our improved approach is able to solve the problem. In fact, we were
able to identify a whole class of queries for which PAGOdA does not perform
well, and query 36 can be seen as a minimal example from this class. We provide
all queries in [9, Appendix D].

LUBM is not in Horn-ALCHOIQ (because of some role transitivity ax-
iom) but contains only safe roles. Datasets from the PAGOdA distribution are
automatically generated with the LUBM data generator9, with the parameter
indicating the number of universities ranging from 100 up to 800, with steps of
100.

For queries where PAGOdA does not require HermiT, the performance of
PAGOdA and RSAComb are very similar. In Table 2, we show the results for
our three queries. For each query we provide in order: the size of the ABox, the
number of answers to the query, preprocessing and answering time in PAGOdA,
preprocessing time in our system (including approximation to RSA and compu-
tation of the canonical model), answering time for RSAComb (including filtering
program computation and filtering step, answers gathering). Execution time had
a timeout set to 10h and timed-out computation is indicated in the tables with
a hyphen “-”.

The results clearly show how our system is able to compute the complete set
of answers to the queries in considerably less time and without the need of a
fully-fledged reasoner like HermiT. For larger datasets, the introduction of our
system makes the difference between feasibility and unfeasibility. Focusing on
query 36, we are able to limit the impact that a high number of answers to a
query has on performance.

Another important aspect shown here is that, even when factoring out the
preprocessing time for both systems (we can argue that this step can be pre-
computed offline when the ontology is fixed), we still achieve considerably faster
results, especially when it comes to datasets of larger size.

8 https://www.cs.ox.ac.uk/isg/tools/PAGOdA/
9 http://swat.cse.lehigh.edu/projects/lubm/uba1.7.zip

Computing CQ lower-bounds over OWL 2 through approximation to RSA 15

Table 2. Comparison of answering time for PAGOdA and our system with multiple
queries over LUBM. Timed-out computations are indicated with a hyphen “-”.

ABox Query Answers PAGOdA PAGOdA RSAComb RSAComb
size ID preprocessing (s) answering (s) preprocessing (s) answering (s)

100
34 4

196
109

41
2

31 18 159 3
36 72927 219 154

200
34 4

461
2303

78
5

31 18 7535 5
36 145279 - 613

300
34 4

824
10563

112
7

31 18 23309 7
36 217375 - 1227

400
34 4

1023
14527

153
10

31 18 - 11
36 290516 - 2593

500
34 4

1317
23855

206
12

31 18 - 13
36 363890 - 4174

600
34 4

1738
33322

210
16

31 18 - 15
36 436961 - 4302

700
34 4

2390
-

252
19

31 18 - 21
36 509401 - 4667

800
34 4

3619
-

260
22

31 18 - 21
36 582658 - 6105

7 Discussion and Future Work

We presented a novel algorithm to approximate an OWL 2 ontology into RSA,
and an algorithm to compute a lower-bound approximation of the answers to
a CQ using the RSA combined approach. We showed that this lower-bound is
stricter than the one computed by PAGOdA and provided an implementation
of the algorithms in a prototypical CQ answering system.

We are already working on additional improvements to the approximation
algorithm to RSA; the current visit of the dependency graph to detect the ax-
ioms to delete might be improved with different heuristics and might in some
cases take into account the input query (deleting axioms that are not necessarily
involved in the computation of the answers). A similar approach could be intro-
duced to integrate RSA in the upper-bound of the answers to a query, with the
ultimate goal of improving this step in PAGOdA as well.

On a different note, we hope to obtain additional improvements in perform-
ance in the current implementation of the RSA combined approach by intro-
ducing parallel execution of filtering steps for different input queries, using the

16 F. Igne et al.

named graph functionality provided by RDFox. This was partially motivated by
the promising results recently shown in [20], where parallelisation techniques
are applied to the tableau algorithm to improve its performance on expressive
ontology languages.

Finally, we would like to explore the possibility to avoid the conversion of
axioms into Datalog overall and come up with a different encoding of the RSA
combined approach that would make use of the built-in support for OWL 2 RL
currently present in RDFox.

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proceedings, Tenth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, Lake
District of the United Kingdom, June 2-5, 2006. pp. 260–270. AAAI Press (2006)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385–429 (2007). https://doi.org/10.1007/s10817-007-
9078-x

3. Carral, D., Feier, C., Cuenca Grau, B., Hitzler, P., Horrocks, I.: Pushing the bound-
aries of tractable ontology reasoning. In: The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8797, pp.
148–163. Springer (2014). https://doi.org/10.1007/978-3-319-11915-1_10

4. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable
logic programming. In: Dubois, D., Welty, C.A., Williams, M. (eds.) Principles of
Knowledge Representation and Reasoning: Proceedings of the Ninth International
Conference (KR2004), Whistler, Canada, June 2-5, 2004. pp. 447–458. AAAI Press
(2004), http://www.aaai.org/Library/KR/2004/kr04-047.php

5. Feier, C., Carral, D., Stefanoni, G., Cuenca Grau, B., Horrocks, I.: The com-
bined approach to query answering beyond the OWL 2 profiles. In: Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 2971–2977. AAAI Press
(2015)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL know-
ledge base systems. J. Web Semant. 3(2-3), 158–182 (2005). ht-
tps://doi.org/10.1016/j.websem.2005.06.005

7. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011). https://doi.org/10.3233/SW-2011-0025

8. Horrocks, I., Tessaris, S.: A conjunctive query language for description lo-
gic aboxes. In: Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seven-
teenth National Conference on Artificial Intelligence and Twelfth Conference
on on Innovative Applications of Artificial Intelligence, July 30 - August 3,
2000, Austin, Texas, USA. pp. 399–404. AAAI Press / The MIT Press (2000),
http://www.aaai.org/Library/AAAI/2000/aaai00-061.php

9. Igne, F., Germano, S., Horrocks, I.: Computing CQ lower-bounds over
OWL 2 through approximation to RSA - Extended version (2021), ht-
tps://arxiv.org/abs/2107.00369

Computing CQ lower-bounds over OWL 2 through approximation to RSA 17

10. Igne, F., Germano, S., Horrocks, I.: RSAComb - Combined approach for Conjunct-
ive Query answering in RSA (Jun 2021). https://doi.org/10.5281/zenodo.5047811

11. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in dl-lite. In: Principles of Knowledge Repres-
entation and Reasoning: Proceedings of the Twelfth International Conference, KR
2010, Toronto, Ontario, Canada, May 9-13, 2010. AAAI Press (2010)

12. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the descrip-
tion logic EL using a relational database system. In: Boutilier, C. (ed.) IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial In-
telligence, Pasadena, California, USA, July 11-17, 2009. pp. 2070–2075 (2009),
http://ijcai.org/Proceedings/09/Papers/341.pdf

13. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Handling owl: sameas via rewriting.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA. pp. 231–237. AAAI Press (2015)

14. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mater-
ialisation: the backward/forward algorithm. In: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA. pp. 1560–1568. AAAI Press (2015)

15. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada. pp. 129–137. AAAI Press (2014)

16. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: Rdfox: A highly-
scalable RDF store. In: The Semantic Web - ISWC 2015 - 14th International Se-
mantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 9367, pp. 3–20. Springer (2015)

17. Ren, Y., Pan, J.Z., Guclu, I., Kollingbaum, M.J.: A combined approach to incre-
mental reasoning for EL ontologies. In: Web Reasoning and Rule Systems - 10th
International Conference, RR 2016, Aberdeen, UK, September 9-11, 2016, Proceed-
ings. Lecture Notes in Computer Science, vol. 9898, pp. 167–183. Springer (2016).
https://doi.org/10.1007/978-3-319-45276-0_13

18. Stefanoni, G., Motik, B.: Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles. CoRR abs/1411.2516 (2014)

19. Stefanoni, G., Motik, B., Horrocks, I.: Introducing nominals to the com-
bined query answering approaches for EL. In: desJardins, M., Littman, M.L.
(eds.) Proceedings of the Twenty-Seventh AAAI Conference on Artificial In-
telligence, July 14-18, 2013, Bellevue, Washington, USA. AAAI Press (2013),
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6156

20. Steigmiller, A., Glimm, B.: Parallelised abox reasoning and query answer-
ing with expressive description logics. In: The Semantic Web - 18th Interna-
tional Conference, ESWC 2021, Virtual Event, June 6-10, 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12731, pp. 23–39. Springer (2021).
https://doi.org/10.1007/978-3-030-77385-4_2

21. Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: Pagoda: Pay-
as-you-go ontology query answering using a datalog reasoner. J. Artif. Intell. Res.
54, 309–367 (2015)

