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Computing Laboratory 



Theory and Automated Verification  
Foundations; semantics; concurrency and security; computer-aided reasoning  

Program Development and Tools  
Programming tools; algebra of programming 

Applications and Algorithms  
Algorithms; computational biology; computational linguistics; constraints; machine learning; spatial reasoning  

Software Engineering  
Software engineering; requirements analysis; security; eScience and Grid computing  

Numerical Analysis  
Numerical solution of partial differential equations; numerical linear algebra; optimisation 

Information Systems 
Databases, knowledge representation and reasoning, computational linguistics  

Research Groups 



Knowledge Representation and 
Reasoning (sub-) Group 



•  Faculty 
–  Ian Horrocks 
–  Boris Motik 

•  DPhil Students 
–  Héctor Pérez-Urbina 
–  Rob Shearer 
–  Frantisek Simancik 
–  Despoina Magka 

•  Research Staff 
–  Bernardo Cuenca Grau 
–  Birte Glimm 
–  Yevgeny Kazakov 
–  Rob Shearer 
–  Giorgos Stoilos 
–  Mikalai Yatskevich 

Who are we? 



•  Knowledge representation (obviously) 

•  Semantic Web 

•  Ontologies and ontology languages 

•  Description logics 

•  Reasoning problems and algorithms 

•  Implementation and optimisation of reasoning systems 

•  Ontology based information systems 

What Do We Do? 



•  LOGO: Logic for Ontologies (EPSRC) 

•  RInO: Reasoning Infrastructure for Ontologies (EPSRC) 

•  HermiT: Reasoning with Large Ontologies (EPSRC) 

•  ConDOR: Consequence Driven Ontology Reasoning (EPSRC) 

•  SEALS: Developing and Testing Ontology Infrastructure (EU) 

•  Privacy in Ontology Information Systems (Royal Society) 

Currently Funded Projects 
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Semantic Web 



•  According to W3C 
–  “an evolving extension of the World Wide Web in which web 

content can be … read and used by software agents, thus 
permitting them to find, share and integrate information more 
easily” 

•  Data will use uniform syntactic structure (RDF) 

•  Ontologies will provide 
–  Schemas for data 
–  Vocabulary for annotations 

•  Ultimate goal is to transform web into a platform for 
distributed applications and sharing (linking) of data 

Semantic Web 
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A model of (some aspect of) the world 

•  Introduces vocabulary  
relevant to domain, e.g.: 
–  Anatomy 
–  Cellular biology 

–  Aerospace 
–  Dogs 

–  Hotdogs 

–  … 
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A model of (some aspect of) the world 

•  Introduces vocabulary  
relevant to domain 

•  Specifies meaning (semantics)  
of terms 
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is part of the circulatory system 



What is an Ontology? 
A model of (some aspect of) the world 

•  Introduces vocabulary  
relevant to domain 

•  Specifies meaning (semantics)  
of terms 

 Heart is a muscular organ that 
is part of the circulatory system 

•  Formalised using suitable logic 



•          recommendation(s)  
•  Motivated by Semantic Web activity 

 Requirement for standardised 
“web ontology language” 

•  Supported by tools and infrastructure 
–  APIs (e.g., OWL API, Thea, OWLink) 
–  Development environments  

(e.g., Protégé, Swoop, TopBraid Composer, Neon) 

–  Reasoners & Information Systems  
(e.g., Pellet, Racer, HermiT, Quonto, …) 

•  Based on Description Logics (SHOIN / SROIQ) 

Web Ontology Language OWL (2) 



•  Fragments of first order logic designed for KR 

•  Desirable computational properties 
–  Decidable (essential) 
–  Low complexity (desirable) 

•  Succinct and variable free syntax 

Description Logics (DLs) 



 DL Knowledge Base (KB) consists of two parts: 
–  Ontology (aka TBox) axioms define terminology (schema) 

–  Ground facts (aka ABox) use the terminology (data) 

Description Logics (DLs) 
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Why Care About Semantics? 
Why should I care about semantics? 

Well, from a philosophical POV, we need to specify the 
relationship between statements in the logic and the 

existential phenomena they describe. 

That’s OK, but I don’t get paid for philosophy. 

From a practical POV, in order to specify and test 
(ontology-based) information systems we need 

to precisely define their intended behaviour 



What are Ontologies Good For? 
•  Coherent user-centric view of domain 

–  Help identify and resolve disagreements 

•  Ontology-based Information Systems 
–  View of data that is independent of logical/

physical schema 

–  Answers reflect schema & data, e.g.: 
“Patients suffering from Vascular Disease” 

Now... that should clear up a  
few things around here 
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What are Ontologies Good For? 
•  Coherent user-centric view of domain 

–  Help identify and resolve disagreements 

•  Ontology-based Information Systems 
–  View of data that is independent of logical/

physical schema 

–  Answers reflect schema & data, e.g.: 
“Patients suffering from Vascular Disease” 

–  Query expansion/navigation/refinement 

–  Incomplete and semi-structured data 
–  Integration of heterogeneous sources 

Now... that should clear up a  
few things around here 



Information-Based Decisions 
Increasingly critical in many areas: 

•  In Healthcare industry, e.g., 
selecting patients for 
screening 
–  Too much screening harms  

patients and wastes money 

–  Too little screening costs  
lives 



Information-Based Decisions 
Increasingly critical in many areas: 

•  In Oil and Gas industry, e.g., 
selecting production 
parameters 
–  Better quality information  

could add  €1B/year net 
value to Statoil production 

–  Poorer quality information  
and analysis costs  
€6M/weekend! 



Information-Based Decisions 
Increasingly critical in many areas: 

•  In IT industry, e.g., facilitating tech support 
–  SAP deals with 80,000 queries/month at a cost of approx. 
€16M 

–  SAP estimate 50% of support staff time spent searching for 
relevant information 



Healthcare 
•  UK NHS £10 billion “Connecting for Health” IT 

programme 
•  Key component is Care Records Service (CRS) 

–  “Live, interactive patient record service accessible 24/7” 
–  Patient data distributed across local centres in 5 regional 

clusters, and a national DB 

–  SNOMED-CT ontology provides common vocabulary for data 
•  Clinical data uses terms drawn from this ontology 

•  The ontology defines more than 400,000 different terms! 



What About Scalability? 
•  Only useful in practice if we can deal with large 

ontologies and/or large data sets 
•  Unfortunately, many ontology languages are highly 

intractable 
–  OWL 2 satisfiability is 2NEXPTIME-complete w.r.t. schema 

–  and NP-Hard w.r.t. data (upper bound open) 

•  Problem addressed in practice by 
–  Algorithms that work well in typical cases 

–  Highly optimised implementations 
–  Use of tractable fragments (aka profiles) 
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Tableau Reasoning Algorithms 
 Standard technique based on (hyper-) tableau 

–  Reasoning tasks reducible to (un)satisfiability 
•  E.g., KB ² HeartDisease v VascularDisease iff  

KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable  

–  Algorithm tries to construct (an abstraction of) a model 



Highly Optimised Implementations 
•  Lazy unfolding 
•  Simplification and rewriting,  

 e.g.,  

•  HyperTableau (reduces non-determinism) 
•  Fast semi-decision procedures 
•  Search optimisations 
•  Reuse of previous computations 
•  Heuristics 

  Not computationally optimal,  
 but effective with many realistic ontologies 



Scalability Issues 
•  Problems with very large and/or cyclical ontologies 

–  Ontologies may define 10s/100s of thousands of terms 
–  Potentially vast number (n2) of tests needed for classification 

–  Each test can lead to construction of very large models 



Scalability Issues 
•  Problems with large data sets (ABoxes) 

–  Main reasoning problem is (conjunctive) query answering,  
e.g., retrieve all patients suffering from vascular disease: 

–  Decidability still open for OWL, although minor restrictions (on 
cycles in non-distinguished variables) restore decidability 

–  Query answering reduced to standard decision problem,  
e.g., by checking for each individual x if KB ² Q(x) 

–  Model construction starts with all ground facts (data) 

•  Typical applications may use data sets with  
10s/100s of millions of individuals (or more) 



OWL 2 Profiles 
•  OWL recommendation now updated to OWL 2 

•  OWL 2 defines several profiles – fragments with 
desirable computational properties 
–  OWL 2 EL targeted at very large ontologies 
–  OWL 2 QL targeted at very large data sets 



OWL 2 EL 
•  A (near maximal) fragment of OWL 2 such that 

–  Satisfiability checking is in PTime (PTime-Complete) 
–  Data complexity of query answering also PTime-Complete 

•  Based on EL family of description logics 

•  Can exploit saturation based reasoning techniques 
–  Computes complete classification in “one pass” 

–  Computationally optimal (PTime for EL) 

–  Can be extended to Horn fragment of OWL DL 



Saturation-based Technique (basics) 
•  Normalise ontology axioms to standard form: 

•  Saturate using inference rules: 

•  Extension to Horn fragment requires (many) more rules 
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Performance with large bio-medical ontologies: 

Saturation-based Technique 



OWL 2 QL 
•  A (near maximal) fragment of OWL 2 such that 

–  Data complexity of conjunctive query answering in AC0 

•  Based on DL-Lite family of description logics 

•  Can exploit query rewriting based reasoning technique 
–  Computationally optimal 
–  Data storage and query evaluation can be delegated to  

standard RDBMS 

–  Can be extended to more expressive languages (beyond AC0)  
by delegating query answering to a Datalog engine 



Query Rewriting Technique (basics) 
•  Given ontology O and query Q, use O to rewrite Q  

as Q0 s.t., for any set of ground facts A: 
–  ans(Q, O, A)  =  ans(Q0, ;, A) 
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Query Rewriting Technique (basics) 
•  Given ontology O and query Q, use O to rewrite Q  

as Q0 s.t., for any set of ground facts A: 
–  ans(Q, O, A)  =  ans(Q0, ;, A) 

•  Use (GAV) mapping M to map Q0 to SQL query 

•  Resolution based query rewriting  
–  Clausify ontology axioms 
–  Saturate (clausified) ontology and query using resolution 

–  Prune redundant query clauses 
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Query Rewriting Technique (basics) 
•  Example: 

•  For DL-Lite, result is a union of conjunctive queries 



Query Rewriting Technique (basics) 
•  Data can be stored/left in RDBMS 

•  Relationship between ontology and DB defined by 
mappings, e.g.: 



Query Rewriting Technique (basics) 
•  Data can be stored/left in RDBMS 

•  Relationship between ontology and DB defined by 
mappings, e.g.: 

•  UCQ translated into SQL query: 



Problems & Research Challenges 
•  Combining best features of DLs & DBs 

–  In particular, integrating OWA and CWA 

•  Hard to find a coherent semantic framework 
–  Problems mainly due to existential quantifiers: should  

existentially implied objects be considered different? 
•  Does a person owning a phone and an ipod own 2 things? 
•  Does a person owning a phone and an iphone own 2 things? 
•  Does a person owning a phone and a phone own 2 things? 

•  Interesting ideas emerging in DL & DB communities, e.g.: 
–  Calì et al. Datalog±: a unified approach to ontologies and integrity 

constraints. ICDT 2009. 

–  Motik et al. Bridging the gap between OWL and relational databases. 
WWW 2007. 
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•  Open questions w.r.t. query rewriting 

–  Currently only for very weak ontology languages 
–  Even for these languages, queries can get very large (order 

                  ), and existing RDBMSs may behave poorly 
•  Not clear if this will be a problem in practice, see, e.g., Savo et 

al. MASTRO at Work: Experiences on Ontology-based Data 
Access. DL 2010. 

–  Larger fragments require (at least) Datalog engines and/or 
extension to technique (e.g., partial materialisation) 

•  Promising new work in this area, see, e.g., Lutz et al. 
Conjunctive Query Answering in the Description Logic EL Using 
a Relational Database System. IJCAI 2009. 
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Problems & Research Challenges 
•  Infrastructure 

–  Standardised query language 
•  SPARQL standard for RDF 

•  Currently being extended for OWL, see http://www.w3.org/
2009/sparql/wiki/Main_Page 

–  Privacy and information hiding 
•  May want to keep parts of data/schema private 

•  Difficulties compounded when information can be inferred, see, 
e.g., Cuenca Grau et al. Privacy-preserving query answering in 
logic-based information systems. ECAI 2008. 

–  ... 
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•  Boris Motik 

•  Yevgeny Kazakov 

•  Héctor Pérez-Urbina 

•  Rob Shearer 

•  Bernardo Cuenca Grau 

•  Birte Glimm 



Thank you for listening 



Thank you for listening 

Any questions? 
FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc. 
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