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Description Logic Reasoning 



What Are Description Logics? 
•  Modern DLs (after Baader et al) distinguished by: 

–  Fully fledged logics with formal semantics 
•  Decidable fragments of FOL (often contained in C2) 

•  Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment 

–  Computational properties well understood (worst case complexity) 

–  Provision of inference services 
•  Practical decision procedures (algorithms) for key problems  

(satisfiability, subsumption, query answering, etc) 

•  Implemented systems (highly optimised) 
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Why Ontology Reasoning? 
•  Developing and maintaining quality ontologies is hard 
•  Reasoners allow domain experts to check if, e.g.: 

–  classes are consistent (no “obvious” errors) 
–  expected subsumptions hold (consistent with intuitions) 
–  unexpected equivalences hold (unintended synonyms) 

≡ 
Banana split Banana sundae 



•  Using ontologies in applications is also very challenging 
–  TBox (schema) may be large 

–  Abox (data) may be very large 

–  Query answers may depend on interactions between schema & data 

•  Query answering 
–  Is the parent of a Doctor necessarily a HappyParent? (schema) 

–  Is John a HappyParent? (schema + data) 

–  Retrieve all instances of Wizards having pet Owls (schema + data) 

Basic Reasoning Tasks 



•  Is an axiom/fact entailed by ontology/KB 
–  Ontology contains obvious errors 

 K ² C ´ ?  for some concept name C  ? 

–  Ontology is consistent with intuitions 
 K ² C v D s.t. expert believes C      D  ? 
K ² C      D or K ² C v D s.t. expert believes C v D  ? 

–  Ontology entails unexpected equivalences 
 K ² C ´ D  for concept names C and D  ? 

–  Ontology entails query answers 

 K ² (Parent u 9hasChild.Doctor) v HappyParent ? 
K ² John:HappyParent ? 
Retrieve all individuals a s.t. K ² a:(Wizard u 9 hasPet.Owl) 

Basic Reasoning Problem 



Reasoning Techniques 
•  Direct 

–  Specially designed reasoning algorithms 
–  Operate on the DL (more or less) directly 

•  Indirect 
–  Translate into some equivalent problem in another formalism 

–  Solve resulting problem using appropriate technology 



Direct Reasoning Techniques 
•  Two basic classes of algorithm 

–  Model construction 
•  Prove entailment does not hold by constructing model of KB in 

which axiom/fact is false 

•  E.g., tableau algorithms 

–  tableau expansion rules used to derive new ABox facts 

–  Proof derivation 
•  Prove entailment holds by deriving axiom/fact from KB 

•  E.g., structural, completion, rule-based algorithms  

–  deduction rules used to derive new TBox axioms 



Tableau Algorithms 
•  Currently the most widely used technique 

–  Basis for reasoners such as FaCT++, HermiT, Pellet, Racer, … 

•  Mainly used with more expressive logics (e.g., OWL) 
–  Standard technique is to negate premise axiom/fact 

–  HyperTableau may also work well with sub-Boolean DLs 

•  Most effective for schema reasoning 
–  Large datasets may necessitate construction of large models 

–  Query answering may require each possible answer to be 
checked 

–  Optimisations can limit but not eliminate these problems 



Tableau Algorithms 
•  Transform entailment to KB (un)satisfiability 
‒  K ² a:C  iff  K [ {a:(¬C)} is not satisfiable 
‒  K ² C v D  iff  K [ {a:(C u ¬D)} is not satisfiable (for new a) 

•  Start with facts explicitly asserted in ABox 
 e.g., John:HappyParent, John hasChild Mary 

•  Use expansion rules to derive new ABox facts 
 e.g., John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor) 

•  Construction fails if obvious contradiction (clash) 
 e.g., Mary:Doctor, Mary:¬Doctor 



Expansion Rules for ALC 

–  some rules are nondeterministic, e.g., t, · 

–  implementations use backtracking search 

• TexPoint Display 



Expansion Example 
T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary 

² Mary:Doctor ? 
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 John:HappyParent, John hasChild Mary 
Mary:¬Doctor 
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor) 
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Mary:(Doctor t 9hasChild.Doctor)  
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Expansion Example 
T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.? 

² Mary:Doctor ? 



Expansion Example 

 John:HappyParent, John hasChild Mary, Mary:8hasChild.? 

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.? 

² Mary:Doctor ? 



Expansion Example 

 John:HappyParent, John hasChild Mary, Mary:8hasChild.? 
Mary:¬Doctor 
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor) 
John:Person, John:9hasChild.Person 
Mary:(Doctor t 9hasChild.Doctor)  
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor) 
Mary:9hasChild.Doctor 
Mary hasChild b, b:Doctor, b:Person 

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.? 

² Mary:Doctor ? 



Expansion Example 

 John:HappyParent, John hasChild Mary, Mary:8hasChild.? 
Mary:¬Doctor 
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor) 
John:Person, John:9hasChild.Person 
Mary:(Doctor t 9hasChild.Doctor)  
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor) 
Mary:9hasChild.Doctor 
Mary hasChild b, b:Doctor, b:Person 
b:? 

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.? 

² Mary:Doctor ? 



Termination 
•  Simplest DLs are naturally terminating 

–  Rules produce strictly smaller concepts 

•  Most DLs require some form of blocking 
–  E.g., {Person v 9hasParent.Person, John:Person} 

•  Expressive DLs need more complex blocking 



Correctness 
 A decision procedure for KB satisfiability 
 Will always give an answer, and will always give the right answer 
i.e., it is correct (sound and complete) and terminating 

 Sound: if clash-free ABox is constructed, then KB is satisfiable 
 Given fully expanded clash-free ABox, we can trivially construct a model  

 Complete: if KB is satisfiable, then clash-free ABox is constructed 
 Given a model, we can use it to guide application of non-deterministic rules 

 Terminating: the algorithm will always produce an answer 
 Upper bound on number of new individuals we can create,  
so ABox construction will always terminate 



Highly Optimised Implementations 
•  Lazy unfolding 
•  Simplification and rewriting 

–  Absorption:  

•  Detection of tractable fragments (EL) 
•  Fast semi-decision procedures 

–  Told subsumer, model merging, … 

•  Search optimisations 
–  Dependency directed backtracking 

•  Reuse of previous computations 
–  Of (un)satisfiable sets of concepts (conjunctions) 

•  Heuristics 
–  Ordering don’t know and don’t care non-determinism 



Completion Algorithms 
•  Newer technique, but gaining in popularity 

–  Basis for reasoners such as CEL, snorocket, CB, … 

•  Mainly used with less expressive logics (e.g., OWL 2 EL) 
–  Usually restricted to deterministic fragments (e.g., no disjunction) 
–  But newer methods may be able to deal with nondeterminism 

•  Effective with very large schemas 
–  Polynomial time algorithms for Horn DLs (such as OWL 2 EL) 
–  Finds all subsumption relations in a single computation 

•  Also effective with very large data sets 
–  Polynomial in the size of the data 
–  New techniques exploit DB technology for scalability 



Completion Algorithms 
•  Transform KB axioms into simplified form 

–  e.g.,  

•  Use completion rules to derive new TBox axioms 
 e.g.,  ProudParent v 9hasChild.Doctor, 

  Doctor v Person, 
  9hasChild.Person v Parent 
  ProudParent v Parent 

•  Structural algorithms used with early DLs can be seen 
as naïve (and typically incomplete) form of completion 



Completion Rules for ELH 
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Correctness 
 A decision procedure for classification 
 Will always give an answer, and will always give the right answer 
i.e., it is correct (sound and complete) and terminating 

 Sound: if C v D is derived, then KB entails C v D 
 Completion rules are locally correct (preserve entailments)  

 Complete: if C v D is entailed by KB, then C v D is derived 
 Completion rules cover all cases 

 Terminating: the algorithm will always produce an answer 
 Upper bound on number of axioms of the form C v D or C v 9r.D,  
so completion will always “saturate” 



Query Rewriting 
•  Basis for systems such as QuOnto, Owlgres and Quill 
•  Mainly used with less expressive logics (e.g., OWL 2 QL) 

–  Usually restricted to deterministic fragments 
–  Axioms may also be asymmetric (different restrictions on lhs/rhs) 

•  Focus is on query answering 
–  Usually assume that TBox/schema is small and/or simple 

•  Effective with very large data sets 
–  Rewritings typically produce a Datalog program 
–  May even produce union of conjunctive queries (¼ SQL query) 

•  Data can be stored/left in relational DB 
•  Can delegate query answering to RDBMS 



Query Rewriting 
•  Use KB axioms T  to expand query Q to query QT 

 e.g.,  Professor v Teacher, 
  Q(x) Ã Teacher(x), 
  QT(x) Ã Professor(x) [ Teacher(x) 

•  Use mappings to evaluate expanded query against DB 
–  KB axioms no longer considered (internalised in query) 

–  ABox/DB not used in query rewriting 
•  Can be used without knowledge of DB contents and/or when 

access to DB is limited 

•  Can also use for schema reasoning 
–  C v D iff after adding a:C for new individual a, KB ² a:D 



System Architecture 
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Correctness 
•  Rewriting can be shown to be correct 

 i.e., 

•  Query answer is correct iff system used to compute  
     is correct 

–  e.g., if DBMS is sound complete and terminating  



Rule-Based Algorithms 
•  Basis for systems such as Oracle’s OWL Prime 

–  And widely used to provide some OWL support in rule systems 

•  Mainly used with less expressive logics (e.g., OWL 2 RL) 
–  Usually restricted to deterministic and existential-free fragments 

•  No disjunction and cannot infer existence of new individuals 

–  Syntactic restrictions may also be asymmetric 
•  e.g., existentials allowed on lhs of axioms, but not on rhs 

•  Focus is on query answering 
–  Usually assume that TBox/schema is small and/or simple 

•  Can be effective with large data sets 
–  Use rule-extended RDBMS for efficiency 



Rule-Based Algorithms 
•  Rules operate on KB axioms and facts 

–  Axioms and facts often in the form of RDF triples 
–  e.g.,  Doctor v Person, John:Doctor 

   <Doctor rdfs:subClassOf Person>, <John rdf:type Doctor> 

•  Rules materialise implied facts (triples) in ABox 
 e.g.,  <?x rdf:type ?c2> Ã <?c1 rdfs:subClassOf ?c2> ^Æ <?x, rdf:type, ?c1> 

  <Doctor rdfs:subClassOf Person> 
  <John rdf:type Doctor> 
  <John rdf:type Person> 

•  Rules applied until ABox is saturated 
–  Query answering then reduces to look-up in saturated Abox 

–  Can be delegated to DBMS if saturated ABox stored in DB 



Rules for OWL RL (DLP) 

   

•  There are many rules 
–  This is only one of 9 tables, most of which are much larger 



Correctness 
•  Typically sound but not complete 
•  May be complete for certain kinds of KB + query 

–  Implementations based OWL 2 RL rules will be complete 
w.r.t. atomic facts, i.e., facts of the form 

 a:C 
a P b 

 where C is a class name and P is a property 



Other Reasoning Services 



•  Range of new “non-standard” services supporting, e.g.: 
–  Error diagnosis and repair 

Other Reasoning Services 



Advanced Reasoning Tasks 
•  Range of new “non-standard” services supporting, e.g.: 

–  Modular design and integration 
•  What is the effect of merging O2 into O1? 

–  Module Extraction 
•  Extract a (small) module from O capturing all “relevant” information 

about some concept or set of concepts 

–  Query and Predicate emptiness 
•  Check if query (or query containing given predicate) is empty for  

all ABoxes 
–  Bottom-up design 

•  Find a (small and specific) concept describing a set of individuals 



Recent and Future Work 
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Ontology Languages & Formalisms 
•  DLs poor for modelling non-tree structures 

–  E.g., physically structured objects 

•  Description graphs [1] allow for modelling “prototypes” 
–  Prototypes resemble small ABoxes  

–  Reasoning performance may also be significantly improved 

–  Some restrictions needed for decidability 
•  E.g., on roles used in TBox and in prototypes 

[1]  Motik, Cuenca Grau, Horrocks, and Sattler. Representing Structured Objects using Description 
Graphs. In Proc. of KR 2008. 



Ontology Languages & Formalisms 
•  Integration of (expressive) DLs with DBs 

–  Open world semantics can be unintuitive 
•  Users may want integrity constraints as well as axioms 

–  Reasoning with data can be problematical 
•  Scalability & persistence are both issues 

–  Solution could be closer integration with DBs [1] 
•  Challenge is to find a coherent yet practical semantics 

[1] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the Gap Between OWL and Relational 
Databases. In Proc. of WWW 2007. 



New Reasoning Techniques 
•  New hypertableau calculus [1] 

–  Uses more complex hyper-resolution style expansion rules 
•  Reduces non-determinism 

–  Uses more sophisticated blocking technique 
•  Reduces model size 

•  New HermiT DL reasoner 
–  Implements optimised hypertableau algorithm [2] 
–  Already outperforms SOTA tableau reasoners 

[1] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in Description Logics 
using Hypertableaux. In Proc. of CADE 2007. 

[2] Boris Motik and Ian Horrocks. Individual Reuse in Description Logic Reasoning. In Proc. of 
IJCAR 2008. 



New Reasoning Techniques 
•  Completion-based decision procedures [1] 

–  Use proof search rather than model search 
–  Crucial “trick” is to use tableau like techniques to guide and 

restrict derivations 

–  Reasoning time for SNOMED reduced by 2 orders of 
magnitude 

[1]  Yevgeny Kazakov. Consequence-Driven Reasoning for Horn SHIQ Ontologies. Proc. of 
IJCAI 2009 (best paper). 



New Reasoning Techniques 
•  “Combined” decision procedures [1] 

–  Combination of materialisation and query rewriting 
–  Partial saturation of ABox to deal with existentials 

•  adds new “representative” individuals 

–  Enhanced query rewriting applied to part-saturated ABox 

–  Sound and complete for (at least) OWL 2 EL ontologies 
–  Early experiments very encouraging w.r.t. scalability 

[1]  Carsten Lutz, David Toman, and Frank Wolter. Conjunctive Query Answering in the 
Description Logic EL using a Relational Database System. Proc. of IJCAI 2009. 



New Reasoning Services 
•  Support for ontology re-use 

–  Integrate multiple ontologies [1] and/or Extract (small) 
modules [2] 

–  New reasoning problems arise 
•  Conservative extension, safety, .. 

[1]  Bernardo Cuenca Grau, Yevgeny Kazakov, Ian Horrocks, and Ulrike Sattler. A Logical 
Framework for Modular Integration of Ontologies. In Proc. of IJCAI 2007. 

[2]  Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular Reuse 
of Ontologies: Theory and Practice. JAIR, 31:273-318, 2008. 



New Reasoning Services 
•  Conjunctive query answering 

–  Expressive query language for ontologies [1, 2] 

–  Long-standing open problems 
•  E.g., decidability of SHOIQ conjunctive query answering 

[1]  Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive Query Answering for 
the Description Logic SHIQ. JAIR, 31:157-204, 2008. 

[2]  Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of Conjunctive Queries in SHOQ. In 
Proc. of KR 2008. 



Summary 
•  DLs are a family of logic based KR formalisms 

–  Useful subsets of First Order Logic 

–  Basis for ontology languages such as OWL 

•  Motivating applications in, e.g., life sciences and semantic web 

•  Reasoning systems support ontology development & deployment 
–  Different reasoning techniques for different applications 

–  Robust and scalable reasoning systems available 

•  Very active research area with many open problems 
–  New logics 

–  New reasoning tasks 

–  New algorithms and implementations 

–  … 



Resources 
•  OWL 2 

–  Working group http://www.w3.org/2007/OWL/wiki/ 

–  Language http://www.w3.org/TR/owl2-overview/  

–  Systems http://www.w3.org/2007/OWL/wiki/Implementations 

•  Tools and Systems 
–  http://www.cs.man.ac.uk/~sattler/reasoners.html 

–  http://protege.stanford.edu/overview/protege-owl.html  
•  Select bibliography 

–  F. Baader, I. Horrocks, and U. Sattler. Description Logics. In Handbook of 
Knowledge Representation. Elsevier, 2007. 
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf  

–  Ian Horrocks. Ontologies and the semantic web. Communications of the 
ACM, 51(12):58-67, December 2008. 
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2008/Horr08a.pdf  


