Description Logic: A Formal Foundation for Ontology Languages and Tools

Part 2: Tools

Ian Horrocks
<iian.horrocks@comlab.ox.ac.uk>
Information Systems Group
Oxford University Computing Laboratory
Contents

• Motivation for Description Logic reasoning
• Basic reasoning tasks/problems
• Reasoning techniques
 – Tableau
 – Completion
 – Query rewriting
 – Rule-based
• Other reasoning tasks
• Recent and future work
Description Logic Reasoning
What Are Description Logics?

• Modern DLs (after Baader et al) distinguished by:
 – Fully fledged logics with formal semantics
 • Decidable fragments of FOL (often contained in C_2)
 • Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 – Computational properties well understood (worst case complexity)
 – Provision of inference services
 • Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, query answering, etc)
 • Implemented systems (highly optimised)
What Are Description Logics?

• Modern DLs (after Baader et al) distinguished by:
 – Fully fledged logics with formal semantics
 • Decidable fragments of FOL (often contained in C_2)
 • Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 – Computational properties well understood (worst case complexity)
 – **Provision of inference services**
 • Practical decision procedures (algorithms) for key problems
 (satisfiability, subsumption, query answering, etc)
 • Implemented systems (highly optimised)
Why Ontology Reasoning?

- Developing and maintaining quality ontologies is hard
Why Ontology Reasoning?

- Developing and maintaining quality ontologies is **hard**
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no “obvious” errors)
Why Ontology Reasoning?

• Developing and maintaining quality ontologies is **hard**
• Reasoners allow domain experts to check if, e.g.:
 – classes are consistent (no “obvious” errors)
 – expected subsumptions hold (consistent with intuitions)
Why Ontology Reasoning?

- Developing and maintaining quality ontologies is **hard**
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no “obvious” errors)
 - expected subsumptions hold (consistent with intuitions)
 - unexpected equivalences hold (unintended synonyms)

Banana split \(\equiv\) Banana sundae
Basic Reasoning Tasks

- **Using ontologies** in applications is also very challenging
 - TBox (schema) may be large
 - Abox (data) may be very large
 - Query answers may depend on interactions between schema & data

- **Query answering**
 - Is the parent of a Doctor necessarily a HappyParent? (schema)
 - Is John a HappyParent? (schema + data)
 - Retrieve all instances of Wizards having pet Owls (schema + data)
Basic Reasoning Problem

• Is an axiom/fact **entailed** by ontology/KB
 - Ontology contains **obvious errors**
 \[\mathcal{K} \models C \equiv \bot \text{ for some concept name } C \ ? \]
 - Ontology is **consistent with intuitions**
 \[\mathcal{K} \models C \sqsubseteq D \text{ s.t. expert believes } C \not\sqsubseteq D \ ? \]
 \[\mathcal{K} \models C \not\sqsubseteq D \text{ or } \mathcal{K} \models C \sqsubseteq D \text{ s.t. expert believes } C \sqsubseteq D \ ? \]
 - Ontology entails **unexpected equivalences**
 \[\mathcal{K} \models C \equiv D \text{ for concept names } C \text{ and } D \ ? \]
 - Ontology entails **query answers**
 \[\mathcal{K} \models (\text{Parent} \sqcap \exists \text{hasChild.Doctor}) \sqsubseteq \text{HappyParent} \ ? \]
 \[\mathcal{K} \models \text{John:HappyParent} \ ? \]
 Retrieve all individuals a s.t. \(\mathcal{K} \models a:(\text{Wizard} \sqcap \exists \text{hasPet.Owl}) \)
Reasoning Techniques

• **Direct**
 – Specially designed reasoning algorithms
 – Operate on the DL (more or less) directly

• **Indirect**
 – Translate into some equivalent problem in another formalism
 – Solve resulting problem using appropriate technology
Direct Reasoning Techniques

• Two basic classes of algorithm
 – Model construction
 • Prove entailment does not hold by constructing model of KB in which axiom/fact is false
 • E.g., tableau algorithms
 – tableau expansion rules used to derive new ABox facts
 – Proof derivation
 • Prove entailment holds by deriving axiom/fact from KB
 • E.g., structural, completion, rule-based algorithms
 – deduction rules used to derive new TBox axioms
Tableau Algorithms

- Currently the most *widely used* technique
 - Basis for reasoners such as FaCT++, HermiT, Pellet, Racer, …
- Mainly used with more expressive logics (e.g., OWL)
 - Standard technique is to negate premise axiom/fact
 - HyperTableau may also work well with sub-Boolean DLs
- Most effective for *schema reasoning*
 - Large datasets may necessitate construction of large models
 - Query answering may require each possible answer to be checked
 - Optimisations can limit but not eliminate these problems
Tableau Algorithms

• Transform entailment to KB (un)satisfiability
 - $\mathcal{K} \vDash a: C$ iff $\mathcal{K} \cup \{a:(\neg C)\}$ is not satisfiable
 - $\mathcal{K} \vDash C \sqsubseteq D$ iff $\mathcal{K} \cup \{a:(C \cap \neg D)\}$ is not satisfiable (for new a)

• Start with facts explicitly asserted in ABox
 e.g., John:HappyParent, John hasChild Mary

• Use expansion rules to derive new ABox facts
 e.g., John:Parent, John: \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor)

• Construction fails if obvious contradiction (clash)
 e.g., Mary:Doctor, Mary:\negDoctor
Expansion Rules for \mathcal{ALC}

\sqcap-rule: if 1. $a : (C_1 \sqcap C_2) \in A$, and
 2. $\{a : C_1, a : C_2\} \not\subseteq A$
then set $A_1 = A \cup \{a : C_1, a : C_2\}$

\sqcup-rule: if 1. $a : (C_1 \sqcup C_2) \in A$, and
 2. $\{a : C_1, a : C_2\} \cap A = \emptyset$
then set $A_1 = A \cup \{a : C_1\}$ and $A_2 = A \cup \{a : C_2\}$

\exists-rule: if 1. $a : (\exists S.C) \in A$, and
 2. there is no b such that $\{\langle a, b \rangle : S, b : C\} \subseteq A$,
then set $A_1 = A \cup \{\langle a, d \rangle : S, d : C\}$, where d is new in A

\forall-rule: if 1. $\{a : (\forall S.C), \langle a, b \rangle : S\} \subseteq A$, and
 2. $b : C \notin A$
then set $A_1 = A \cup \{b : C\}$

- some rules are non-deterministic, e.g., \sqcup, \sqcap
- implementations use backtracking search
Expansion Example

\[\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.}\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild.}(\text{Doctor} \sqsupset \exists \text{hasChild.}\text{Doctor}) \}\]
\[\mathcal{A} = \{ \text{John:HappyParent}, \text{John hasChild Mary} \}
\[\models \text{Mary:Doctor} \]
Expansion Example

\[T = \{ \text{Doctor} \subseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\quad \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary} \} \]

\[\equiv \text{Mary:Doctor} \quad ? \]

John:HappyParent, John hasChild Mary
Expansion Example

\[T = \{ \text{Doctor} \subseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent, John hasChild Mary} \} \]

\[\text{Mary:Doctor} \]

John:HappyParent, John hasChild Mary
Mary:¬Doctor
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent, John hasChild Mary} \} \]

? \equiv \text{Mary:Doctor}

John:HappyParent, John hasChild Mary
Mary:¬\text{Doctor}
John:Parent, John:∀hasChild.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person, Parent} \equiv \text{Person} \sqcap \exists \text{hasChild. Person,}
\]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild. (Doctor} \sqcup \exists \text{hasChild. Doctor)} \}\]
\[A = \{ \text{John:HappyParent, John hasChild Mary} \}
\]

\[\equiv \begin{array}{l}
\text{Mary:Doctor} \\
\text{John:HappyParent, John hasChild Mary} \\
\text{Mary:}\neg\text{Doctor} \\
\text{John:Parent, John:}\forall \text{hasChild. (Doctor} \sqcup \exists \text{hasChild. Doctor)} \\
\text{John:Person, John:}\exists \text{hasChild. Person}
\end{array}
\]
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \\
\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]

\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary} \} \]

\[\equiv \text{Mary:Doctor} \]

\[
\begin{align*}
\text{John:HappyParent, John hasChild Mary} \\
\text{Mary:¬Doctor} \\
\text{John:Parent, John:∀hasChild.(Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \\
\text{John:Person, John:∃hasChild.Person} \\
\text{Mary:(Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})
\end{align*}
\]
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.} \text{Person}, \]
\[\qquad \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild.} (\text{Doctor} \sqcup \exists \text{hasChild.} \text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent, John hasChild Mary} \} \]

\[\equiv \text{Mary:Doctor} \]

\[\text{John:HappyParent, John hasChild Mary} \]
\[\text{Mary:}\lnot \text{Doctor} \]
\[\text{John:Parent, John:}\forall \text{hasChild.} (\text{Doctor} \sqcup \exists \text{hasChild.} \text{Doctor}) \]
\[\text{John:Person, John:}\exists \text{hasChild.} \text{Person} \]
\[\text{Mary:} (\text{Doctor} \sqcup \exists \text{hasChild.} \text{Doctor}) \]
\[\text{John hasChild a, a:Person, a:} (\text{Doctor} \sqcup \exists \text{hasChild.} \text{Doctor}) \]
Expansion Example

\[T = \{ \text{Doctor} \subseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\quad \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent, John hasChild Mary} \} \]

\[\models \text{Mary:Doctor} \]

\[\xmark \text{John:HappyParent, John hasChild Mary} \]
\[\xmark \text{Mary:~Doctor} \]
\[\text{John:Parent, John:}\forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \]
\[\text{John:Person, John:}\exists \text{hasChild}.\text{Person} \]
\[\text{Mary:}(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \]
\[\text{John hasChild a, a:Person, a:}(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \]
\[\xmark \text{Mary:Doctor} \]
Expansion Example

\[\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqsupseteq \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqsupseteq \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[\mathcal{A} = \{ \text{John:HappyParent, John hasChild Mary} \} \]

\[\equiv \text{Mary:Doctor} \ ? \]

John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:∀hasChild.(Doctor \sqcup \exists hasChild.\text{Doctor})
John:Person, John:∃hasChild.\text{Person}
Mary:(Doctor \sqcup \exists hasChild.\text{Doctor})
John hasChild a, a:Person, a:(Doctor \sqcup \exists hasChild.\text{Doctor})
Expansion Example

\(\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.P}erson, \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild.(Doctor} \sqcup \exists \text{hasChild.Doctor)} \} \)

\(\mathcal{A} = \{ \text{John:HappyParent, John hasChild Mary} \} \)

\(\equiv \text{Mary:Doctor} \quad ? \)

John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:∀hasChild.(Doctor \sqcup \exists \text{hasChild.Doctor})
John:Person, John:∃hasChild.Person
Mary:(Doctor \sqcup \exists \text{hasChild.Doctor})
John hasChild a, a:Person, a:(Doctor \sqcup \exists \text{hasChild.Doctor})
Mary:∃hasChild.Doctor
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild} \cdot \text{Person}, \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild} \cdot (\text{Doctor} \sqcup \exists \text{hasChild} \cdot \text{Doctor}) \} \]

\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary} \} \]

\[\models \text{Mary:Doctor} \]

John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:∀hasChild.(Doctor ⊃ ∃hasChild.Doctor)
John:Person, John:∃hasChild.Person
Mary:(Doctor ⊃ ∃hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor ⊃ ∃hasChild.Doctor)
Mary:∃hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]

\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary} \} \]

\[\equiv \text{Mary:Doctor} \]

- John:HappyParent, John hasChild Mary
- Mary:¬Doctor
- John:Parent, John:∀hasChild.(Doctor ⊃ ∃hasChild.Doctor)
- John:Person, John:∃hasChild.Person
- Mary:(Doctor ⊃ ∃hasChild.Doctor)
- John hasChild a, a:Person, a:(Doctor ⊃ ∃hasChild.Doctor)
- Mary:∃hasChild.Doctor
- Mary hasChild b, b:Doctor, b:Person
- a:Doctor
Expansion Example

\[\mathcal{T} = \{\text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \quad \text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})\}\]

\[\mathcal{A} = \{\text{John:HappyParent}, \text{John hasChild Mary}, \text{Mary:}\forall \text{hasChild.}\bot\}\]

\[\vDash \text{Mary:Doctor} \quad ?\]
Expansion Example

\[T = \{ \text{Doctor} \subseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqsubseteq \exists \text{hasChild}.\text{Doctor}) \} \]

\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary, Mary:\forall hasChild.} \bot \} \]

? Mary:Doctor

John:HappyParent, John hasChild Mary, Mary:\forall hasChild.\bot
Expansion Example

$\mathcal{T} = \{\text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person},$
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor})\}$
$\mathcal{A} = \{\text{John:HappyParent}, \text{John hasChild Mary, Mary:}\forall \text{hasChild}\downarrow\}$

$\equiv \text{Mary:Doctor} \quad ?$

John:HappyParent, John hasChild Mary, Mary:∀hasChild.⊥
Mary:¬Doctor
John:Parent, John:∀hasChild.(Doctor ⊃ ∃hasChild.Doctor)
John:Person, John:∃hasChild.Person
Mary:(Doctor ⊃ ∃hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor ⊃ ∃hasChild.Doctor)
Mary:∃hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person
Expansion Example

\[T = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\text{Person}, \]
\[\text{HappyParent} \equiv \text{Parent} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \exists \text{hasChild}.\text{Doctor}) \} \]
\[A = \{ \text{John:HappyParent}, \text{John hasChild Mary}, \text{Mary:}\forall \text{hasChild.}\bot \}

≡ Mary:Doctor

John:HappyParent, John hasChild Mary, Mary:∀hasChild.⊥
Mary:¬Doctor
John:Parent, John:∀hasChild.(Doctor ⊃ ∃hasChild.Doctor)
John:Person, John:∃hasChild.Person
Mary:(Doctor ⊃ ∃hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor ⊃ ∃hasChild.Doctor)
Mary:∃hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person

✗ b:⊥
Termination

• Simplest DLs are naturally terminating
 – Rules produce strictly smaller concepts

• Most DLs require some form of blocking
 – E.g., \{Person \sqsubseteq \exists\text{hasParent}.\text{Person}, \text{John}:\text{Person}\}

• Expressive DLs need more complex blocking
Correctness

A decision procedure for KB satisfiability

Will always give an answer, and will always give the right answer i.e., it is correct (sound and complete) and terminating

Sound: if clash-free ABox is constructed, then KB is satisfiable
 Given fully expanded clash-free ABox, we can trivially construct a model

Complete: if KB is satisfiable, then clash-free ABox is constructed
 Given a model, we can use it to guide application of non-deterministic rules

Terminating: the algorithm will always produce an answer
 Upper bound on number of new individuals we can create, so ABox construction will always terminate
Highly Optimised Implementations

• Lazy unfolding
• Simplification and rewriting
 – Absorption: \(A \cap B \subseteq C \rightarrow A \sqsubseteq C \sqcup \neg B \)
• Detection of tractable fragments (\(E\mathcal{L} \))
• Fast semi-decision procedures
 – Told subsumer, model merging, …
• Search optimisations
 – Dependency directed backtracking
• Reuse of previous computations
 – Of (un)satisfiable sets of concepts (conjunctions)
• Heuristics
 – Ordering don’t know and don’t care non-determinism
Completion Algorithms

• **Newer technique**, but gaining in popularity
 – Basis for reasoners such as CEL, snorocket, CB, …

• Mainly used with less expressive logics (e.g., OWL 2 EL)
 – Usually restricted to deterministic fragments (e.g., no disjunction)
 – But newer methods may be able to deal with nondeterminism

• **Effective with very large schemas**
 – Polynomial time algorithms for Horn DLs (such as OWL 2 EL)
 – Finds all subsumption relations in a single computation

• **Also effective with very large data sets**
 – Polynomial in the size of the data
 – New techniques exploit DB technology for scalability
Completion Algorithms

• Transform KB axioms into simplified form
 - e.g., \(C \subseteq \exists R. (C \cap D) \sim C \subseteq \exists R. A, A \subseteq C \cap D \)

• Use completion rules to derive new TBox axioms
 e.g.,

 ProudParent \subseteq \exists \text{hasChild}.Doctor,

 Doctor \subseteq \text{Person},

 \exists \text{hasChild}.\text{Person} \subseteq \text{Parent}

 \sim ProudParent \subseteq \text{Parent}

• Structural algorithms used with early DLs can be seen as naïve (and typically incomplete) form of completion
Completion Rules for \mathcal{ELH}

\[
\begin{align*}
A & \sqsubseteq B & B & \sqsubseteq C \in \mathcal{O} \\
& & A & \sqsubseteq C
\end{align*}
\]

\[
\begin{align*}
A & \sqsubseteq B & A & \sqsubseteq C & B \cap C & \sqsubseteq D \in \mathcal{O} \\
& & A & \sqsubseteq D
\end{align*}
\]

\[
\begin{align*}
A & \sqsubseteq B & B & \sqsubseteq \exists r.C \in \mathcal{O} \\
& & A & \sqsubseteq \exists r.C
\end{align*}
\]

\[
\begin{align*}
A & \sqsubseteq \exists r.B & r & \sqsubseteq s \in \mathcal{O} \\
& & A & \sqsubseteq \exists s.B
\end{align*}
\]

\[
\begin{align*}
A & \sqsubseteq \exists r.B & B & \sqsubseteq C & \exists r.C & \sqsubseteq D \in \mathcal{O} \\
& & A & \sqsubseteq D
\end{align*}
\]
Completion Rules for \mathcal{ELH}

\[
\frac{A \sqsubseteq B \quad B \sqsubseteq C \in \mathcal{O}}{A \sqsubseteq C} \\
\frac{A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D \in \mathcal{O}}{A \sqsubseteq D} \\
\frac{A \sqsubseteq B \quad B \sqsubseteq \exists r.C \in \mathcal{O}}{A \sqsubseteq \exists r.C} \\
\frac{A \sqsubseteq \exists r.B \quad r \sqsubseteq s \in \mathcal{O}}{A \sqsubseteq \exists s.B} \\
\frac{A \sqsubseteq \exists r.B \quad B \sqsubseteq C \quad \exists r.C \sqsubseteq D \in \mathcal{O}}{A \sqsubseteq D}
\]
Correctness

A decision procedure for classification

Will always give an answer, and will always give the right answer i.e., it is correct (sound and complete) and terminating

Sound: if $C \sqsubseteq D$ is derived, then KB entails $C \sqsubseteq D$

Completion rules are locally correct (preserve entailments)

Complete: if $C \sqsubseteq D$ is entailed by KB, then $C \sqsubseteq D$ is derived

Completion rules cover all cases

Terminating: the algorithm will always produce an answer

Upper bound on number of axioms of the form $C \sqsubseteq D$ or $C \sqsubseteq \exists r.D$, so completion will always “saturate”
Query Rewriting

• Basis for systems such as QuOnto, Owlgres and Quill
• Mainly used with less expressive logics (e.g., OWL 2 QL)
 – Usually restricted to deterministic fragments
 – Axioms may also be asymmetric (different restrictions on lhs/rhs)
• Focus is on query answering
 – Usually assume that TBox/schema is small and/or simple
• Effective with very large data sets
 – Rewritings typically produce a Datalog program
 – May even produce union of conjunctive queries (≈ SQL query)
 • Data can be stored/left in relational DB
 • Can delegate query answering to RDBMS
Query Rewriting

• Use KB axioms \mathcal{T} to expand query Q to query $Q_{\mathcal{T}}$

 e.g., $\text{Professor} \sqsubseteq \text{Teacher}$,
 $Q(x) \leftarrow \text{Teacher}(x)$,
 $\sim \sim Q_{\mathcal{T}}(x) \leftarrow \text{Professor}(x) \cup \text{Teacher}(x)$

• Use mappings to evaluate expanded query against DB
 – KB axioms no longer considered (internalised in query)
 – ABox/DB not used in query rewriting
 • Can be used without knowledge of DB contents and/or when access to DB is limited

• Can also use for schema reasoning
 – $C \sqsubseteq D$ iff after adding $a:C$ for new individual a, $\text{KB} \vDash a:D$
System Architecture

\[
\begin{align*}
\mathcal{T} & \rightarrow \text{Rewriter} \xrightarrow{Q_T} \text{Evaluator} \rightarrow \text{ans}(Q, \langle \mathcal{T}, \mathcal{A} \rangle) \\
\end{align*}
\]
Query Rewriting Example

\[\mathcal{T} = \]

\[
\begin{align*}
\text{Teacher} & \sqsubseteq \exists \text{teaches} \\
\text{Professor} & \sqsubseteq \text{Teacher} \\
\exists \text{hasTutor}^{-} & \sqsubseteq \text{Professor}
\end{align*}
\]

\[\mathcal{M} = \]

\[
\begin{align*}
\text{Professor} & \mapsto \text{SELECT 1 FROM Professor} \\
\text{hasTutor} & \mapsto \text{SELECT 1,2 FROM hasTutor}
\end{align*}
\]

\[Q_0(x) \leftarrow \text{teaches}(x, y) \]
Query Rewriting Example

$\mathcal{T} =$

- Teacher $\sqsubseteq \exists$ teaches
- Professor \sqsubseteq Teacher
- \exists hasTutor$^{-} \sqsubseteq$ Professor

$\mathcal{M} =$

- Professor \mapsto SELECT 1 FROM Professor
- hasTutor \mapsto SELECT 1, 2 FROM hasTutor

$Q_0(x) \leftarrow$ teaches(x, y)
$Q_0(x) \leftarrow$ Teacher(x)
$Q_0(x) \leftarrow$ Professor(x)
$Q_0(x) \leftarrow$ hasTutor(y, x)
Query Rewriting Example

$T = \begin{align*}
\text{Teacher} \sqsubseteq & \exists \text{teaches} \\
\text{Professor} \sqsubseteq & \text{Teacher} \\
\exists \text{hasTutor}^{-} \sqsubseteq & \text{Professor}
\end{align*}$

$M = \begin{align*}
\text{Professor} & \mapsto \text{SELECT 1 FROM Professor} \\
\text{hasTutor} & \mapsto \text{SELECT 1,2 FROM hasTutor}
\end{align*}$

$Q_T = \begin{align*}
\text{SELECT 1 FROM Professor} & \text{ UNION } \\
\text{SELECT 2 FROM hasTutor}
\end{align*}$

$Q_0(x) \leftarrow \text{teaches}(x, y)$
$Q_0(x) \leftarrow \text{Teacher}(x)$
$Q_0(x) \leftarrow \text{Professor}(x)$
$Q_0(x) \leftarrow \text{hasTutor}(y, x)$
Query Rewriting Example

\[\mathcal{T} = \begin{align*}
\text{Teacher} &\subseteq \exists \text{teaches} \\
\text{Professor} &\subseteq \text{Teacher} \\
\exists \text{hasTutor} &\subseteq \text{Professor}
\end{align*} \]

\[Q_0(x) \leftarrow \text{teaches}(x, y) \]
\[Q_0(x) \leftarrow \text{Teacher}(x) \]
\[Q_0(x) \leftarrow \text{Professor}(x) \]
\[Q_0(x) \leftarrow \text{hasTutor}(y, x) \]

\[\mathcal{M} = \begin{align*}
\text{Professor} &\mapsto \text{SELECT 1 FROM Professor} \\
\text{hasTutor} &\mapsto \text{SELECT 1,2 FROM hasTutor}
\end{align*} \]

\[Q_T = \text{SELECT 1 FROM Professor UNION SELECT 2 FROM hasTutor} \]

\[\text{DB = } \begin{align*}
\text{Professor} = \{\text{Michael}\} \\
\text{hasTutor} = \{\langle \text{Rob, Ian} \rangle, \langle \text{Bruno, Georg} \rangle\}
\end{align*} \]
Query Rewriting Example

\[T = \begin{align*}
\text{Teacher} &\subseteq \exists \text{teaches} \\
\text{Professor} &\subseteq \text{Teacher} \\
\exists \text{hasTutor} &\subseteq \text{Professor}
\end{align*} \]

\[M = \begin{align*}
\text{Professor} &\mapsto \text{SELECT 1 FROM Professor} \\
\text{hasTutor} &\mapsto \text{SELECT 1, 2 FROM hasTutor}
\end{align*} \]

\[Q_T = \begin{align*}
\text{SELECT 1 FROM Professor UNION} \\
\text{SELECT 2 FROM hasTutor}
\end{align*} \]

\[DB = \begin{align*}
\text{Professor} &= \{\text{Michael}\} \\
\text{hasTutor} &= \{\langle \text{Rob, Ian}\rangle, \langle \text{Bruno, Georg}\rangle\}
\end{align*} \]

\[\text{ans}(Q_0, \langle T_0, A_0 \rangle) = \{\text{Michael, Ian, Georg}\} \]
Correctness

• Rewriting can be shown to be correct
 i.e., \(\text{ans}(Q, \langle T, A \rangle) = \text{ans}(Q_T, \langle \emptyset, A \rangle) \)

• Query answer is correct iff system used to compute \(\text{ans}(Q_T, \langle \emptyset, A \rangle) \) is correct
 – e.g., if DBMS is sound complete and terminating
Rule-Based Algorithms

• Basis for systems such as Oracle’s OWL Prime
 – And widely used to provide some OWL support in rule systems

• Mainly used with less expressive logics (e.g., OWL 2 RL)
 – Usually restricted to deterministic and existential-free fragments
 • No disjunction and cannot infer existence of new individuals
 – Syntactic restrictions may also be asymmetric
 • e.g., existentials allowed on lhs of axioms, but not on rhs

• Focus is on query answering
 – Usually assume that TBox/schema is small and/or simple

• Can be effective with large data sets
 – Use rule-extended RDBMS for efficiency
Rule-Based Algorithms

• Rules operate on KB axioms and facts
 – Axioms and facts often in the form of RDF triples
 – e.g., Doctor ⊆ Person, John:Doctor
 \[\sim \] <Doctor rdfs:subClassOf Person>, <John rdf:type Doctor>

• Rules **materialise** implied facts (triples) in ABox

 e.g.,

 \[?x \text{ rdf:type } ?c_2 \leftarrow ?c_1 \text{ rdfs:subClassOf } ?c_2 \land ?x, \text{ rdf:type, } ?c_1 \]
 \[<\text{Doctor rdfs:subClassOf Person}> \]
 \[<\text{John rdf:type Doctor}> \]
 \[\sim \]
 \[<\text{John rdf:type Person}> \]

• Rules applied until ABox is **saturated**
 – Query answering then reduces to look-up in saturated Abox
 – Can be delegated to DBMS if saturated ABox stored in DB
Rules for OWL RL (*DLP*)

- There are many rules
 - This is only one of 9 tables, most of which are much larger
Correctness

• Typically **sound but not complete**
• May be complete for certain kinds of KB + query
 – Implementations based **OWL 2 RL rules** will be complete w.r.t. atomic facts, i.e., facts of the form

 a: C
 a P b

 where C is a class name and P is a property
Other Reasoning Services
Other Reasoning Services

- Range of new “non-standard” services supporting, e.g.:
 - Error diagnosis and repair
Advanced Reasoning Tasks

- Range of new “non-standard” services supporting, e.g.:
 - Modular design and integration
 - What is the effect of merging O_2 into O_1?
 - Module Extraction
 - Extract a (small) module from O capturing all “relevant” information about some concept or set of concepts
 - Query and Predicate emptiness
 - Check if query (or query containing given predicate) is empty for all ABoxes
 - Bottom-up design
 - Find a (small and specific) concept describing a set of individuals
Recent and Future Work
Ontology Languages & Formalisms

• DLs poor for modelling non-tree structures
 – E.g., physically structured objects
Ontology Languages & Formalisms

- DLs poor for modelling non-tree structures
 - E.g., physically structured objects
Ontology Languages & Formalisms

• DLs poor for modelling non-tree structures
 – E.g., physically structured objects

• Description graphs [1] allow for modelling “prototypes”
 – Prototypes resemble small ABoxes
 – Reasoning performance may also be significantly improved
 – Some restrictions needed for decidability
 • E.g., on roles used in TBox and in prototypes

Ontology Languages & Formalisms

• Integration of (expressive) DLs with DBs
 – Open world semantics can be unintuitive
 • Users may want integrity constraints as well as axioms
 – Reasoning with data can be problematical
 • Scalability & persistence are both issues
 – Solution could be closer integration with DBs [1]
 • Challenge is to find a coherent yet practical semantics

New Reasoning Techniques

- New **hypertableau** calculus [1]
 - Uses more complex hyper-resolution style expansion rules
 - Reduces non-determinism
 - Uses more sophisticated blocking technique
 - Reduces model size

- New **HermiT** DL reasoner
 - Implements optimised hypertableau algorithm [2]
 - Already outperforms SOTA tableau reasoners

New Reasoning Techniques

• **Completion-based** decision procedures [1]

 – Use proof search rather than model search

 – Crucial “trick” is to use tableau like techniques to guide and restrict derivations

 – Reasoning time for SNOMED reduced by 2 orders of magnitude

New Reasoning Techniques

• “Combined” decision procedures [1]
 – Combination of materialisation and query rewriting
 – Partial saturation of ABox to deal with existentials
 • adds new “representative” individuals
 – Enhanced query rewriting applied to part-saturated ABox
 – Sound and complete for (at least) OWL 2 EL ontologies
 – Early experiments very encouraging w.r.t. scalability

New Reasoning Services

• Support for *ontology re-use*
 – **Integrate** multiple ontologies [1] and/or **Extract** (small) modules [2]
 – New reasoning problems arise
 • Conservative extension, safety, ..

New Reasoning Services

• Conjunctive query answering
 – Expressive query language for ontologies [1, 2]
 \[Q(x, y) \leftarrow C1(x) \land C2(y) \land R(x, z) \land S(z, y) \]
 – Long-standing open problems
 • E.g., decidability of SHOIQ conjunctive query answering

Summary

• DLs are a family of logic based KR formalisms
 – Useful subsets of First Order Logic
 – Basis for ontology languages such as OWL
• Motivating applications in, e.g., life sciences and semantic web
• Reasoning systems support ontology development & deployment
 – Different reasoning techniques for different applications
 – Robust and scalable reasoning systems available
• Very active research area with many open problems
 – New logics
 – New reasoning tasks
 – New algorithms and implementations
 – …
Resources

• OWL 2
 – Language http://www.w3.org/TR/owl2-overview/

• Tools and Systems
 – http://protege.stanford.edu/overview/protege-owl.html

• Select bibliography