
Description Logic:
A Formal Foundation for
Ontology Languages and Tools

Ian Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group
Oxford University Computing Laboratory

Part 2: Tools

Contents
•  Motivation for Description Logic reasoning

•  Basic reasoning tasks/problems

•  Reasoning techniques
–  Tableau

–  Completion
–  Query rewriting

–  Rule-based

•  Other reasoning tasks

•  Recent and future work

Description Logic Reasoning

What Are Description Logics?
•  Modern DLs (after Baader et al) distinguished by:

–  Fully fledged logics with formal semantics
•  Decidable fragments of FOL (often contained in C2)

•  Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment

–  Computational properties well understood (worst case complexity)

–  Provision of inference services
•  Practical decision procedures (algorithms) for key problems

(satisfiability, subsumption, query answering, etc)

•  Implemented systems (highly optimised)

What Are Description Logics?
•  Modern DLs (after Baader et al) distinguished by:

–  Fully fledged logics with formal semantics
•  Decidable fragments of FOL (often contained in C2)

•  Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment

–  Computational properties well understood (worst case complexity)

–  Provision of inference services
•  Practical decision procedures (algorithms) for key problems

(satisfiability, subsumption, query answering, etc)

•  Implemented systems (highly optimised)

Why Ontology Reasoning?
•  Developing and maintaining quality ontologies is hard

Why Ontology Reasoning?
•  Developing and maintaining quality ontologies is hard
•  Reasoners allow domain experts to check if, e.g.:

–  classes are consistent (no “obvious” errors)

Why Ontology Reasoning?
•  Developing and maintaining quality ontologies is hard
•  Reasoners allow domain experts to check if, e.g.:

–  classes are consistent (no “obvious” errors)
–  expected subsumptions hold (consistent with intuitions)

Why Ontology Reasoning?
•  Developing and maintaining quality ontologies is hard
•  Reasoners allow domain experts to check if, e.g.:

–  classes are consistent (no “obvious” errors)
–  expected subsumptions hold (consistent with intuitions)
–  unexpected equivalences hold (unintended synonyms)

≡
Banana split Banana sundae

•  Using ontologies in applications is also very challenging
–  TBox (schema) may be large

–  Abox (data) may be very large

–  Query answers may depend on interactions between schema & data

•  Query answering
–  Is the parent of a Doctor necessarily a HappyParent? (schema)

–  Is John a HappyParent? (schema + data)

–  Retrieve all instances of Wizards having pet Owls (schema + data)

Basic Reasoning Tasks

•  Is an axiom/fact entailed by ontology/KB
–  Ontology contains obvious errors

 K ² C ´ ? for some concept name C ?

–  Ontology is consistent with intuitions
 K ² C v D s.t. expert believes C D ?
K ² C D or K ² C v D s.t. expert believes C v D ?

–  Ontology entails unexpected equivalences
 K ² C ´ D for concept names C and D ?

–  Ontology entails query answers

 K ² (Parent u 9hasChild.Doctor) v HappyParent ?
K ² John:HappyParent ?
Retrieve all individuals a s.t. K ² a:(Wizard u 9 hasPet.Owl)

Basic Reasoning Problem

Reasoning Techniques
•  Direct

–  Specially designed reasoning algorithms
–  Operate on the DL (more or less) directly

•  Indirect
–  Translate into some equivalent problem in another formalism

–  Solve resulting problem using appropriate technology

Direct Reasoning Techniques
•  Two basic classes of algorithm

–  Model construction
•  Prove entailment does not hold by constructing model of KB in

which axiom/fact is false

•  E.g., tableau algorithms

–  tableau expansion rules used to derive new ABox facts

–  Proof derivation
•  Prove entailment holds by deriving axiom/fact from KB

•  E.g., structural, completion, rule-based algorithms

–  deduction rules used to derive new TBox axioms

Tableau Algorithms
•  Currently the most widely used technique

–  Basis for reasoners such as FaCT++, HermiT, Pellet, Racer, …

•  Mainly used with more expressive logics (e.g., OWL)
–  Standard technique is to negate premise axiom/fact

–  HyperTableau may also work well with sub-Boolean DLs

•  Most effective for schema reasoning
–  Large datasets may necessitate construction of large models

–  Query answering may require each possible answer to be
checked

–  Optimisations can limit but not eliminate these problems

Tableau Algorithms
•  Transform entailment to KB (un)satisfiability
‒  K ² a:C iff K [{a:(¬C)} is not satisfiable
‒  K ² C v D iff K [{a:(C u ¬D)} is not satisfiable (for new a)

•  Start with facts explicitly asserted in ABox
 e.g., John:HappyParent, John hasChild Mary

•  Use expansion rules to derive new ABox facts
 e.g., John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)

•  Construction fails if obvious contradiction (clash)
 e.g., Mary:Doctor, Mary:¬Doctor

Expansion Rules for ALC

–  some rules are nondeterministic, e.g., t, ·

–  implementations use backtracking search

• TexPoint Display

Expansion Example
T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:Doctor

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:9hasChild.Doctor

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:9hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:9hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person
a:Doctor

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary

² Mary:Doctor ?

Expansion Example
T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.?

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary, Mary:8hasChild.?

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.?

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary, Mary:8hasChild.?
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:9hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.?

² Mary:Doctor ?

Expansion Example

 John:HappyParent, John hasChild Mary, Mary:8hasChild.?
Mary:¬Doctor
John:Parent, John:8hasChild.(Doctor t 9hasChild.Doctor)
John:Person, John:9hasChild.Person
Mary:(Doctor t 9hasChild.Doctor)
John hasChild a, a:Person, a:(Doctor t 9hasChild.Doctor)
Mary:9hasChild.Doctor
Mary hasChild b, b:Doctor, b:Person
b:?

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, Mary:8hasChild.?

² Mary:Doctor ?

Termination
•  Simplest DLs are naturally terminating

–  Rules produce strictly smaller concepts

•  Most DLs require some form of blocking
–  E.g., {Person v 9hasParent.Person, John:Person}

•  Expressive DLs need more complex blocking

Correctness
 A decision procedure for KB satisfiability
 Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

 Sound: if clash-free ABox is constructed, then KB is satisfiable
 Given fully expanded clash-free ABox, we can trivially construct a model

 Complete: if KB is satisfiable, then clash-free ABox is constructed
 Given a model, we can use it to guide application of non-deterministic rules

 Terminating: the algorithm will always produce an answer
 Upper bound on number of new individuals we can create,
so ABox construction will always terminate

Highly Optimised Implementations
•  Lazy unfolding
•  Simplification and rewriting

–  Absorption:

•  Detection of tractable fragments (EL)
•  Fast semi-decision procedures

–  Told subsumer, model merging, …

•  Search optimisations
–  Dependency directed backtracking

•  Reuse of previous computations
–  Of (un)satisfiable sets of concepts (conjunctions)

•  Heuristics
–  Ordering don’t know and don’t care non-determinism

Completion Algorithms
•  Newer technique, but gaining in popularity

–  Basis for reasoners such as CEL, snorocket, CB, …

•  Mainly used with less expressive logics (e.g., OWL 2 EL)
–  Usually restricted to deterministic fragments (e.g., no disjunction)
–  But newer methods may be able to deal with nondeterminism

•  Effective with very large schemas
–  Polynomial time algorithms for Horn DLs (such as OWL 2 EL)
–  Finds all subsumption relations in a single computation

•  Also effective with very large data sets
–  Polynomial in the size of the data
–  New techniques exploit DB technology for scalability

Completion Algorithms
•  Transform KB axioms into simplified form

–  e.g.,

•  Use completion rules to derive new TBox axioms
 e.g., ProudParent v 9hasChild.Doctor,

 Doctor v Person,
 9hasChild.Person v Parent
 ProudParent v Parent

•  Structural algorithms used with early DLs can be seen
as naïve (and typically incomplete) form of completion

Completion Rules for ELH

Completion Rules for ELH

Correctness
 A decision procedure for classification
 Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

 Sound: if C v D is derived, then KB entails C v D
 Completion rules are locally correct (preserve entailments)

 Complete: if C v D is entailed by KB, then C v D is derived
 Completion rules cover all cases

 Terminating: the algorithm will always produce an answer
 Upper bound on number of axioms of the form C v D or C v 9r.D,
so completion will always “saturate”

Query Rewriting
•  Basis for systems such as QuOnto, Owlgres and Quill
•  Mainly used with less expressive logics (e.g., OWL 2 QL)

–  Usually restricted to deterministic fragments
–  Axioms may also be asymmetric (different restrictions on lhs/rhs)

•  Focus is on query answering
–  Usually assume that TBox/schema is small and/or simple

•  Effective with very large data sets
–  Rewritings typically produce a Datalog program
–  May even produce union of conjunctive queries (¼ SQL query)

•  Data can be stored/left in relational DB
•  Can delegate query answering to RDBMS

Query Rewriting
•  Use KB axioms T to expand query Q to query QT

 e.g., Professor v Teacher,
 Q(x) Ã Teacher(x),
 QT(x) Ã Professor(x) [Teacher(x)

•  Use mappings to evaluate expanded query against DB
–  KB axioms no longer considered (internalised in query)

–  ABox/DB not used in query rewriting
•  Can be used without knowledge of DB contents and/or when

access to DB is limited

•  Can also use for schema reasoning
–  C v D iff after adding a:C for new individual a, KB ² a:D

System Architecture

Query Rewriting Example

T =

M =

Query Rewriting Example

T =

M =

Query Rewriting Example

T =

M =

QT =

Query Rewriting Example

T =

M =

QT =

DB =

Query Rewriting Example

T =

M =

QT =

DB =

Correctness
•  Rewriting can be shown to be correct

 i.e.,

•  Query answer is correct iff system used to compute
 is correct

–  e.g., if DBMS is sound complete and terminating

Rule-Based Algorithms
•  Basis for systems such as Oracle’s OWL Prime

–  And widely used to provide some OWL support in rule systems

•  Mainly used with less expressive logics (e.g., OWL 2 RL)
–  Usually restricted to deterministic and existential-free fragments

•  No disjunction and cannot infer existence of new individuals

–  Syntactic restrictions may also be asymmetric
•  e.g., existentials allowed on lhs of axioms, but not on rhs

•  Focus is on query answering
–  Usually assume that TBox/schema is small and/or simple

•  Can be effective with large data sets
–  Use rule-extended RDBMS for efficiency

Rule-Based Algorithms
•  Rules operate on KB axioms and facts

–  Axioms and facts often in the form of RDF triples
–  e.g., Doctor v Person, John:Doctor

 <Doctor rdfs:subClassOf Person>, <John rdf:type Doctor>

•  Rules materialise implied facts (triples) in ABox
 e.g., <?x rdf:type ?c2> Ã <?c1 rdfs:subClassOf ?c2> ^Æ <?x, rdf:type, ?c1>

 <Doctor rdfs:subClassOf Person>
 <John rdf:type Doctor>
 <John rdf:type Person>

•  Rules applied until ABox is saturated
–  Query answering then reduces to look-up in saturated Abox

–  Can be delegated to DBMS if saturated ABox stored in DB

Rules for OWL RL (DLP)

•  There are many rules
–  This is only one of 9 tables, most of which are much larger

Correctness
•  Typically sound but not complete
•  May be complete for certain kinds of KB + query

–  Implementations based OWL 2 RL rules will be complete
w.r.t. atomic facts, i.e., facts of the form

 a:C
a P b

 where C is a class name and P is a property

Other Reasoning Services

•  Range of new “non-standard” services supporting, e.g.:
–  Error diagnosis and repair

Other Reasoning Services

Advanced Reasoning Tasks
•  Range of new “non-standard” services supporting, e.g.:

–  Modular design and integration
•  What is the effect of merging O2 into O1?

–  Module Extraction
•  Extract a (small) module from O capturing all “relevant” information

about some concept or set of concepts

–  Query and Predicate emptiness
•  Check if query (or query containing given predicate) is empty for

all ABoxes
–  Bottom-up design

•  Find a (small and specific) concept describing a set of individuals

Recent and Future Work

Ontology Languages & Formalisms
•  DLs poor for modelling non-tree structures

–  E.g., physically structured objects

Ontology Languages & Formalisms
•  DLs poor for modelling non-tree structures

–  E.g., physically structured objects

Ontology Languages & Formalisms
•  DLs poor for modelling non-tree structures

–  E.g., physically structured objects

•  Description graphs [1] allow for modelling “prototypes”
–  Prototypes resemble small ABoxes

–  Reasoning performance may also be significantly improved

–  Some restrictions needed for decidability
•  E.g., on roles used in TBox and in prototypes

[1] Motik, Cuenca Grau, Horrocks, and Sattler. Representing Structured Objects using Description
Graphs. In Proc. of KR 2008.

Ontology Languages & Formalisms
•  Integration of (expressive) DLs with DBs

–  Open world semantics can be unintuitive
•  Users may want integrity constraints as well as axioms

–  Reasoning with data can be problematical
•  Scalability & persistence are both issues

–  Solution could be closer integration with DBs [1]
•  Challenge is to find a coherent yet practical semantics

[1] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the Gap Between OWL and Relational
Databases. In Proc. of WWW 2007.

New Reasoning Techniques
•  New hypertableau calculus [1]

–  Uses more complex hyper-resolution style expansion rules
•  Reduces non-determinism

–  Uses more sophisticated blocking technique
•  Reduces model size

•  New HermiT DL reasoner
–  Implements optimised hypertableau algorithm [2]
–  Already outperforms SOTA tableau reasoners

[1] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in Description Logics
using Hypertableaux. In Proc. of CADE 2007.

[2] Boris Motik and Ian Horrocks. Individual Reuse in Description Logic Reasoning. In Proc. of
IJCAR 2008.

New Reasoning Techniques
•  Completion-based decision procedures [1]

–  Use proof search rather than model search
–  Crucial “trick” is to use tableau like techniques to guide and

restrict derivations

–  Reasoning time for SNOMED reduced by 2 orders of
magnitude

[1] Yevgeny Kazakov. Consequence-Driven Reasoning for Horn SHIQ Ontologies. Proc. of
IJCAI 2009 (best paper).

New Reasoning Techniques
•  “Combined” decision procedures [1]

–  Combination of materialisation and query rewriting
–  Partial saturation of ABox to deal with existentials

•  adds new “representative” individuals

–  Enhanced query rewriting applied to part-saturated ABox

–  Sound and complete for (at least) OWL 2 EL ontologies
–  Early experiments very encouraging w.r.t. scalability

[1] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive Query Answering in the
Description Logic EL using a Relational Database System. Proc. of IJCAI 2009.

New Reasoning Services
•  Support for ontology re-use

–  Integrate multiple ontologies [1] and/or Extract (small)
modules [2]

–  New reasoning problems arise
•  Conservative extension, safety, ..

[1] Bernardo Cuenca Grau, Yevgeny Kazakov, Ian Horrocks, and Ulrike Sattler. A Logical
Framework for Modular Integration of Ontologies. In Proc. of IJCAI 2007.

[2] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular Reuse
of Ontologies: Theory and Practice. JAIR, 31:273-318, 2008.

New Reasoning Services
•  Conjunctive query answering

–  Expressive query language for ontologies [1, 2]

–  Long-standing open problems
•  E.g., decidability of SHOIQ conjunctive query answering

[1] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive Query Answering for
the Description Logic SHIQ. JAIR, 31:157-204, 2008.

[2] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of Conjunctive Queries in SHOQ. In
Proc. of KR 2008.

Summary
•  DLs are a family of logic based KR formalisms

–  Useful subsets of First Order Logic

–  Basis for ontology languages such as OWL

•  Motivating applications in, e.g., life sciences and semantic web

•  Reasoning systems support ontology development & deployment
–  Different reasoning techniques for different applications

–  Robust and scalable reasoning systems available

•  Very active research area with many open problems
–  New logics

–  New reasoning tasks

–  New algorithms and implementations

–  …

Resources
•  OWL 2

–  Working group http://www.w3.org/2007/OWL/wiki/

–  Language http://www.w3.org/TR/owl2-overview/

–  Systems http://www.w3.org/2007/OWL/wiki/Implementations

•  Tools and Systems
–  http://www.cs.man.ac.uk/~sattler/reasoners.html

–  http://protege.stanford.edu/overview/protege-owl.html
•  Select bibliography

–  F. Baader, I. Horrocks, and U. Sattler. Description Logics. In Handbook of
Knowledge Representation. Elsevier, 2007.
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf

–  Ian Horrocks. Ontologies and the semantic web. Communications of the
ACM, 51(12):58-67, December 2008.
http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2008/Horr08a.pdf

