Description Logic: A Formal Foundation for Ontology Languages and Tools

Part 2: Tools

Ian Horrocks

<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

Contents

- Motivation for Description Logic reasoning
- Basic reasoning tasks/problems
- Reasoning techniques
 - Tableau
 - Completion
 - Query rewriting
 - Rule-based
- Other reasoning tasks
- Recent and future work

Description Logic Reasoning

What Are Description Logics?

- Modern DLs (after Baader et al) distinguished by:
 - Fully fledged logics with formal semantics
 - Decidable fragments of FOL (often contained in C₂)
 - Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 - Computational properties well understood (worst case complexity)
 - Provision of inference services
 - Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, query answering, etc)
 - Implemented systems (highly optimised)

What Are Description Logics?

- Modern DLs (after Baader et al) distinguished by:
 - Fully fledged logics with formal semantics
 - Decidable fragments of FOL (often contained in C₂)
 - Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
 - Computational properties well understood (worst case complexity)
 - Provision of inference services
 - Practical decision procedures (algorithms) for key problems (satisfiability, subsumption, query answering, etc)
 - Implemented systems (highly optimised)

• Developing and maintaining quality ontologies is *hard*

- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)

- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)
 - expected subsumptions hold (consistent with intuitions)

- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)
 - expected subsumptions hold (consistent with intuitions)
 - unexpected equivalences hold (unintended synonyms)

Basic Reasoning Tasks

- Using ontologies in applications is also very challenging
 - TBox (schema) may be large
 - Abox (data) may be very large
 - Query answers may depend on interactions between schema & data
- Query answering
 - Is the parent of a Doctor necessarily a HappyParent? (schema)
 - Is John a HappyParent? (schema + data)
 - Retrieve all instances of Wizards having pet Owls (schema + data)

Basic Reasoning Problem

- Is an axiom/fact entailed by ontology/KB
 - Ontology contains obvious errors

 $\mathcal{K} \models C \equiv \bot$ for some concept name C ?

Ontology is consistent with intuitions

 $\mathcal{K} \models C \sqsubseteq D \text{ s.t. expert believes } C \not\sqsubseteq D ?$ $\mathcal{K} \models C \not\sqsubseteq D \text{ or } \mathcal{K} \models C \sqsubseteq D \text{ s.t. expert believes } C \sqsubseteq D ?$

Ontology entails unexpected equivalences

 $\mathcal{K} \vDash C \equiv D$ for concept names C and D ?

Ontology entails query answers

 $\mathcal{K} \models$ (Parent $\sqcap \exists$ hasChild.Doctor) \sqsubseteq HappyParent ? $\mathcal{K} \models$ John:HappyParent ? Retrieve all individuals a s.t. $\mathcal{K} \models$ a:(Wizard $\sqcap \exists$ hasPet.Owl)

Reasoning Techniques

• Direct

- Specially designed reasoning algorithms
- Operate on the DL (more or less) directly
- Indirect
 - Translate into some equivalent problem in another formalism
 - Solve resulting problem using appropriate technology

Direct Reasoning Techniques

- Two basic classes of algorithm
 - Model construction
 - Prove entailment does not hold by constructing model of KB in which axiom/fact is false
 - E.g., tableau algorithms
 - tableau expansion rules used to derive **new ABox facts**

– Proof derivation

- Prove entailment holds by deriving axiom/fact from KB
- E.g., structural, completion, rule-based algorithms
 - deduction rules used to derive new TBox axioms

Tableau Algorithms

- Currently the most widely used technique
 - Basis for reasoners such as FaCT++, HermiT, Pellet, Racer, ...
- Mainly used with more expressive logics (e.g., OWL)
 - Standard technique is to negate premise axiom/fact
 - HyperTableau may also work well with sub-Boolean DLs
- Most effective for schema reasoning
 - Large datasets may necessitate construction of large models
 - Query answering may require each possible answer to be checked
 - Optimisations can limit but not eliminate these problems

Tableau Algorithms

- Transform entailment to KB (un)satisfiability
 - $\mathcal{K} \models a:C$ iff $\mathcal{K} \cup \{a:(\neg C)\}$ is *not* satisfiable
 - $\mathcal{K} \models C \sqsubseteq D$ iff $\mathcal{K} \cup \{a: (C \sqcap \neg D)\}$ is *not* satisfiable (for new a)
- Start with facts explicitly asserted in ABox e.g., John:HappyParent, John hasChild Mary
- Use expansion rules to derive new ABox facts e.g., John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)
- Construction fails if obvious contradiction (clash)
 e.g., Mary:Doctor, Mary:¬Doctor

Expansion Rules for \mathcal{ALC}

 $\begin{array}{l} \sqcap \text{-rule: if } 1. \ a: (C_1 \sqcap C_2) \in \mathcal{A}, \text{ and} \\ 2. \ \{a: C_1, a: C_2\} \not\subseteq \mathcal{A} \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{a: C_1, a: C_2\} \\ \sqcup \text{-rule: if } 1. \ a: (C_1 \sqcup C_2) \in \mathcal{A}, \text{ and} \\ 2. \ \{a: C_1, a: C_2\} \cap \mathcal{A} = \emptyset \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{a: C_1\} \text{ and } \mathcal{A}_2 = \mathcal{A} \cup \{a: C_2\} \\ \exists \text{-rule: if } 1. \ a: (\exists S.C) \in \mathcal{A}, \text{ and} \\ 2. \ \text{there is no } b \text{ such that } \{\langle a, b \rangle : S, b: C\} \subseteq \mathcal{A}, \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{\langle a, d \rangle : S, d: C\}, \text{ where } d \text{ is new in } \mathcal{A} \\ \forall \text{-rule: if } 1. \ \{a: (\forall S.C), \langle a, b \rangle : S\} \subseteq \mathcal{A}, \text{ and} \\ 2. \ b: C \notin \mathcal{A} \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{b: C\} \end{array}$

- − some rules are nondeterministic, e.g., \sqcup , \leq
- implementations use backtracking search

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

⊨ Mary:Doctor

?

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

⊨ Mary:Doctor

?

John:HappyParent, John hasChild Mary

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

 $HappyParent \equiv Parent \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor) \}$

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

 $HappyParent \equiv Parent \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor) \}$

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor)

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor)

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary

 Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor)
 Mary:Doctor

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor)

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor) Mary:∃hasChild.Doctor

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

?

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor) Mary:∃hasChild.Doctor Mary hasChild b, b:Doctor, b:Person

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor) Mary:∃hasChild.Doctor Mary hasChild b, b:Doctor, b:Person a:Doctor

?

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary, **Mary:** \forall hasChild. \perp

⊨ Mary:Doctor

?

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \}$

 $HappyParent \equiv Parent \sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor) \}$

 $A = \{$ John:HappyParent, John hasChild Mary, **Mary:** \forall hasChild. \perp

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary, Mary: \forall hasChild. \perp

?

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $\mathcal{A} = \{$ John:HappyParent, John hasChild Mary, **Mary:** \forall hasChild. \perp

⊨ Mary:Doctor

John:HappyParent, John hasChild Mary, Mary:∀hasChild.⊥ Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor) Mary:∃hasChild.Doctor Mary hasChild b, b:Doctor, b:Person

 $\mathcal{T} = \{ \text{Doctor} \sqsubseteq \text{Person}, \text{Parent} \equiv \text{Person} \sqcap \exists \text{hasChild.Person}, \end{cases}$

HappyParent \equiv Parent $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)}

 $A = \{$ John:HappyParent, John hasChild Mary, **Mary:** \forall hasChild. \perp

⊨ Mary:Doctor ?

John:HappyParent, John hasChild Mary, Mary:∀hasChild.⊥ Mary:¬Doctor John:Parent, John:∀hasChild.(Doctor ⊔ ∃hasChild.Doctor) John:Person, John:∃hasChild.Person Mary:(Doctor ⊔ ∃hasChild.Doctor) John hasChild a, a:Person, a:(Doctor ⊔ ∃hasChild.Doctor) Mary:∃hasChild.Doctor Mary hasChild b, b:Doctor, b:Person ★ b:⊥

Termination

- Simplest DLs are naturally terminating
 - Rules produce strictly smaller concepts
- Most DLs require some form of blocking
 - E.g., {Person $\sqsubseteq \exists$ hasParent.Person, John:Person}

Expressive DLs need more complex blocking

Correctness

A decision procedure for KB satisfiability

Will always give an answer, and will always give the *right* answer i.e., it is correct (sound and complete) and terminating

 Sound: if clash-free ABox is constructed, then KB is satisfiable Given fully expanded clash-free ABox, we can trivially construct a model
 Complete: if KB is satisfiable, then clash-free ABox is constructed Given a model, we can use it to guide application of non-deterministic rules
 Terminating: the algorithm will always produce an answer Upper bound on number of new individuals we can create, so ABox construction will always terminate

Highly Optimised Implementations

- Lazy unfolding
- Simplification and rewriting
 - Absorption: $A \sqcap B \sqsubseteq C \longrightarrow A \sqsubseteq C \sqcup \neg B$
- Detection of tractable fragments (\mathcal{EL})
- Fast semi-decision procedures
 - Told subsumer, model merging, ...
- Search optimisations
 - Dependency directed backtracking
- Reuse of previous computations
 - Of (un)satisfiable sets of concepts (conjunctions)
- Heuristics
 - Ordering don't know and don't care non-determinism

Completion Algorithms

- Newer technique, but gaining in popularity
 - Basis for reasoners such as CEL, snorocket, CB, ...
- Mainly used with less expressive logics (e.g., OWL 2 EL)
 - Usually restricted to deterministic fragments (e.g., no disjunction)
 - But newer methods may be able to deal with nondeterminism
- Effective with very large schemas
 - Polynomial time algorithms for Horn DLs (such as OWL 2 EL)
 - Finds all subsumption relations in a single computation
- Also effective with very large data sets
 - Polynomial in the size of the data
 - New techniques exploit DB technology for scalability
Completion Algorithms

• Transform KB axioms into simplified form

- e.g., $C \sqsubseteq \exists R.(C \sqcap D) \quad \leadsto \quad C \sqsubseteq \exists R.A, A \sqsubseteq C \sqcap D$

- Use completion rules to derive new **TBox axioms**
 - e.g., ProudParent $\sqsubseteq \exists hasChild.Doctor,$
 - Doctor \sqsubseteq Person, \exists hasChild.Person \sqsubseteq Parent
 - \rightsquigarrow ProudParent \sqsubseteq Parent
- Structural algorithms used with early DLs can be seen as naïve (and typically incomplete) form of completion

Completion Rules for *ELH*

 $A \sqsubseteq B \quad B \sqsubseteq C \in \mathcal{O}$ $A \sqsubset C$ $A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D \in \mathcal{O}$ $A \sqsubset D$ $A \sqsubseteq B \quad B \sqsubseteq \exists r.C \in \mathcal{O}$ $A \sqsubset \exists r.C$ $A \sqsubseteq \exists r.B \quad r \sqsubseteq s \in \mathcal{O}$ $A \sqsubset \exists s.B$ $A \sqsubseteq \exists r.B \quad B \sqsubseteq C \quad \exists r.C \sqsubseteq D \in \mathcal{O}$ $A \sqsubset D$

Completion Rules for *ELH*

Correctness

A decision procedure for classification

Will always give an answer, and will always give the *right* answer i.e., it is correct (sound and complete) and terminating

Sound: if $C \sqsubseteq D$ is derived, then KB entails $C \sqsubseteq D$

Completion rules are locally correct (preserve entailments)

Complete: if $C \sqsubseteq D$ is entailed by KB, then $C \sqsubseteq D$ is derived

Completion rules cover all cases

Terminating: the algorithm will always produce an answer

Upper bound on number of axioms of the form $C \sqsubseteq D$ or $C \sqsubseteq \exists r.D$, so completion will always "saturate"

Query Rewriting

- Basis for systems such as QuOnto, Owlgres and Quill
- Mainly used with less expressive logics (e.g., OWL 2 QL)
 - Usually restricted to deterministic fragments
 - Axioms may also be asymmetric (different restrictions on lhs/rhs)
- Focus is on query answering
 - Usually assume that TBox/schema is small and/or simple
- Effective with very large data sets
 - Rewritings typically produce a Datalog program
 - May even produce union of conjunctive queries (\approx SQL query)
 - Data can be stored/left in relational DB
 - Can delegate query answering to RDBMS

Query Rewriting

- Use KB axioms \mathcal{T} to expand query \mathcal{Q} to query $\mathcal{Q}_{\mathcal{T}}$
 - e.g., Professor \sqsubseteq Teacher, $Q(x) \leftarrow$ Teacher(x),
 - $\rightsquigarrow \mathcal{Q}_{\mathcal{T}}(\mathbf{x}) \leftarrow \operatorname{Professor}(\mathbf{x}) \cup \operatorname{Teacher}(\mathbf{x})$
- Use mappings to evaluate expanded query against DB
 - KB axioms no longer considered (internalised in query)
 - ABox/DB not used in query rewriting
 - Can be used without knowledge of DB contents and/or when access to DB is limited
- Can also use for schema reasoning
 - $C \sqsubseteq D$ iff after adding a:C for new individual a, KB \models a:D

System Architecture

Query Rewriting Example

Teacher $\sqsubseteq \exists teaches$

 \mathcal{T} = Professor \sqsubseteq Teacher

 $\exists hasTutor^{-} \sqsubseteq Professor$

 $Q_0(x) \leftarrow \text{teaches}(x, y)$

 $Professor \mapsto \texttt{SELECT} \ \texttt{1} \ \texttt{FROM} \ \texttt{Professor}$

 \mathcal{M} =

 $hasTutor \mapsto \texttt{SELECT}$ 1,2 FROM <code>hasTutor</code>

Query Rewriting Example

Teacher $\sqsubseteq \exists teaches$

 \mathcal{T} = Professor \sqsubseteq Teacher

 $\exists hasTutor^{-} \sqsubseteq Professor$

 $Q_0(x) \leftarrow \text{teaches}(x, y)$ $Q_0(x) \leftarrow \text{Teacher}(x)$ $Q_0(x) \leftarrow \text{Professor}(x)$ $Q_0(x) \leftarrow \text{hasTutor}(y, x)$

 $Professor \mapsto SELECT 1 FROM Professor$

 \mathcal{M} =

 $hasTutor \mapsto \texttt{SELECT}$ 1,2 FROM hasTutor

 $\mathcal{M} =$

Query Rewriting Example

Teacher $\sqsubseteq \exists teaches$

 \mathcal{T} = Professor \sqsubseteq Teacher

 $\exists hasTutor^{-} \sqsubseteq Professor$

 $Q_0(x) \leftarrow \text{teaches}(x, y)$ $Q_0(x) \leftarrow \text{Teacher}(x)$ $Q_0(x) \leftarrow \text{Professor}(x)$ $Q_0(x) \leftarrow \text{hasTutor}(y, x)$

 $Professor \mapsto SELECT 1 FROM Professor$

 $hasTutor \mapsto \texttt{SELECT}$ 1,2 FROM hasTutor

 $\mathcal{Q}_{\mathcal{T}} = \begin{cases} \text{SELECT 1 FROM Professor UNION} \\ \text{SELECT 2 FROM hasTutor} \end{cases}$

Query Rewriting Example

Query Rewriting Example

Correctness

- Rewriting can be shown to be correct i.e., $\operatorname{ans}(\mathcal{Q}, \langle \mathcal{T}, \mathcal{A} \rangle) = \operatorname{ans}(\mathcal{Q}_{\mathcal{T}}, \langle \emptyset, \mathcal{A} \rangle)$
- Query answer is correct iff system used to compute $\operatorname{ans}(\mathcal{Q}_{\mathcal{T}}, \langle \emptyset, \mathcal{A} \rangle)$ is correct
 - e.g., if DBMS is sound complete and terminating

Rule-Based Algorithms

- Basis for systems such as Oracle's OWL Prime
 - And widely used to provide some OWL support in rule systems
- Mainly used with less expressive logics (e.g., OWL 2 RL)
 - Usually restricted to deterministic and existential-free fragments
 - No disjunction and cannot infer existence of new individuals
 - Syntactic restrictions may also be asymmetric
 - e.g., existentials allowed on Ihs of axioms, but not on rhs
- Focus is on query answering
 - Usually assume that TBox/schema is small and/or simple
- Can be effective with large data sets
 - Use rule-extended RDBMS for efficiency

Rule-Based Algorithms

- Rules operate on KB axioms and facts
 - Axioms and facts often in the form of RDF triples
 - e.g., Doctor \sqsubseteq Person, John:Doctor
 - \rightsquigarrow <Doctor rdfs:subClassOf Person>, <John rdf:type Doctor>
- Rules materialise implied facts (triples) in ABox
 - e.g., <?x rdf:type ? c_2 > \leftarrow <? c_1 rdfs:subClassOf ? c_2 > \land <?x, rdf:type, ? c_1 ><pr
 - \rightsquigarrow <John rdf:type Person>
- Rules applied until ABox is saturated
 - Query answering then reduces to look-up in saturated Abox
 - Can be delegated to DBMS if saturated ABox stored in DB

Rules for OWL RL (DLP)

Table 7. The Semantics of Class Axioms

	lf	then	
cax-sco	<pre>T(?c₁, rdfs:subClassOf, ?c₂) T(?x, rdf:type, ?c₁)</pre>	T(?x, rdf:type, ?c ₂)	
cax-eqc1	<pre>T(?c₁, owl:equivalentClass, ?c₂) T(?x, rdf:type, ?c₁)</pre>	T(?x, rdf:type, ?c ₂)	
cax-eqc2	<pre>T(?c₁, owl:equivalentClass, ?c₂) T(?x, rdf:type, ?c₂)</pre>	T(?x, rdf:type, ?c ₁)	
cax-dw	<pre>T(?c₁, owl:disjointWith, ?c₂) T(?x, rdf:type, ?c₁) T(?x, rdf:type, ?c₂)</pre>	false	
cax-adc	<pre>T(?x, rdf:type, owl:AllDisjointClasses) T(?x, owl:members, ?y) LIST[?y, ?c₁,, ?c_n] T(?z, rdf:type, ?c_i) T(?z, rdf:type, ?c_j)</pre>	false	for each $1 \le i < j$:

• There are many rules

- This is only one of 9 tables, most of which are *much* larger

Correctness

- Typically sound but not complete
- May be complete for certain kinds of KB + query
 - Implementations based OWL 2 RL rules will be complete w.r.t. atomic facts, i.e., facts of the form

```
a:C
a P b
```

where C is a class name and P is a property

Other Reasoning Services

Other Reasoning Services

- Range of new "non-standard" services supporting, e.g.:
 - Error diagnosis and repair

Advanced Reasoning Tasks

- Range of new "non-standard" services supporting, e.g.:
 - Modular design and integration
 - What is the effect of merging O₂ into O₁?
 - Module Extraction
 - Extract a (small) module from O capturing all "relevant" information about some concept or set of concepts
 - Query and Predicate emptiness
 - Check if query (or query containing given predicate) is empty for all ABoxes
 - Bottom-up design
 - Find a (small and specific) concept describing a set of individuals

Recent and Future Work

- DLs poor for modelling non-tree structures
 - E.g., physically structured objects

- DLs poor for modelling non-tree structures
 - E.g., physically structured objects

- DLs poor for modelling non-tree structures
 - E.g., physically structured objects
- Description graphs [1] allow for modelling "prototypes"
 - Prototypes resemble small ABoxes
 - Reasoning performance may also be significantly improved
 - Some restrictions needed for decidability
 - E.g., on roles used in TBox and in prototypes
- [1] Motik, Cuenca Grau, Horrocks, and Sattler. Representing Structured Objects using Description Graphs. In Proc. of KR 2008.

- Integration of (expressive) DLs with DBs
 - Open world semantics can be unintuitive
 - Users may want integrity constraints as well as axioms
 - Reasoning with data can be problematical
 - Scalability & persistence are both issues
 - Solution could be closer integration with DBs [1]
 - Challenge is to find a coherent yet practical semantics

[1] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the Gap Between OWL and Relational Databases. In Proc. of WWW 2007.

New Reasoning Techniques

- New hypertableau calculus [1]
 - Uses more complex hyper-resolution style expansion rules
 - Reduces non-determinism
 - Uses more sophisticated blocking technique
 - Reduces model size
- New HermiT DL reasoner
 - Implements optimised hypertableau algorithm [2]
 - Already outperforms SOTA tableau reasoners

[1] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized Reasoning in Description Logics using Hypertableaux. In Proc. of CADE 2007.

[2] Boris Motik and Ian Horrocks. Individual Reuse in Description Logic Reasoning. In Proc. of IJCAR 2008.

New Reasoning Techniques

- Completion-based decision procedures [1]
 - Use proof search rather than model search
 - Crucial "trick" is to use tableau like techniques to guide and restrict derivations
 - Reasoning time for SNOMED reduced by 2 orders of magnitude

[1] Yevgeny Kazakov. Consequence-Driven Reasoning for Horn SHIQ Ontologies. Proc. of IJCAI 2009 (best paper).

New Reasoning Techniques

- "Combined" decision procedures [1]
 - Combination of materialisation and query rewriting
 - Partial saturation of ABox to deal with existentials
 - adds new "representative" individuals
 - Enhanced query rewriting applied to part-saturated ABox
 - Sound and complete for (at least) OWL 2 EL ontologies
 - Early experiments very encouraging w.r.t. scalability

[1] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive Query Answering in the Description Logic EL using a Relational Database System. Proc. of IJCAI 2009.

New Reasoning Services

- Support for ontology re-use
 - Integrate multiple ontologies [1] and/or Extract (small) modules [2]
 - New reasoning problems arise
 - Conservative extension, safety, ..

- [1] Bernardo Cuenca Grau, Yevgeny Kazakov, Ian Horrocks, and Ulrike Sattler. A Logical Framework for Modular Integration of Ontologies. In Proc. of IJCAI 2007.
- [2] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular Reuse of Ontologies: Theory and Practice. JAIR, 31:273-318, 2008.

New Reasoning Services

- Conjunctive query answering
 - Expressive query language for ontologies [1, 2] $Q(x,y) \leftarrow C1(x) \wedge C2(y) \wedge R(x,z) \wedge S(z,y)$
 - Long-standing open problems
 - E.g., decidability of \mathcal{SHOIQ} conjunctive query answering

- [1] Birte Glimm, Ian Horrocks, Carsten Lutz, and Uli Sattler. Conjunctive Query Answering for the Description Logic SHIQ. JAIR, 31:157-204, 2008.
- [2] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of Conjunctive Queries in SHOQ. In Proc. of KR 2008.

Summary

- DLs are a family of logic based KR formalisms
 - Useful subsets of First Order Logic
 - Basis for ontology languages such as OWL
- Motivating applications in, e.g., life sciences and semantic web
- Reasoning systems support ontology development & deployment
 - Different reasoning techniques for different applications
 - Robust and scalable reasoning systems available
- Very active research area with many open problems
 - New logics
 - New reasoning tasks
 - New algorithms and implementations

Resources

- OWL 2
 - Working group http://www.w3.org/2007/OWL/wiki/
 - Language <u>http://www.w3.org/TR/owl2-overview/</u>
 - Systems http://www.w3.org/2007/OWL/wiki/Implementations
- Tools and Systems
 - <u>http://www.cs.man.ac.uk/~sattler/reasoners.html</u>
 - http://protege.stanford.edu/overview/protege-owl.html
- Select bibliography
 - F. Baader, I. Horrocks, and U. Sattler. Description Logics. In *Handbook of Knowledge Representation*. Elsevier, 2007.

http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2007/BaHS07a.pdf

Ian Horrocks. Ontologies and the semantic web. Communications of the ACM, 51(12):58-67, December 2008.

http://www.comlab.ox.ac.uk/people/ian.horrocks/Publications/download/2008/Horr08a.pdf