
Ian Horrocks
Information Systems Group
Department of Computer Science
University of Oxford

Semantic Technologies: Beyond the Semantic Web

The Semantic Web

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a
physicist working at CERN

  His original vision of the Web was much more ambitious than the reality
of the existing (syntactic) Web:

  This vision of the Web has become known as the Semantic Web
  Latest (refined) definition:

"a web of data that can be processed directly and indirectly by machines"

“… a set of connected applications … forming a
consistent logical web of data … information is
given well-defined meaning, better enabling
computers and people to work in cooperation …”

Semantic Technologies

  Initial focus was on necessary underpinning, including:

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

Hermit

CEL

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

  Also increasingly used in “Intelligent Information System”
applications

How Does it Work?

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S P O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

❶

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
eg:organisation

eg:w3c

http://...rdf-syntax-ns/#type

eg:worksfor

eg:Boston

eg:hq

W3C

http://...fullName

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
Triple
S P O
em1234 rdf:type Person
em1234 name “Eric Miller”
em1234 title “Dr”
em1234 mailbox mailto:em@w3.org
em1234 worksfor w3c
w3c rdf:type organisation
w3c hq Boston
w3c name “W3C”
...

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶
PERSON

ID NAME TITLE MAILBOX WORKSFOR

em1234 “Eric Miller” “Dr” mailto:em@w3.org w3c

...

ORGANISATION

ID NAME HQ

w3c “W3C” Boston

...

...

How Does it Work?

 Standardised language for exchanging vocabularies/schemas

  W3C standard for vocabulary/schema exchange is OWL
  OWL provides for rich conceptual schemas, aka ONTOLOGIES

❷

How Does it Work?

 Standardised language for querying ontologies+data

  W3C standard for querying is SPARQL
  SPARQL provides a rich query language comparable to SQL

  ?x worksfor ?y .
?y rdf:type organisation .
?y hq Boston .

  Select ?x
where { ?x worksfor ?y .
 ?y rdf:type organisation .
 ?y hq Boston . }

  Q(?x)  worksfor(?x,?y) ^Æ organisation(?y) ^Æ hq(?y,Boston)



How Does it Work?

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

Q(?p)  Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

Q(?p)  Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

Q(?p)  Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Patients suffering from
vascular disease

Q(?p)  Patient(?p) ^Æ
 suffersFrom(?p,VascularDisease)

How Does it Work?

Is heart disease a kind
of vascular disease?

Q()  subClassOf(HeartDisease,
 VascularDisease)

How Does it Work?

Is heart disease a kind
of vascular disease?

Q()  subClassOf(HeartDisease,
 VascularDisease)

How Does it Work?

Why?

How Does it Work?

Why?

Applications: Semantic Web

Applications: Semantic Web

Applications: Semantic Web

  SNOMED-CT (Clinical Terms) ontology
  provides common vocabulary for recording clinical data

  used in healthcare systems of more than 15 countries, including Australia,
Canada, Denmark, Spain, Sweden and the UK

  “classified and checked for equivalencies” using ontology reasoners

  OBO foundry includes more than 100 biological and biomedical
ontologies

 “continuous integration server running Elk and/or HermiT 24/7 checking
that multiple independently developed ontologies are mutually consistent”

  Siemens “actively building OWL based clinical solutions”

Applications: HCLS

Applications: Energy Supply Industry

  EDF Energy offer personalised energy
saving advice to every customer

  OWL ontology used to model relevant
environmental factors

  HermiT reasoner used to match customer
circumstances with relevant pieces of advice

Applications: Intelligent Mobile Platform

  Samsung developing Intelligent Moblile
Platform to support context-aware applications

  IMP monitors environment via sensor data
(GPS, compass, accelerometer, ...)

  OWL ontology used to model environment
and infer context (e.g., coffee with friends)

  Applications exploit context to enable
more intelligent behaviour

Applications: Oil and Gas Industry

  Statoil use data to inform production
and exploration management

 Large and complex data sets are
difficult and time consuming to use

  Semantic technology can improve
access to relevant data

  Test deployment in EU project

Theory Practice

  OWL based on description logic SROIQ

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

 How can we provide robustly scalable query answering?

Theory Practice

and now:

A Word from our Sponsors

What Are Description Logics?

What Are Description Logics?

  Decidable fragments of First Order Logic

Any questions?

Thank you for listening

What Are Description Logics?

  A family of logic based Knowledge Representation formalisms
  Originally descended from semantic networks and KL-ONE
  Describe domain in terms of concepts (aka classes), roles (aka

properties, relationships) and individuals

Cat

Animal

IS-A
has-color Black

Felix Mat

IS-A

sits-on

• [Quillian, 1967]

What Are Description Logics?

  Modern DLs (after Baader et al) distinguished by:
  Fully fledged logics with formal semantics

  Decidable fragments of FOL (often contained in C2)
  Closely related to Propositional Modal/Dynamic Logics &

Guarded Fragment
  Computational properties well understood (worst case complexity)
  Provision of inference services

  Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, query answering, etc)

  Implemented systems (highly optimised)

  The basis for widely used ontology languages

DL Syntax

  Signature
  Concept (aka class) names, e.g., Cat, Animal, Doctor

  Equivalent to FOL unary predicates
  Role (aka property) names, e.g., sits-on, hasParent, loves

  Equivalent to FOL binary predicates
  Individual names, e.g., Felix, John, Mary, Boston, Italy

  Equivalent to FOL constants

DL Syntax

  Operators
  Many kinds available, e.g.,

  Standard FOL Boolean operators (u, t, ¬)
  Restricted form of quantifiers (9, 8)
  Counting (¸, ·, =)
  …

DL Syntax

  Concept expressions, e.g.,
  Doctor t Lawyer
  Rich u Happy
  Cat u 9sits-on.Mat

  Equivalent to FOL formulae with one free variable
 
 
 

DL Syntax

  Special concepts
  > (aka top, Thing, most general concept)
  ? (aka bottom, Nothing, inconsistent concept)

 used as abbreviations for
  (A t ¬ A) for any concept A
  (A u ¬ A) for any concept A

DL Syntax

  Role expressions, e.g.,
 
  hasParent ± hasBrother

  Equivalent to FOL formulae with two free variables
 
 

DL Syntax

  “Schema” Axioms, e.g.,
  Rich v ¬Poor (concept inclusion)
  Cat u 9sits-on.Mat v Happy (concept inclusion)
  BlackCat ´ Cat u 9hasColour.Black (concept equivalence)
  sits-on v touches (role inclusion)
  Trans(part-of) (transitivity)

  Equivalent to (particular form of) FOL sentence, e.g.,
  8x.(Rich(x) ! ¬Poor(x))
  8x.(Cat(x) ^Æ 9y.(sits-on(x,y) ^Æ Mat(y)) ! Happy(x))
  8x.(BlackCat(x) $ (Cat(x) ^Æ 9y.(hasColour(x,y) ^Æ Black(y)))
  8x,y.(sits-on(x,y) ! touches(x,y))
  8x,y,z.((sits-on(x,y) ^Æ sits-on(y,z)) ! sits-on(x,z))

DL Syntax

  “Data” Axioms (aka Assertions or Facts), e.g.,
  BlackCat(Felix) (concept assertion)
  Mat(Mat1) (concept assertion)
  Sits-on(Felix,Mat1) (role assertion)

  Directly equivalent to FOL “ground facts”
  Formulae with no variables

DL Syntax

  A set of axioms is called a TBox, e.g.:

{Doctor v Person,
 Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

  A set of facts is called an ABox, e.g.:

{HappyParent(John),
 hasChild(John,Mary)}

  A Knowledge Base (KB) is just a TBox plus an Abox
  Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
hJohn,Maryi:hasChild

The DL Family

  Many different DLs, often with “strange” names
  E.g., EL, ALC, SHIQ

  Particular DL defined by:
  Concept operators (u, t, ¬, 9, 8, etc.)
  Role operators (-, ±, etc.)
  Concept axioms (v, ´, etc.)
  Role axioms (v, Trans, etc.)

The DL Family

  E.g., EL is a well known “sub-Boolean” DL
  Concept operators: u, ¬, 9
  No role operators (only atomic roles)
  Concept axioms: v, ´
  No role axioms

  E.g.:

 Parent ´ Person u 9hasChild.Person

The DL Family

  ALC is the smallest propositionally closed DL
  Concept operators: u, t, ¬, 9, 8
  No role operators (only atomic roles)
  Concept axioms: v, ´
  No role axioms

  E.g.:

 ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family

  S used for ALC extended with (role) transitivity axioms
  Additional letters indicate various extensions, e.g.:

  H for role hierarchy (e.g., hasDaughter v hasChild)

  R for role box (e.g., hasParent ± hasBrother v hasUncle)
  O for nominals/singleton classes (e.g., {Italy})
  I for inverse roles (e.g., isChildOf ´ hasChild–)
  N for number restrictions (e.g., >2hasChild, 63hasChild)
  Q for qualified number restrictions (e.g., >2hasChild.Doctor)
  F for functional number restrictions (e.g., 61hasMother)

  E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

The DL Family

  Numerous other extensions have been investigated
  Concrete domains (numbers, strings, etc)
  DL-safe rules (Datalog-like rules)
  Fixpoints
  Role value maps
  Additional role constructors (\Å, [, ¬, ±, id, …)
  Nary (i.e., predicates with arity >2)
  Temporal
  Fuzzy
  Probabilistic
  Non-monotonic
  Higher-order
  …

DL Semantics

Via translaton to FOL, or directly using FO model theory:

Interpretation domain ΔI Interpretation function I

Individuals iI 2 ΔI
 John

 Mary

Concepts CI µ ΔI

 Lawyer

 Doctor

 Vehicle

Roles rI µ ΔI £ ΔI
 hasChild

 owns

DL Semantics

  Interpretation function extends to concept expressions in the
obvious(ish) way, e.g.:

DL Semantics

  Given a model M =
 
 
 
 
 

DL Semantics

  Satisfiability and entailment
  A KB K is satisfiable iff there exists a model M s.t. M ² K

  A concept C is satisfiable w.r.t. a KB K iff there exists a model
M = hD, ·Ii s.t. M ² K and CI ≠ ;

  A KB K entails an axiom ax (written K ² ax) iff for every model
M of K, M ² ax (i.e., M ² K implies M ² ax)

DL Semantics

E.g.,

  K ² John:Person ?
  K ² Peter:Doctor ?
  K ² Mary:HappyParent ?
  What if we add “Mary hasChild Jane” ?

 K ² Peter = Jane

  What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ?
 K ² HappyPerson v Parent

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
 Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)

DL and FOL

  Most DLs are subsets of C2
  But reduction to C2 may be (highly) non-trivial

  Trans(R) naively reduces to

  Why use DL instead of C2?
  Syntax is succinct and convenient for KR applications
  Syntactic conformance guarantees being inside C2

  Even if reduction to C2 is non-obvious
  Different combinations of constructors can be selected

  To guarantee decidability
  To reduce complexity

  Decidability/complexity landscape mapped out in great detail
  See http://www.cs.man.ac.uk/~ezolin/dl/

Complexity Measures

  Taxonomic complexity
 Measured w.r.t. total size of “schema” axioms

  Data complexity
 Measured w.r.t. total size of “data” facts

  Query complexity
 Measured w.r.t. size of query

  Combined complexity
 Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes

  LogSpace, PTime, NP, PSpace, ExpTime, etc
  worst case for a given problem w.r.t. a given parameter
  X-hard means at-least this hard (could be harder);

in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

  e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

  Note that:
  this is for the worst case, not a typical case
  complexity of problem means we can never devise a more efficient

(in the worst case) algorithm
  complexity of algorithm may, however, be even higher

(in the worst case)

DLs and Ontology Languages

  ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL
  OWL 2 based on SROIQ, i.e., ALC extended with

transitive roles, a role box nominals, inverse roles and
qualified number restrictions

  OWL 2 EL based on EL
  OWL 2 QL based on DL-Lite

  OWL 2 EL based on DLP

  OWL was based on SHOIN
  only simple role hierarchy, and

unqualified NRs

Class/Concept Constructors

Ontology Axioms

•  An Ontology is usually considered to be a TBox
–  but an OWL ontology is a mixed set of TBox and ABox axioms

Other OWL Features

  XSD datatypes and (in OWL 2) facets, e.g.,
  integer, string and (in OWL 2) real, float, decimal, datetime, …
  minExclusive, maxExclusive, length, …
  PropertyAssertion(hasAge Meg "17"^^xsd:integer)
  DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer

xsd:maxExclusive "10"^^xsd:integer)

 These are equivalent to (a limited form of) DL concrete domains

  Keys
  E.g., HasKey(Vehicle Country LicensePlate)

  Country + License Plate is a unique identifier for vehicles

 This is equivalent to (a limited form of) DL safe rules

Obvious Database Analogy

  Ontology axioms analogous to DB schema
  Schema describes structure of and constraints on data

  Ontology facts analogous to DB data
  Instantiates schema
  Consistent with schema constraints

  But there are also important differences…

Obvious Database Analogy

Database:
  Closed world assumption (CWA)

  Missing information treated
as false

  Unique name assumption (UNA)
  Each individual has a single, unique

name

  Schema behaves as constraints on
structure of data

  Define legal database states

Ontology:
  Open world assumption (OWA)

  Missing information treated
as unknown

  No UNA
  Individuals may have more

than one name

  Ontology axioms behave like
implications (inference rules)

  Entail implicit information

Database -v- Ontology

E.g., given the following ontology/schema:
 HogwartsStudent ´ Student u 9 attendsSchool.Hogwarts
 HogwartsStudent v 8hasPet.(Owl or Cat or Toad)
 hasPet ´ isPetOf - (i.e., hasPet inverse of isPetOf)
 9hasPet.> v Human (i.e., domain of hasPet is Human)
 Phoenix v 8isPetOf.Wizard (i.e., only Wizards have Phoenix pets)
 Muggle v ¬Wizard (i.e., Muggles and Wizards are disjoint)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
  DB: No
  Ontology: Don’t Know

 OWA (didn’t say Draco was not Harry’s friend)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
  DB: 2
  Ontology: at least 1

 No UNA (Ron and Hermione may be 2 names for same person)

Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

 RonWeasley ≠ HermioneGranger
Query: How many friends does Harry Potter have?

  DB: 2
  Ontology: at least 2

 OWA (Harry may have more friends we didn’t mention yet)



Database -v- Ontology

And the following facts/data:
 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
 RonWeasley ≠ HermioneGranger
 HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger}

Query: How many friends does Harry Potter have?
  DB: 2
  Ontology: 2!



Database -v- Ontology

Inserting new facts/data:
 Dumbledore: Wizard
Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?
  Update rejected: constraint violation

 Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?
  Infer that Dumbledore is Human (domain restriction)
  Also infer that Dumbledore is a Wizard (only a Wizard can have a

pheonix as a pet)

9hasPet.> v Human
Phoenix v 8isPetOf.Wizard

DB Query Answering

  Schema plays no role
  Data must explicitly satisfy schema constraints

  Query answering amounts to model checking
  I.e., a “look-up” against the data

  Can be very efficiently implemented
  Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering

  Ontology axioms play a powerful and crucial role
  Answer may include implicitly derived facts
  Can answer conceptual as well as extensional queries

  E.g., Can a Muggle have a Phoenix for a pet?

  Query answering amounts to theorem proving
  I.e., logical entailment

  May have very high worst case complexity
  E.g., for OWL, NP-hard w.r.t. size of data

(upper bound is an open problem)
  Implementations may still behave well in typical cases
  Fragments/profiles may have much better complexity

Ontology Based Information Systems

  Analogous to relational database management systems
  Ontology ¼ schema; instances ¼ data

  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
  Semantics can seem counter-intuitive, particularly w.r.t. data

  Open -v- closed world; axioms -v- constraints

  Query answering (logical entailment) may be much more difficult
  Can lead to scalability problems with expressive logics

Ontology Based Information Systems

  Analogous to relational database management systems
  Ontology ¼ schema; instances ¼ data

  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
  Semantics can seem counter-intuitive, particularly w.r.t. data

  Open -v- closed world; axioms -v- constraints

  Query answering (logical entailment) may be much more difficult
  Can lead to scalability problems with expressive logics

Back to our
Scheduled Program

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

 How can we provide robustly scalable query answering?

Theory Practice

Various Approaches — Different Tradeoffs

➊ Use full power of OWL and a complete reasoner:

 Well-suited for modeling complex domains
 Reliable answers
 High worst-case complexity
 Scalability problems for large ontologies & datasets

Complete OWL reasoners:
•  E.g., FaCT++, HermiT, Pellet, ...
•  Based on (hyper)tableau (model construction) theorem provers
•  Highly optimised implementations effective on many ontologies,

but not robust and unlikely to scale to large data sets

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

(Hyper)tableau — How Does It Work?

 Standard technique based on (hyper-) tableau
  Reasoning tasks reducible to (un)satisfiability

  E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

  Algorithm tries to construct (an abstraction of) a model

Note similarity to chase!

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”
  OWL 2 EL

  Based on EL++

  PTime-complete for combined and data complexity
  OWL 2 QL

  Based on DL-Lite
  AC0 data complexity (same as DBs)

  OWL 2 RL
  Based on “Description Logic Programs” ()
  PTime-complete for combined and data complexity

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 Tractable query answering
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 EL ontology reasoners:
•  E.g., CEL, ELK, ...
•  Based on “consequence based” (deduction) theorem provers
•  Target HCLS applications where many ontologies are (mainly)

in the EL profile

Consequence Based — How Does It Work?

  Normalise ontology axioms to standard form:

  Saturate using inference rules (for EL):

  Extension to EL++ requires (many) more rules

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Schema Reasoning — Solved Problem?

Schema Reasoning — Solved Problem?

  Full expressive power may be needed to model, e.g.:
  non-viral pneumonia (negation)

  infectious pneumonia is caused by a virus or a bacterium
(disjunction)

  double pneumonia occurs in two lungs (cardinalities)

  groin has a part that is part of the abdomen, and has a part that
is part of the leg (inverse properties)

  Single non-EL axiom may incur massive performance penalty

MORe Modular Reasoner

  Integrates powerful (slower) and weaker (faster) reasoners
  Exploits module extraction techniques to identify subset of

ontology that can be completely classified using fast reasoner.
  Slower reasoner performs as few computations as possible
  Bulk of computation delegated to faster reasoner
  Current prototype integrates HermiT and ELK [1]

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

MORe Modular Reasoner

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets
  Various approaches:

  Materialise taxonomy and use DBMS (incomplete reasoning)

  “Combined approach” using materialisation + OBDA [2]

  Datalog engine with (some form of) query rewriting [3]

  Highly optimised ABox reasoners [4]

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family
of Description Logics. KR 2012

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 QL ontology reasoners:
•  E.g., QuOnto, Requiem, ...
•  Based on query rewriting technique — ontology used to

rewrite (expand) query
•  Targets applications where data stored in RDBMS — aka

Ontology Based Data Access (OBDA)

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query
  Evaluate (SQL) query against DB

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Issues

➊ Rewriting
  May be large (worst case exponential in size of ontology)
  Queries may be hard for existing DBMSs
  Ongoing work on OBDA optimisation techniques, e.g., [5]

❷ Mappings
  May be difficult to develop and maintain
  Little work in this area to date

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite
Ontologies. KR 2012

Various Approaches — Different Tradeoffs

 Use full power of OWL and incomplete reasoner:

 Well-suited for modeling complex domains
 Favourable scalability properties
 Flexibility: no inputs rejected
 Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners:
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ...
•  Based on RDF triple stores and chase-like materialisation
•  Widely used in practice to reason with large datasets
•  Complete (only) for RL ontologies and ground atomic queries

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

  Evaluate Q against DB0

Materialisation — Example

DB

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Dealing With Frequently Changing Data

Adding data is relatively easy
  Monotonicity of FOL means that extending existing

materialisation is sound
  Can still be quite costly if naively implemented

Changing/retracting data is much harder
  Naive solution requires all materialised facts to be discarded
  Re-materialisation very costly for large data sets
  But incremental reasoning is possible using view

maintenance based techniques [6]

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent
mobile platform. In Proc. of WWW 2012.

Dealing with Incompleteness

  Materialisation based reasoning complete for OWL 2 RL profile
(and ground atomic queries)

  But for ontologies outside the profile:
  Reasoning may be incomplete
  Incompleteness difficult to measure via empirical testing

  Possible solutions offered by recent work:

  Measuring and repairing incompleteness

  Chase materialisation

  Computing upper and lower bounds

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

  Applicable to acyclic ontologies
  Acyclicity can be checked using, e.g., graph based techniques

(weak acyclicity, joint acyclicity, etc.)
  Many realistic ontologies turn out to be acyclic

  Given acyclic ontology O, can apply chase materialisation:
  Ontology translated into existential rules (aka dependencies)
  Existential rules can introduce fresh Skolem individuals
  Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering
in Description Logics. In Proc. of KR 2012.

Chase Materialisation — Example

DB

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

  Transform O into strictly stronger OWL RL ontology
  Transform ontology into Datalog±,v rules

  Eliminate ∨ by transforming to ∧

  Eliminate existentials by replacing with Skolem constants

  Discard rules with empty heads

  Transform rules into OWL 2 RL ontology O’

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

  If L = U, then both answers are sound and complete
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers

  Indicates range of uncertainty

  Can (more efficiently) check possible answers using, e.g., HermiT

  Future work: use U \ L to identify (small) “relevant” subset of data
needed to efficiently compute exact answer

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Looking forward to similar progress
on query answering!

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Hybrid techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Acknowledgements

References

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012
[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family

of Description Logics. KR 2012
[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite

Ontologies. KR 2012
[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an

intelligent mobile platform. In Proc. of WWW 2012.
[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for

Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012
[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering

in Description Logics. In Proc. of KR 2012.
[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query

Answers in Expressive Description Logics. In Proc. of DL 2012

Thank you for listening

Any questions?
FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

