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The Semantic Web 

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a 
physicist working at CERN 

  His original vision of the Web was much more ambitious than the reality 
of the existing (syntactic) Web: 

  This vision of the Web has become known as the Semantic Web 
  Latest (refined) definition:  

"a web of data that can be processed directly and indirectly by machines" 

“… a set of connected applications … forming a 
consistent logical web of data … information is 
given well-defined meaning, better enabling 
computers and people to work in cooperation …” 
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Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

  Development tools 

  Resulting robust infrastructure used in SW applications 

  Also increasingly used in “Intelligent Information System” 
applications 



How Does it Work? 

 Standardised language for exchanging data 

  W3C standard for data exchange is RDF 
  RDF is a simple language consisting of <S P O> triples 

  for example <eg:Ian eg:worksAt eg:Oxford> 

  all S,P,O are URIs or literals (data values) 

  URIs provides a flexible naming scheme 
  Set of triples can be viewed as a graph 
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Triple 
S P O 
em1234 rdf:type Person 
em1234 name “Eric Miller” 
em1234 title “Dr” 
em1234 mailbox mailto:em@w3.org 
em1234 worksfor w3c 
w3c rdf:type organisation 
w3c hq Boston 
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❶  
PERSON 

ID NAME TITLE MAILBOX WORKSFOR 

em1234 “Eric Miller” “Dr” mailto:em@w3.org w3c 

... ... ... ... ... 

ORGANISATION 

ID NAME HQ 

w3c “W3C” Boston 

... ... ... 

... 



How Does it Work? 

 Standardised language for exchanging vocabularies/schemas 

  W3C standard for vocabulary/schema exchange is OWL 
  OWL provides for rich conceptual schemas, aka ONTOLOGIES  

❷   



How Does it Work? 

 Standardised language for querying ontologies+data 

  W3C standard for querying is SPARQL 
  SPARQL provides a rich query language comparable to SQL 

  ?x worksfor ?y . 
?y rdf:type organisation . 
?y hq Boston . 

  Select ?x 
where  { ?x worksfor ?y . 
    ?y rdf:type organisation . 
    ?y hq Boston . } 

  Q(?x)  worksfor(?x,?y) ^Æ organisation(?y) ^Æ hq(?y,Boston) 

   
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  SNOMED-CT (Clinical Terms) ontology  
  provides common vocabulary for recording clinical data 

  used in healthcare systems of more than 15 countries, including Australia, 
Canada, Denmark, Spain, Sweden and the UK 

  “classified and checked for equivalencies” using ontology reasoners 

  OBO foundry includes more than 100 biological and biomedical 
ontologies 

 “continuous integration server running Elk and/or HermiT 24/7 checking 
that multiple independently developed ontologies are mutually consistent” 

  Siemens “actively building OWL based clinical solutions” 

Applications: HCLS 



Applications: Energy Supply Industry 

  EDF Energy offer personalised energy  
saving advice to every customer 

  OWL ontology used to model relevant  
environmental factors 

  HermiT reasoner used to match customer  
circumstances with relevant pieces of advice 



Applications: Intelligent Mobile Platform 

  Samsung developing Intelligent Moblile 
Platform to support context-aware applications 

  IMP monitors environment via sensor data  
(GPS, compass, accelerometer, ...) 

  OWL ontology used to model environment 
and infer context (e.g., coffee with friends) 

  Applications exploit context to enable 
more intelligent behaviour 



Applications: Oil and Gas Industry  

  Statoil use data to inform production  
and exploration management 

 Large and complex data sets are 
difficult and time consuming to use 

  Semantic technology can improve  
access to relevant data 

  Test deployment in EU project 



Theory        Practice 
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 How can we provide robustly scalable query answering? 

Theory        Practice 



and now: 

A Word from our Sponsors 



What Are Description Logics? 



What Are Description Logics? 

  Decidable fragments of First Order Logic 

Any questions? 

Thank you for listening 



What Are Description Logics? 

  A family of logic based Knowledge Representation formalisms 
  Originally descended from semantic networks and KL-ONE 
  Describe domain in terms of concepts (aka classes), roles (aka 

properties, relationships) and individuals 

Cat 

Animal 

IS-A 
has-color Black 

Felix Mat 

IS-A 

sits-on 

• [Quillian, 1967] 



What Are Description Logics? 

  Modern DLs (after Baader et al) distinguished by: 
  Fully fledged logics with formal semantics 

  Decidable fragments of FOL (often contained in C2) 
  Closely related to Propositional Modal/Dynamic Logics & 

Guarded Fragment 
  Computational properties well understood (worst case complexity) 
  Provision of inference services 

  Practical decision procedures (algorithms) for key problems  
(satisfiability, subsumption, query answering, etc) 

  Implemented systems (highly optimised) 

  The basis for widely used ontology languages 



DL Syntax 

  Signature  
  Concept (aka class) names, e.g., Cat, Animal, Doctor 

  Equivalent to FOL unary predicates 
  Role (aka property) names, e.g., sits-on, hasParent, loves 

  Equivalent to FOL binary predicates 
  Individual names, e.g., Felix, John, Mary, Boston, Italy 

  Equivalent to FOL constants 



DL Syntax 

  Operators 
  Many kinds available, e.g., 

  Standard FOL Boolean operators (u, t, ¬) 
  Restricted form of quantifiers (9, 8) 
  Counting (¸, ·, =) 
  … 



DL Syntax 

  Concept expressions, e.g., 
  Doctor t Lawyer 
  Rich u Happy 
  Cat u 9sits-on.Mat 

  Equivalent to FOL formulae with one free variable 
    
    
    



DL Syntax 

  Special concepts 
   >   (aka top, Thing, most general concept) 
   ?   (aka bottom, Nothing, inconsistent concept) 

 used as abbreviations for 
  (A t ¬ A) for any concept A 
  (A u ¬ A) for any concept A  



DL Syntax 

  Role expressions, e.g., 
    
  hasParent ± hasBrother 

  Equivalent to FOL formulae with two free variables 
    
    



DL Syntax 

  “Schema” Axioms, e.g., 
  Rich v ¬Poor              (concept inclusion) 
  Cat u 9sits-on.Mat v Happy   (concept inclusion) 
  BlackCat ´ Cat u 9hasColour.Black               (concept equivalence) 
  sits-on v touches        (role inclusion) 
  Trans(part-of)         (transitivity) 

  Equivalent to (particular form of) FOL sentence, e.g., 
  8x.(Rich(x) ! ¬Poor(x)) 
  8x.(Cat(x) ^Æ 9y.(sits-on(x,y) ^Æ Mat(y)) ! Happy(x)) 
  8x.(BlackCat(x) $ (Cat(x) ^Æ 9y.(hasColour(x,y) ^Æ Black(y))) 
  8x,y.(sits-on(x,y) ! touches(x,y)) 
  8x,y,z.((sits-on(x,y) ^Æ sits-on(y,z)) ! sits-on(x,z)) 



DL Syntax 

  “Data” Axioms (aka Assertions or Facts), e.g., 
  BlackCat(Felix)     (concept assertion) 
  Mat(Mat1)     (concept assertion) 
  Sits-on(Felix,Mat1)    (role assertion) 

  Directly equivalent to FOL “ground facts” 
  Formulae with no variables 



DL Syntax 

  A set of axioms is called a TBox, e.g.: 

{Doctor v Person, 
  Parent ´ Person u 9hasChild.Person, 
  HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 

  A set of facts is called an ABox, e.g.: 

{HappyParent(John),  
  hasChild(John,Mary)} 

  A Knowledge Base (KB) is just a TBox plus an Abox 
  Often written K = hT, Ai 

Note 
Facts sometimes written 
John:HappyParent,  
John hasChild Mary, 
hJohn,Maryi:hasChild 



The DL Family 

  Many different DLs, often with “strange” names 
  E.g., EL, ALC, SHIQ 

  Particular DL defined by: 
  Concept operators (u, t, ¬, 9, 8, etc.) 
  Role operators (-, ±, etc.) 
  Concept axioms (v, ´, etc.) 
  Role axioms (v, Trans, etc.) 



The DL Family 

  E.g., EL is a well known “sub-Boolean” DL 
  Concept operators: u, ¬, 9 
  No role operators (only atomic roles) 
  Concept axioms: v, ´ 
  No role axioms 

  E.g.: 

 Parent ´ Person u 9hasChild.Person 



The DL Family 

  ALC is the smallest propositionally closed DL 
  Concept operators: u, t, ¬, 9, 8 
  No role operators (only atomic roles) 
  Concept axioms: v, ´ 
  No role axioms 

  E.g.: 

 ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor) 



The DL Family 

  S used for ALC extended with (role) transitivity axioms 
  Additional letters indicate various extensions, e.g.: 

  H for role hierarchy (e.g., hasDaughter v hasChild) 

  R  for role box (e.g., hasParent ± hasBrother v hasUncle) 
  O for nominals/singleton classes (e.g., {Italy}) 
  I  for inverse roles (e.g., isChildOf ´ hasChild–) 
  N  for number restrictions (e.g., >2hasChild, 63hasChild) 
  Q  for qualified number restrictions (e.g., >2hasChild.Doctor) 
  F  for functional number restrictions (e.g., 61hasMother) 

  E.g., SHIQ = S + role hierarchy + inverse roles + QNRs 



The DL Family 

  Numerous other extensions have been investigated 
  Concrete domains (numbers, strings, etc) 
  DL-safe rules (Datalog-like rules) 
  Fixpoints 
  Role value maps 
  Additional role constructors (\Å, [, ¬, ±, id, …) 
  Nary (i.e., predicates with arity >2) 
  Temporal 
  Fuzzy 
  Probabilistic 
  Non-monotonic 
  Higher-order 
  … 



DL Semantics 

Via translaton to FOL, or directly using FO model theory: 

Interpretation domain ΔI Interpretation function I 

Individuals  iI 2 ΔI 
 John 

 Mary 

Concepts   CI µ ΔI 

 Lawyer 

 Doctor 

 Vehicle 

Roles   rI µ ΔI £ ΔI 
 hasChild 

 owns 



DL Semantics 

  Interpretation function extends to concept expressions in the 
obvious(ish) way, e.g.: 



DL Semantics 

  Given a model M =  
    
    
    
    
    



DL Semantics 

  Satisfiability and entailment 
  A KB K is satisfiable iff there exists a model M s.t. M ² K 

  A concept C is satisfiable w.r.t. a KB K iff there exists a model  
M = hD, ·Ii s.t. M ² K and CI ≠ ; 

  A KB K entails an axiom ax (written K ² ax) iff for every model  
M of K, M ² ax  (i.e., M ² K implies M ² ax) 



DL Semantics 

E.g., 

  K ² John:Person ? 
  K ² Peter:Doctor ? 
  K ² Mary:HappyParent ? 
  What if we add “Mary hasChild Jane” ? 

 K ² Peter = Jane 

  What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ? 
 K ² HappyPerson v Parent 

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person, 
         HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)} 
A = {John:HappyParent, John hasChild Mary, John hasChild Sally, 
          Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild) 



DL and FOL 

  Most DLs are subsets of C2 
  But reduction to C2 may be (highly) non-trivial 

  Trans(R) naively reduces to  

  Why use DL instead of C2? 
  Syntax is succinct and convenient for KR applications 
  Syntactic conformance guarantees being inside C2 

  Even if reduction to C2 is non-obvious 
  Different combinations of constructors can be selected 

  To guarantee decidability 
  To reduce complexity 

  Decidability/complexity landscape mapped out in great detail 
  See http://www.cs.man.ac.uk/~ezolin/dl/ 





Complexity Measures 

  Taxonomic complexity 
 Measured w.r.t. total size of “schema” axioms 

  Data complexity 
 Measured w.r.t. total size of “data” facts 

  Query complexity 
 Measured w.r.t. size of query 

  Combined complexity 
 Measured w.r.t. total size of KB (plus query if appropriate) 



Complexity Classes 

  LogSpace, PTime, NP, PSpace, ExpTime, etc 
  worst case for a given problem w.r.t. a given parameter 
  X-hard means at-least this hard (could be harder); 

in X means no harder than this (could be easier); 
X-complete means both hard and in, i.e., exactly this hard 

  e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t. 
combined complexity and NP-hard w.r.t. data complexity 

  Note that: 
  this is for the worst case, not a typical case 
  complexity of problem means we can never devise a more efficient 

(in the worst case) algorithm 
  complexity of algorithm may, however, be even higher  

(in the worst case) 



DLs and Ontology Languages 

        ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL 
  OWL 2 based on SROIQ, i.e., ALC extended with  

transitive roles, a role box nominals, inverse roles and  
qualified number restrictions 

  OWL 2 EL based on EL 
  OWL 2 QL based on DL-Lite 

  OWL 2 EL based on DLP 

  OWL was  based on SHOIN 
  only simple role hierarchy, and  

unqualified NRs 



Class/Concept Constructors 



Ontology Axioms 

•  An Ontology is usually considered to be a TBox  
–  but an OWL ontology is a mixed set of TBox and ABox axioms 



Other OWL Features 

  XSD datatypes and (in OWL 2) facets, e.g., 
  integer, string and (in OWL 2) real, float, decimal, datetime, … 
  minExclusive, maxExclusive, length, … 
  PropertyAssertion( hasAge Meg "17"^^xsd:integer )  
  DatatypeRestriction( xsd:integer xsd:minInclusive "5"^^xsd:integer 

xsd:maxExclusive "10"^^xsd:integer ) 

 These are equivalent to (a limited form of) DL concrete domains 

  Keys 
  E.g., HasKey(Vehicle Country LicensePlate) 

  Country + License Plate is a unique identifier for vehicles 

 This is equivalent to (a limited form of) DL safe rules 



Obvious Database Analogy 

  Ontology axioms analogous to DB schema  
  Schema describes structure of and constraints on data 

  Ontology facts analogous to DB data 
  Instantiates schema 
  Consistent with schema constraints 

  But there are also important differences… 



Obvious Database Analogy 

Database: 
  Closed world assumption (CWA) 

  Missing information treated  
as false 

  Unique name assumption (UNA) 
  Each individual has a single, unique 

name 

  Schema behaves as constraints on 
structure of data 

  Define legal database states 

Ontology: 
  Open world assumption (OWA) 

  Missing information treated  
as unknown 

  No UNA 
  Individuals may have more  

than one name 

  Ontology axioms behave like 
implications (inference rules) 

  Entail implicit information 



Database -v- Ontology 

E.g., given the following ontology/schema: 
 HogwartsStudent ´ Student u 9 attendsSchool.Hogwarts 
 HogwartsStudent v 8hasPet.(Owl or Cat or Toad) 
 hasPet ´ isPetOf -   (i.e., hasPet inverse of isPetOf) 
 9hasPet.> v Human   (i.e., domain of hasPet is Human) 
 Phoenix v 8isPetOf.Wizard  (i.e., only Wizards have Phoenix pets) 
 Muggle v ¬Wizard   (i.e., Muggles and Wizards are disjoint) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

Query: Is Draco Malfoy a friend of HarryPotter? 
  DB: No 
  Ontology: Don’t Know 

 OWA (didn’t say Draco was not Harry’s friend) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

Query: How many friends does Harry Potter have? 
  DB: 2 
  Ontology: at least 1 

 No UNA (Ron and Hermione may be 2 names for same person) 



Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 

 RonWeasley ≠ HermioneGranger 
Query: How many friends does Harry Potter have? 

  DB: 2 
  Ontology: at least 2 

 OWA (Harry may have more friends we didn’t mention yet) 





Database -v- Ontology 

And the following facts/data: 
 HarryPotter: Wizard 
DracoMalfoy: Wizard 
HarryPotter hasFriend RonWeasley 
HarryPotter hasFriend HermioneGranger 
HarryPotter hasPet Hedwig 
 RonWeasley ≠ HermioneGranger 
 HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger} 

Query: How many friends does Harry Potter have? 
  DB: 2 
  Ontology: 2! 





Database -v- Ontology 

Inserting new facts/data: 
 Dumbledore: Wizard 
Fawkes: Phoenix 
Fawkes isPetOf Dumbledore 

What is the response from DBMS? 
  Update rejected: constraint violation 

 Domain of hasPet is Human; Dumbledore is not Human (CWA) 

What is the response from Ontology reasoner? 
  Infer that Dumbledore is Human (domain restriction) 
  Also infer that Dumbledore is a Wizard (only a Wizard can have a 

pheonix as a pet) 

9hasPet.> v Human 
Phoenix v 8isPetOf.Wizard 



DB Query Answering 

  Schema plays no role 
  Data must explicitly satisfy schema constraints 

  Query answering amounts to model checking 
  I.e., a “look-up” against the data 

  Can be very efficiently implemented 
  Worst case complexity is low (logspace) w.r.t. size of data 



Ontology Query Answering 

  Ontology axioms play a powerful and crucial role 
  Answer may include implicitly derived facts 
  Can answer conceptual as well as extensional queries 

  E.g., Can a Muggle have a Phoenix for a pet? 

  Query answering amounts to theorem proving 
  I.e., logical entailment 

  May have very high worst case complexity 
  E.g., for OWL, NP-hard w.r.t. size of data 

(upper bound is an open problem) 
  Implementations may still behave well in typical cases 
  Fragments/profiles may have much better complexity 



Ontology Based Information Systems 

  Analogous to relational database management systems 
  Ontology ¼ schema; instances ¼ data 

  Some important (dis)advantages 
+  (Relatively) easy to maintain and update schema 

  Schema plus data are integrated in a logical theory 

+  Query answers reflect both schema and data 
+  Can deal with incomplete information 
+  Able to answer both intensional and extensional queries 
  Semantics can seem counter-intuitive, particularly w.r.t. data 

  Open -v- closed world; axioms -v- constraints 

  Query answering (logical entailment) may be much more difficult 
  Can lead to scalability problems with expressive logics 
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Back to our  
Scheduled Program 



  OWL based on description logic SROIQ 
  DLs are a family of FOL fragments  

  Clear semantics 

  Well understood computational properties 
(e.g., decidability, complexity) 

  Simple goal directed reasoning algorithms 

  OWL is decidable, but highly highly intractable 
  N2ExpTime-comlete combined complexity 

  NP-hard data complexity (-v- logspace for databases) 

 How can we provide robustly scalable query answering? 

Theory        Practice 



Various Approaches — Different Tradeoffs 

➊  Use full power of OWL and a complete reasoner: 

 Well-suited for modeling complex domains  
 Reliable answers 
  High worst-case complexity  
  Scalability problems for large ontologies & datasets 

Complete OWL reasoners: 
•  E.g., FaCT++, HermiT, Pellet, ... 
•  Based on (hyper)tableau (model construction) theorem provers 
•  Highly optimised implementations effective on many ontologies,  

but not robust and unlikely to scale to large data sets 



(Hyper)tableau — How Does It Work? 

 Standard technique based on (hyper-) tableau 
  Reasoning tasks reducible to (un)satisfiability 

  E.g., KB ² HeartDisease v VascularDisease iff  
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable  
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(Hyper)tableau — How Does It Work? 

 Standard technique based on (hyper-) tableau 
  Reasoning tasks reducible to (un)satisfiability 

  E.g., KB ² HeartDisease v VascularDisease iff  
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable  

  Algorithm tries to construct (an abstraction of) a model 

Note similarity to chase! 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
OWL 2 defines language subsets, aka profiles that can be 
“more simply and/or efficiently implemented” 
  OWL 2 EL  

  Based on EL++ 

  PTime-complete for combined and data complexity 
  OWL 2 QL 

  Based on DL-Lite 
  AC0 data complexity (same as DBs) 

  OWL 2 RL 
  Based on “Description Logic Programs” (                   ) 
  PTime-complete for combined and data complexity 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 Tractable query answering 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 EL ontology reasoners: 
•  E.g., CEL, ELK, ... 
•  Based on “consequence based” (deduction) theorem provers 
•  Target HCLS applications where many ontologies are (mainly) 

in the EL profile 



Consequence Based — How Does It Work? 

  Normalise ontology axioms to standard form: 

  Saturate using inference rules (for EL): 

  Extension to EL++ requires (many) more rules 



Consequence Based — Example 
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Schema Reasoning — Solved Problem? 



Schema Reasoning — Solved Problem? 

  Full expressive power may be needed to model, e.g.: 
  non-viral pneumonia (negation) 

  infectious pneumonia is caused by a virus or a bacterium 
(disjunction) 

  double pneumonia occurs in two lungs (cardinalities) 

  groin has a part that is part of the abdomen, and has a part that  
is part of the leg (inverse properties) 

  Single non-EL axiom may incur massive performance penalty 



MORe Modular Reasoner 

  Integrates powerful (slower) and weaker (faster) reasoners 
  Exploits module extraction techniques to identify subset of 

ontology that can be completely classified using fast reasoner. 
  Slower reasoner performs as few computations as possible 
  Bulk of computation delegated to faster reasoner 
  Current prototype integrates HermiT and ELK [1] 

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners 
for Ontology Classification. In Proc. of ISWC 2012 (to appear). 



MORe Modular Reasoner 
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OWL 2 EL — Data Retrieval Queries?  

  PTime potentially problematical for very large datasets 
  Various approaches: 

  Materialise taxonomy and use DBMS (incomplete reasoning) 

  “Combined approach” using materialisation + OBDA [2] 

  Datalog engine with (some form of) query rewriting [3] 

  Highly optimised ABox reasoners [4] 

[2]  Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to 
Ontology-Based Data Access. IJCAI 2011. 

[3]  Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012 

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family 
of Description Logics. KR 2012 
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➋  Use a suitable “profile” and specialised reasoner: 
 LogSpace query answering (in size of data) 
 Reliable answers (for inputs in the profile) 
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  Reasoners reject inputs outside profile   
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➋  Use a suitable “profile” and specialised reasoner: 
 LogSpace query answering (in size of data) 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 QL ontology reasoners: 
•  E.g., QuOnto, Requiem, ... 
•  Based on query rewriting technique — ontology used to  

rewrite (expand) query 
•  Targets applications where data stored in RDBMS — aka 

Ontology Based Data Access (OBDA) 



Query Rewriting — How Does It Work? 

Given ontology O query Q and mappings M:  
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Query Rewriting — How Does It Work? 

Given ontology O query Q and mappings M:  
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to 

answering Q w.r.t. O for any dataset 
  Map ontology queries → DB queries (typically SQL) using 

mappings M to rewrite Q’ into a DB query 
  Evaluate (SQL) query against DB 
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Query Rewriting — Issues 

➊ Rewriting 
  May be large (worst case exponential in size of ontology) 
  Queries may be hard for existing DBMSs 
  Ongoing work on OBDA optimisation techniques, e.g., [5] 

❷ Mappings 
  May be difficult to develop and maintain 
  Little work in this area to date 

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite 
Ontologies. KR 2012 



Various Approaches — Different Tradeoffs 

 Use full power of OWL and incomplete reasoner: 

 Well-suited for modeling complex domains  
 Favourable scalability properties 
 Flexibility: no inputs rejected 
  Incomplete answers (and degree of incompleteness not known)  

OWL 2 RL ontology reasoners: 
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ... 
•  Based on RDF triple stores and chase-like materialisation 
•  Widely used in practice to reason with large datasets 
•  Complete (only) for RL ontologies and ground atomic queries 
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Given (RDF) data DB, ontology O and query Q:  



Materialisation — How Does It Work? 

Given (RDF) data DB, ontology O and query Q:  
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0 

equivalent to answering Q w.r.t. DB and O 
nb:  Closely related to chase procedure used with DB dependencies 



Materialisation — How Does It Work? 

Given (RDF) data DB, ontology O and query Q:  
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0 

equivalent to answering Q w.r.t. DB and O 
nb:  Closely related to chase procedure used with DB dependencies 

  Evaluate Q against DB0 
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Dealing With Frequently Changing Data 

Adding data is relatively easy 
  Monotonicity of FOL means that extending existing 

materialisation is sound 
  Can still be quite costly if naively implemented 

Changing/retracting data is much harder 
  Naive solution requires all materialised facts to be discarded 
  Re-materialisation very costly for large data sets 
  But incremental reasoning is possible using view  

maintenance based techniques [6] 

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent 
mobile platform. In Proc. of WWW 2012. 



Dealing with Incompleteness 

  Materialisation based reasoning complete for OWL 2 RL profile 
(and ground atomic queries) 

  But for ontologies outside the profile: 
  Reasoning may be incomplete 
  Incompleteness difficult to measure via empirical testing 

  Possible solutions offered by recent work: 

  Measuring and repairing incompleteness 

  Chase materialisation 

  Computing upper and lower bounds 



Measuring and Repairing Incompleteness 

  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
    
    

  A reasoner R passes     if: 
    
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Measuring and Repairing Incompleteness 

  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
    
    

  A reasoner R passes     if: 
    
    

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for 
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012. 



Chase Materialisation 

  Applicable to acyclic ontologies 
  Acyclicity can be checked using, e.g., graph based techniques 

(weak acyclicity, joint acyclicity, etc.) 
  Many realistic ontologies turn out to be acyclic 

  Given acyclic ontology O, can apply chase materialisation: 
  Ontology translated into existential rules (aka dependencies) 
  Existential rules can introduce fresh Skolem individuals 
  Termination guaranteed for acyclic ontologies 

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering 
in Description Logics. In Proc. of KR 2012. 
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Computing Lower and Upper Bounds 

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L 

  Transform O into strictly stronger OWL RL ontology 
  Transform ontology into Datalog±,v rules 

  Eliminate ∨ by transforming to ∧ 

  Eliminate existentials by replacing with Skolem constants 

  Discard rules with empty heads 

  Transform rules into OWL 2 RL ontology O’ 



Computing Lower and Upper Bounds 

  RL reasonting w.r.t. O’gives (complete but unsound)  
upper bound answer U 
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Computing Lower and Upper Bounds 

  RL reasonting w.r.t. O’gives (complete but unsound)  
upper bound answer U 

  If L = U, then both answers are sound and complete 
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers 

  Indicates range of uncertainty 

  Can (more efficiently) check possible answers using, e.g., HermiT 

  Future work: use U \ L to identify (small) “relevant” subset of data 
needed to efficiently compute exact answer 

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query 
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR. 



Discussion 

 Numerous exciting developments & research areas 
  Rewriting: optimisations, extensions (datalog engines), etc. 
  Materialisation: chase, repair, truth maintenance, upper bounds etc. 
  Combined techniques (materialisation+rewriting), Datalog 
  Specialised RDF stores, Column stores, massive parallelism, etc. 
  Parameterised complexity, new query evaluation techniques, etc. 
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Looking forward to similar progress  
on query answering! 



Discussion 

 Numerous exciting developments & research areas 
  Rewriting: optimisations, extensions (datalog engines), etc. 
  Materialisation: chase, repair, truth maintenance, upper bounds etc. 
  Hybrid techniques (materialisation+rewriting), Datalog 
  Specialised RDF stores, Column stores, massive parallelism, etc. 
  Parameterised complexity, new query evaluation techniques, etc. 

 Consider progress on schema reasoning: 
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Thank you for listening 

Any questions? 
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