
Ian Horrocks
Information Systems Group
Department of Computer Science
University of Oxford

The Semantic Web

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a
physicist working at CERN

  His original vision of the Web was much more ambitious than the reality
of the existing (syntactic) Web:

  This vision of the Web has become known as the Semantic Web
  Latest (refined) definition:

"a web of data that can be processed directly and indirectly by machines"

“… a set of connected applications … forming a
consistent logical web of data … information is
given well-defined meaning, better enabling
computers and people to work in cooperation …”

Semantic Technologies

  Initial focus was on necessary underpinning, including:

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

Hermit

CEL

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

Semantic Technologies

  Initial focus was on necessary underpinning, including:

  Languages

  Storage and querying

  Development tools

  Resulting robust infrastructure used in SW applications

  Also increasingly used in “Intelligent Information System”
applications

How Does it Work?

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S P O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

❶

 Standardised language for exchanging data

  W3C standard for data exchange is RDF
  RDF is a simple language consisting of <S,P,O> triples

  for example <eg:Ian eg:worksAt eg:Oxford>

  all S,P,O are URIs or literals (data values)

  URIs provides a flexible naming scheme
  Set of triples can be viewed as a graph

How Does it Work?

❶

How Does it Work?

 Standardised language for exchanging vocabularies/schemas

  W3C standard for vocabulary/schema exchange is OWL
  OWL provides for rich conceptual schemas, aka ONTOLOGIES

❷

How Does it Work?

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Patients suffering from
vascular disease

How Does it Work?

Is heart disease a kind
of vascular disease?

How Does it Work?

Is heart disease a kind
of vascular disease?

How Does it Work?

Why?

How Does it Work?

Why?

Applications: Semantic Web

Applications: Semantic Web

Applications: Semantic Web

  SNOMED-CT (Clinical Terms) ontology
  provides common vocabulary for recording clinical data

  used in healthcare systems of more than 15 countries, including Australia,
Canada, Denmark, Spain, Sweden and the UK

  “classified and checked for equivalencies” using ontology reasoners

  OBO foundry includes more than 100 biological and biomedical
ontologies

 “continuous integration server running Elk and/or HermiT 24/7 checking
that multiple independently developed ontologies are mutually consistent”

  Siemens “actively building OWL based clinical solutions”

Applications: HCLS

Applications: Energy Supply Industry

  EDF Energy offer personalised energy
saving advice to every customer

  OWL ontology used to model relevant
environmental factors

  HermiT reasoner used to match customer
circumstances with relevant pieces of advice

Applications: Intelligent Mobile Platform

  Samsung developing Intelligent Moblile
Platform to support context-aware applications

  IMP monitors environment via sensor data
(GPS, compass, accelerometer, ...)

  OWL ontology used to model environment
and infer context (e.g., coffee with friends)

  Applications exploit context to enable
more intelligent behaviour

Applications: Oil and Gas Industry

  Statoil use data to inform production
and exploration management

 Large and complex data sets are
difficult and time consuming to use

  Semantic technology can improve
access to relevant data

  Test deployment in EU project

 

Theory Practice

  OWL based on description logic SROIQ

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

Theory Practice

  OWL based on description logic SROIQ
  DLs are a family of FOL fragments

  Clear semantics

  Well understood computational properties
(e.g., decidability, complexity)

  Simple goal directed reasoning algorithms

  OWL is decidable, but highly highly intractable
  N2ExpTime-comlete combined complexity

  NP-hard data complexity (-v- logspace for databases)

 How can we provide robustly scalable query answering?

Theory Practice

Various Approaches — Different Tradeoffs

➊ Use full power of OWL and a complete reasoner:

 Well-suited for modeling complex domains
 Reliable answers
 High worst-case complexity
 Scalability problems for large ontologies & datasets

Complete OWL reasoners:
•  E.g., FaCT++, HermiT, Pellet, ...
•  Based on (hyper)tableau (model construction) theorem provers
•  Highly optimised implementations effective on many ontologies,

but not robust and unlikely to scale to large data sets

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”
  OWL 2 EL

  Based on EL++

  PTime-complete for combined and data complexity
  OWL 2 QL

  Based on DL-Lite
  AC0 data complexity (same as DBs)

  OWL 2 RL
  Based on “Description Logic Programs” ()
  PTime-complete for combined and data complexity

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 Tractable query answering
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 EL ontology reasoners:
•  E.g., CEL, ELK, ...
•  Based on “consequence based” (deduction) theorem provers
•  Target HCLS applications where many ontologies are (mainly)

in the EL profile

Schema Reasoning — Solved Problem?

Schema Reasoning — Solved Problem?

  Full expressive power may be needed to model, e.g.:
  non-viral pneumonia (negation)

  infectious pneumonia is caused by a virus or a bacterium
(disjunction)

  double pneumonia occurs in two lungs (cardinalities)

  groin has a part that is part of the abdomen, and has a part that
is part of the leg (inverse properties)

  Single non-EL axiom may incur massive performance penalty

MORe Modular Reasoner

  Integrates powerful (slower) and weaker (faster) reasoners
  Exploits module extraction techniques to identify subset of

ontology that can be completely classified using fast reasoner.
  Slower reasoner performs as few computations as possible
  Bulk of computation delegated to faster reasoner
  Current prototype integrates HermiT and ELK [1]

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

MORe Modular Reasoner

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets

OWL 2 EL — Data Retrieval Queries?

  PTime potentially problematical for very large datasets
  Various approaches:

  Materialise taxonomy and use DBMS (incomplete reasoning)

  “Combined approach” using materialisation + OBDA [2]

  Datalog engine with (some form of) query rewriting [3]

  Highly optimised ABox reasoners [4]

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family
of Description Logics. KR 2012

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

Various Approaches — Different Tradeoffs

➋ Use a suitable “profile” and specialised reasoner:
 LogSpace query answering (in size of data)
 Reliable answers (for inputs in the profile)
 Restricted expressivity of the ontology language
 Reasoners reject inputs outside profile

OWL 2 QL ontology reasoners:
•  E.g., QuOnto, Requiem, ...
•  Based on query rewriting technique — ontology used to

rewrite (expand) query
•  Targets applications where data stored in RDBMS — aka

Ontology Based Data Access (OBDA)

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query

Query Rewriting — How Does It Work?

Given ontology O query Q and mappings M:
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to

answering Q w.r.t. O for any dataset
  Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q’ into a DB query
  Evaluate (SQL) query against DB

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Example

Query Rewriting — Issues

➊ Rewriting
  May be large (worst case exponential in size of ontology)
  Queries may be hard for existing DBMSs
  Ongoing work on OBDA optimisation techniques, e.g., [5]

❷ Mappings
  May be difficult to develop and maintain
  Little work in this area to date

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite
Ontologies. KR 2012

Various Approaches — Different Tradeoffs

 Use full power of OWL and incomplete reasoner:

 Well-suited for modeling complex domains
 Favourable scalability properties
 Flexibility: no inputs rejected
 Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners:
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ...
•  Based on RDF triple stores and chase-like materialisation
•  Widely used in practice to reason with large datasets
•  Complete (only) for RL ontologies and ground atomic queries

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

  Evaluate Q against DB0

Materialisation — Example

DB

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Dealing With Frequently Changing Data

Adding data is relatively easy
  Monotonicity of FOL means that extending existing

materialisation is sound
  Can still be quite costly if naively implemented

Changing/retracting data is much harder
  Naive solution requires all materialised facts to be discarded
  Re-materialisation very costly for large data sets
  But incremental reasoning is possible using view

maintenance based techniques [6]

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent
mobile platform. In Proc. of WWW 2012.

Dealing with Incompleteness

  Materialisation based reasoning complete for OWL 2 RL profile
(and ground atomic queries)

  But for ontologies outside the profile:
  Reasoning may be incomplete
  Incompleteness difficult to measure via empirical testing

  Possible solutions offered by recent work:

  Measuring and repairing incompleteness

  Chase materialisation

  Computing upper and lower bounds

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

Measuring and Repairing Incompleteness

  Use ontology O (and query Q) to generate a test suite

  A test suite for O is a pair
 
 

  A reasoner R passes if:
 
 

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

  Applicable to acyclic ontologies
  Acyclicity can be checked using, e.g., graph based techniques

(weak acyclicity, joint acyclicity, etc.)
  Many realistic ontologies turn out to be acyclic

  Given acyclic ontology O, can apply chase materialisation:
  Ontology translated into existential rules (aka dependencies)
  Existential rules can introduce fresh Skolem individuals
  Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering
in Description Logics. In Proc. of KR 2012.

Chase Materialisation — Example

DB

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

Computing Lower and Upper Bounds

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L

  Transform O into strictly stronger OWL RL ontology
  Transform ontology into Datalog±,v rules

  Eliminate ∨ by transforming to ∧

  Eliminate existentials by replacing with Skolem constants

  Discard rules with empty heads

  Transform rules into OWL 2 RL ontology O’

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

Computing Lower and Upper Bounds

  RL reasonting w.r.t. O’gives (complete but unsound)
upper bound answer U

  If L = U, then both answers are sound and complete
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers

  Indicates range of uncertainty

  Can (more efficiently) check possible answers using, e.g., HermiT

  Future work: use U \ L to identify (small) “relevant” subset of data
needed to efficiently compute exact answer

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Combined techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Looking forward to similar progress
on query answering!

Discussion

 Numerous exciting developments & research areas
  Rewriting: optimisations, extensions (datalog engines), etc.
  Materialisation: chase, repair, truth maintenance, upper bounds etc.
  Hybrid techniques (materialisation+rewriting), Datalog
  Specialised RDF stores, Column stores, massive parallelism, etc.
  Parameterised complexity, new query evaluation techniques, etc.

 Consider progress on schema reasoning:

Acknowledgements

References

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners
for Ontology Classification. In Proc. of ISWC 2012 (to appear).

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to
Ontology-Based Data Access. IJCAI 2011.

[3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012
[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family

of Description Logics. KR 2012
[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite

Ontologies. KR 2012
[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an

intelligent mobile platform. In Proc. of WWW 2012.
[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for

Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012
[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering

in Description Logics. In Proc. of KR 2012.
[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query

Answers in Expressive Description Logics. In Proc. of DL 2012

Thank you for listening

Any questions?
FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

