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The Semantic Web 

  Web “invented” by Tim Berners-Lee (an Oxford graduate!), then a 
physicist working at CERN 

  His original vision of the Web was much more ambitious than the reality 
of the existing (syntactic) Web: 

  This vision of the Web has become known as the Semantic Web 
  Latest (refined) definition:  

"a web of data that can be processed directly and indirectly by machines" 

“… a set of connected applications … forming a 
consistent logical web of data … information is 
given well-defined meaning, better enabling 
computers and people to work in cooperation …” 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

Hermit 

CEL 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

  Development tools 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

  Development tools 

  Resulting robust infrastructure used in SW applications 



Semantic Technologies 

  Initial focus was on necessary underpinning, including: 

  Languages 

  Storage and querying 

  Development tools 

  Resulting robust infrastructure used in SW applications 

  Also increasingly used in “Intelligent Information System” 
applications 



How Does it Work? 

 Standardised language for exchanging data 

  W3C standard for data exchange is RDF 
  RDF is a simple language consisting of <S P O> triples 

  for example <eg:Ian eg:worksAt eg:Oxford> 

  all S,P,O are URIs or literals (data values) 

  URIs provides a flexible naming scheme 
  Set of triples can be viewed as a graph 
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How Does it Work? 

 Standardised language for exchanging vocabularies/schemas 

  W3C standard for vocabulary/schema exchange is OWL 
  OWL provides for rich conceptual schemas, aka ONTOLOGIES  

❷   
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  SNOMED-CT (Clinical Terms) ontology  
  provides common vocabulary for recording clinical data 

  used in healthcare systems of more than 15 countries, including Australia, 
Canada, Denmark, Spain, Sweden and the UK 

  “classified and checked for equivalencies” using ontology reasoners 

  OBO foundry includes more than 100 biological and biomedical 
ontologies 

 “continuous integration server running Elk and/or HermiT 24/7 checking 
that multiple independently developed ontologies are mutually consistent” 

  Siemens “actively building OWL based clinical solutions” 

Applications: HCLS 



Applications: Energy Supply Industry 

  EDF Energy offer personalised energy  
saving advice to every customer 

  OWL ontology used to model relevant  
environmental factors 

  HermiT reasoner used to match customer  
circumstances with relevant pieces of advice 



Applications: Intelligent Mobile Platform 

  Samsung developing Intelligent Moblile 
Platform to support context-aware applications 

  IMP monitors environment via sensor data  
(GPS, compass, accelerometer, ...) 

  OWL ontology used to model environment 
and infer context (e.g., coffee with friends) 

  Applications exploit context to enable 
more intelligent behaviour 



Applications: Oil and Gas Industry  

  Statoil use data to inform production  
and exploration management 

 Large and complex data sets are 
difficult and time consuming to use 

  Semantic technology can improve  
access to relevant data 

  Test deployment in EU project 
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  OWL based on description logic SROIQ 
  DLs are a family of FOL fragments  

  Clear semantics 

  Well understood computational properties 
(e.g., decidability, complexity) 

  Simple goal directed reasoning algorithms 

  OWL is decidable, but highly highly intractable 
  N2ExpTime-comlete combined complexity 

  NP-hard data complexity (-v- logspace for databases) 

 How can we provide robustly scalable query answering? 

Theory        Practice 



Various Approaches — Different Tradeoffs 

➊  Use full power of OWL and a complete reasoner: 

 Well-suited for modeling complex domains  
 Reliable answers 
  High worst-case complexity  
  Scalability problems for large ontologies & datasets 

Complete OWL reasoners: 
•  E.g., FaCT++, HermiT, Pellet, ... 
•  Based on (hyper)tableau (model construction) theorem provers 
•  Highly optimised implementations effective on many ontologies,  

but not robust and unlikely to scale to large data sets 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
OWL 2 defines language subsets, aka profiles that can be 
“more simply and/or efficiently implemented” 
  OWL 2 EL  

  Based on EL++ 

  PTime-complete for combined and data complexity 
  OWL 2 QL 

  Based on DL-Lite 
  AC0 data complexity (same as DBs) 

  OWL 2 RL 
  Based on “Description Logic Programs” (                   ) 
  PTime-complete for combined and data complexity 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 Tractable query answering 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 EL ontology reasoners: 
•  E.g., CEL, ELK, ... 
•  Based on “consequence based” (deduction) theorem provers 
•  Target HCLS applications where many ontologies are (mainly) 

in the EL profile 
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  Full expressive power may be needed to model, e.g.: 
  non-viral pneumonia (negation) 

  infectious pneumonia is caused by a virus or a bacterium 
(disjunction) 

  double pneumonia occurs in two lungs (cardinalities) 

  groin has a part that is part of the abdomen, and has a part that  
is part of the leg (inverse properties) 

  Single non-EL axiom may incur massive performance penalty 



MORe Modular Reasoner 

  Integrates powerful (slower) and weaker (faster) reasoners 
  Exploits module extraction techniques to identify subset of 

ontology that can be completely classified using fast reasoner. 
  Slower reasoner performs as few computations as possible 
  Bulk of computation delegated to faster reasoner 
  Current prototype integrates HermiT and ELK [1] 

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners 
for Ontology Classification. In Proc. of ISWC 2012 (to appear). 
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  PTime potentially problematical for very large datasets 
  Various approaches: 

  Materialise taxonomy and use DBMS (incomplete reasoning) 

  “Combined approach” using materialisation + OBDA [2] 

  Datalog engine with (some form of) query rewriting [3] 

  Highly optimised ABox reasoners [4] 

[2]  Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to 
Ontology-Based Data Access. IJCAI 2011. 

[3]  Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012 

[4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family 
of Description Logics. KR 2012 



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 LogSpace query answering (in size of data) 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   



Various Approaches — Different Tradeoffs 

➋  Use a suitable “profile” and specialised reasoner: 
 LogSpace query answering (in size of data) 
 Reliable answers (for inputs in the profile) 
  Restricted expressivity of the ontology language 
  Reasoners reject inputs outside profile   

OWL 2 QL ontology reasoners: 
•  E.g., QuOnto, Requiem, ... 
•  Based on query rewriting technique — ontology used to  

rewrite (expand) query 
•  Targets applications where data stored in RDBMS — aka 

Ontology Based Data Access (OBDA) 
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Given ontology O query Q and mappings M:  
  Rewrite Q → Q0 s.t. answering Q0 without O equivalent to 

answering Q w.r.t. O for any dataset 
  Map ontology queries → DB queries (typically SQL) using 

mappings M to rewrite Q’ into a DB query 
  Evaluate (SQL) query against DB 
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Query Rewriting — Issues 

➊ Rewriting 
  May be large (worst case exponential in size of ontology) 
  Queries may be hard for existing DBMSs 
  Ongoing work on OBDA optimisation techniques, e.g., [5] 

❷ Mappings 
  May be difficult to develop and maintain 
  Little work in this area to date 

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite 
Ontologies. KR 2012 



Various Approaches — Different Tradeoffs 

 Use full power of OWL and incomplete reasoner: 

 Well-suited for modeling complex domains  
 Favourable scalability properties 
 Flexibility: no inputs rejected 
  Incomplete answers (and degree of incompleteness not known)  

OWL 2 RL ontology reasoners: 
•  E.g., Oracle’s Semantic Datastore, Sesame, Jena, OWLim, ... 
•  Based on RDF triple stores and chase-like materialisation 
•  Widely used in practice to reason with large datasets 
•  Complete (only) for RL ontologies and ground atomic queries 
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  Materialise (RDF) data DB → DB0 s.t. evaluating Q w.r.t. DB0 

equivalent to answering Q w.r.t. DB and O 
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  Evaluate Q against DB0 
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Dealing With Frequently Changing Data 

Adding data is relatively easy 
  Monotonicity of FOL means that extending existing 

materialisation is sound 
  Can still be quite costly if naively implemented 

Changing/retracting data is much harder 
  Naive solution requires all materialised facts to be discarded 
  Re-materialisation very costly for large data sets 
  But incremental reasoning is possible using view  

maintenance based techniques [6] 

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent 
mobile platform. In Proc. of WWW 2012. 



Dealing with Incompleteness 

  Materialisation based reasoning complete for OWL 2 RL profile 
(and ground atomic queries) 

  But for ontologies outside the profile: 
  Reasoning may be incomplete 
  Incompleteness difficult to measure via empirical testing 

  Possible solutions offered by recent work: 

  Measuring and repairing incompleteness 

  Chase materialisation 

  Computing upper and lower bounds 



Measuring and Repairing Incompleteness 

  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
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  Use ontology O (and query Q) to generate a test suite 

  A test suite for O is a pair   
    
    

  A reasoner R passes     if: 
    
    

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for 
Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012. 



Chase Materialisation 

  Applicable to acyclic ontologies 
  Acyclicity can be checked using, e.g., graph based techniques 

(weak acyclicity, joint acyclicity, etc.) 
  Many realistic ontologies turn out to be acyclic 

  Given acyclic ontology O, can apply chase materialisation: 
  Ontology translated into existential rules (aka dependencies) 
  Existential rules can introduce fresh Skolem individuals 
  Termination guaranteed for acyclic ontologies 

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering 
in Description Logics. In Proc. of KR 2012. 
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Computing Lower and Upper Bounds 

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L 



Computing Lower and Upper Bounds 

  RL reasoning w.r.t. OWL ontology O gives lower bound answer L 

  Transform O into strictly stronger OWL RL ontology 
  Transform ontology into Datalog±,v rules 

  Eliminate ∨ by transforming to ∧ 

  Eliminate existentials by replacing with Skolem constants 

  Discard rules with empty heads 

  Transform rules into OWL 2 RL ontology O’ 
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  RL reasonting w.r.t. O’gives (complete but unsound)  
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Computing Lower and Upper Bounds 

  RL reasonting w.r.t. O’gives (complete but unsound)  
upper bound answer U 

  If L = U, then both answers are sound and complete 
  If L ≠ U, then U \ L identifies a (small) set of “possible” answers 

  Indicates range of uncertainty 

  Can (more efficiently) check possible answers using, e.g., HermiT 

  Future work: use U \ L to identify (small) “relevant” subset of data 
needed to efficiently compute exact answer 

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query 
Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR. 



Discussion 

 Numerous exciting developments & research areas 
  Rewriting: optimisations, extensions (datalog engines), etc. 
  Materialisation: chase, repair, truth maintenance, upper bounds etc. 
  Combined techniques (materialisation+rewriting), Datalog 
  Specialised RDF stores, Column stores, massive parallelism, etc. 
  Parameterised complexity, new query evaluation techniques, etc. 
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Looking forward to similar progress  
on query answering! 
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Thank you for listening 

Any questions? 
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