DEPARTMENT OF COMPUTER SCIENCE

Semantics \sqcap Scalability $\models \perp$?

Ian Horrocks Information Systems Group Department of Computer Science University of Oxford

The Semantic Web

- Web "invented" by Tim Berners-Lee (an Oxford graduate!), then a physicist working at CERN
- His original vision of the Web was much more ambitious than the reality of the existing (syntactic) Web:

"... a set of **connected applications** ... forming a **consistent logical web of data** ... information is given **well-defined meaning**, better enabling computers and people to work in cooperation ..."

- This vision of the Web has become known as the Semantic Web
- Latest (refined) definition:

"a web of data that can be processed directly and indirectly by machines"

Initial focus was on necessary underpinning, including:

- Initial focus was on necessary underpinning, including:
 - Languages

Engineering and Physical Sciences

Research Council

UNIVERSITY OF OXFORD

- Initial focus was on necessary underpinning, including:
 - Languages
 - Storage and querying

- Initial focus was on necessary underpinning, including:
 - Languages
 - Storage and querying
 - Development tools

- Initial focus was on necessary underpinning, including:
 - Languages
 - Storage and querying
 - Development tools
- Resulting robust infrastructure used in SW applications

- Initial focus was on necessary underpinning, including:
 - Languages
 - Storage and querying
 - Development tools
- Resulting robust infrastructure used in SW applications
- Also increasingly used in "Intelligent Information System" applications

Standardised language for exchanging data

- W3C standard for data exchange is RDF
- RDF is a simple language consisting of <S P O> triples
 - for example <eg:lan eg:worksAt eg:Oxford>
 - all S,P,O are URIs or literals (data values)
- URIs provides a flexible naming scheme
- Set of triples can be viewed as a graph

Standardised language for exchanging data

- W3C standard for data explanation of the standard for data explanation o
- RDF is a simple language http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 - = for exa http://www.w3.org/People/EM/contact#me
 - all S.P.O are UIRIs on literals (data values)
- URIs provides a flexible namin
- Set of triples can be view http://www.w3.org/2000/10/swap/pim/contact#mailbox mailto:em@w3.org

http://www.w3.org/2000/10/swap/pim/contact#personalTitle

Eric Miller

Information Systems Group

Dr.

2 Standardised language for exchanging vocabularies/schemas

- W3C standard for vocabulary/schema exchange is OWL
- OWL provides for rich conceptual schemas, aka ONTOLOGIES

Heart \sqsubseteq MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$

Applications: Semantic Web

Applications: Semantic Web

Applications: Semantic Web

EPSRC

Engineering and Physical Sciences

Research Council

Applications: HCLS

- **SNOMED-CT** (Clinical Terms) ontology
 - provides common vocabulary for recording clinical data
 - used in healthcare systems of more than 15 countries, including Australia, Canada, Denmark, Spain, Sweden and the UK
 - "classified and checked for equivalencies" using ontology reasoners
- OBO foundry includes more than 100 biological and biomedical ontologies

"continuous integration server running Elk and/or HermiT 24/7 checking that multiple independently developed ontologies are mutually consistent"

Siemens "actively building OWL based clinical solutions"

Applications: Energy Supply Industry

- EDF Energy offer personalised energy saving advice to every customer
- OWL ontology used to model relevant environmental factors
- HermiT reasoner used to match customer circumstances with relevant pieces of advice

Applications: Intelligent Mobile Platform

- Samsung developing Intelligent Mobile Platform to support context-aware applications
- IMP monitors environment via sensor data (GPS, compass, accelerometer, ...)
- OWL ontology used to model environment and infer context (e.g., coffee with friends)
- Applications exploit context to enable more intelligent behaviour

Applications: Oil and Gas Industry

- Statoil use data to inform production and exploration management Large and complex data sets are difficult and time consuming to use
- Semantic technology can improve access to relevant data
- Test deployment in EU project
 Optique

Theory ~~> Practice

Theory ~>> Practice

OWL based on description logic SROIQ

Theory ~>> Practice

- OWL based on description logic SROIQ
- DLs are a family of FOL fragments
 - Clear semantics
 - Well understood computational properties (e.g., decidability, complexity)
 - Simple goal directed reasoning algorithms

Theory ~> Practice

- OWL based on description logic SROIQ
- DLs are a family of FOL fragments
 - Clear semantics
 - Well understood computational properties (e.g., decidability, complexity)
 - Simple goal directed reasoning algorithms
- OWL is decidable, but highly highly intractable
 - N2ExpTime-comlete combined complexity
 - NP-hard data complexity (-v- logspace for databases)

Theory ~> Practice

- OWL based on description logic SROIQ
- DLs are a family of FOL fragments
 - Clear semantics
 - Well understood computational properties (e.g., decidability, complexity)
 - Simple goal directed reasoning algorithms
- OWL is decidable, but highly highly intractable
 - N2ExpTime-comlete combined complexity
 - NP-hard data complexity (-v- logspace for databases)

How can we provide robustly scalable query answering?

Various Approaches — Different Tradeoffs

1 Use full power of OWL and a complete reasoner:

- \checkmark Well-suited for modeling complex domains
- ✓ Reliable answers
- High worst-case complexity
- Scalability problems for large ontologies & datasets

Complete OWL reasoners:

- E.g., FaCT++, HermiT, Pellet, ...
- Based on (hyper)tableau (model construction) theorem provers
- Highly optimised implementations effective on many ontologies, but not robust and unlikely to scale to large data sets

Various Approaches — Different Tradeoffs

2 Use a suitable "profile" and specialised reasoner:

OWL 2 defines language subsets, aka **profiles** that can be "more simply and/or efficiently implemented"

- OWL 2 EL
 - Based on *EL*⁺⁺
 - PTime-complete for combined and data complexity
- OWL 2 QL
 - Based on DL-Lite
 - AC⁰ data complexity (same as DBs)
- OWL 2 RL
 - Based on "Description Logic Programs" (\approx DL \cap LP)
 - PTime-complete for combined and data complexity

Various Approaches — Different Tradeoffs

2 Use a suitable "profile" and specialised reasoner:

- ✓ Tractable query answering
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- × Reasoners reject inputs outside profile

OWL 2 EL ontology reasoners:

- E.g., CEL, ELK, ...
- Based on "consequence based" (deduction) theorem provers
- Target HCLS applications where many ontologies are (mainly) in the EL profile

Schema Reasoning — Solved Problem?

S	NOMED CT	GALEN	\mathbf{FMA}	GO	
Logic	EL	EL	\mathcal{EL}	EL	
#classes	$315,\!489$	$23,\!136$	78,977	$19,\!468$	
#properties	58	950	7	1	
#axioms	$430,\!844$	$36,\!547$	121,712	$28,\!897$	
#⊑	$> 10^{11}$	$> 10^{8}$	$> 10^{9}$	$> 10^{8}$	
ELK (1 worker)	13.15	1.33	0.44	0.20	
ELK (4 workers) 5.02	0.77	0.39	0.19	
	Plant Anat.	SWEET-P	NCI-2	DOLCE-P	
Logic	SHIF	SHOIN	\mathcal{ALCH}	SHOIN	
#classes	$19,\!145$	1,728	70,576	118	
#properties	82	145	189	264	
#axioms	35,770	2,419	100,304	265	
#⊑	$> 10^{8}$	$> 10^{6}$	$> 10^{9}$	$> 10^{4}$	
HermiT	11.2	11.2		105.1	
Pellet	87.2		172.0	105.1	
FaCT++	22.9	0.2	60.7	_	

Schema Reasoning — Solved Problem?

- Full expressive power may be needed to model, e.g.:
 - non-viral pneumonia (negation)
 - *infectious pneumonia* is caused by a *virus* or a *bacterium* (disjunction)
 - double pneumonia occurs in two lungs (cardinalities)
 - groin has a part that is part of the abdomen, and has a part that is part of the leg (inverse properties)
- Single non-EL axiom may incur massive performance penalty

MORe Modular Reasoner

- Integrates powerful (slower) and weaker (faster) reasoners
- Exploits module extraction techniques to identify subset of ontology that can be completely classified using fast reasoner.
- Slower reasoner performs as few computations as possible
- Bulk of computation delegated to faster reasoner
- Current prototype integrates HermiT and ELK [1]

[1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners for Ontology Classification. In Proc. of ISWC 2012 (to appear).

MORe Modular Reasoner

Ontology	$ \mathcal{O}\setminus\mathcal{O}_\mathcal{L} $	$ \Sigma^{\mathcal{L}} $	$ \mathcal{M}_{[\mathcal{O},\overline{\varSigma^{\mathcal{L}}}]} $	Classif. time (seconds)			
				HermiT	MORe		
					total	HermiT	ELK
GO	0	100%	0%	7.1	$2.2 (\downarrow 69.0\%)$	0	0.1
Gazeteer	0	100%	0%	838.1	28.2 (↓96.6%)	0	15.6
NCI	65	94.9%	15.4%	84.1	28.6 (↓66.0%)	15.8	3.3
Protein	12	98.1%	6.6%	11.4	2.9 (↓74.6%)	0.4	0.9
Biomodels	22,079	45.2%	66.4%	741.4	575.6 (\22.4%)	540.1	2.6
cellCycle	1	> 99.9%	< 0.1%	_	13.9 (-)	<0.1	4.9
NCI+CHEBI	65	95.6%	10.3%	116.6	34.0 (↓70.8%)	16.3	4.1
NCI+GO	65	96.7%	10.4%	110.0	$37.6 (\downarrow 65.8\%)$	17.6	3.2
NCI+Mouse	65	96.0%	13.3%	93.7	$31.0 (\downarrow 66.9\%)$	16.6	2.6

OWL 2 EL — Data Retrieval Queries?

PTime potentially problematical for very large datasets

OWL 2 EL — Data Retrieval Queries?

- PTime potentially problematical for very large datasets
- Various approaches:
 - Materialise taxonomy and use DBMS (incomplete reasoning)
 - "Combined approach" using materialisation + OBDA [2]
 - Datalog engine with (some form of) query rewriting [3]
 - Highly optimised ABox reasoners [4]

[2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to Ontology-Based Data Access. IJCAI 2011.

- [3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012
- [4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family of Description Logics. KR 2012

Various Approaches — Different Tradeoffs

- **2** Use a suitable "profile" and specialised reasoner:
- ✓ LogSpace query answering (in size of data)
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- × Reasoners reject inputs outside profile

Various Approaches — Different Tradeoffs

2 Use a suitable "profile" and specialised reasoner:

- ✓ LogSpace query answering (in size of data)
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- × Reasoners reject inputs outside profile

OWL 2 QL ontology reasoners:

- E.g., QuOnto, Requiem, ...
- Based on query rewriting technique ontology used to rewrite (expand) query
- Targets applications where data stored in RDBMS aka Ontology Based Data Access (OBDA)

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

 Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

- Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

- Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query
- Evaluate (SQL) query against DB

Information Systems Group

Engineering and Physical Science

Research Council

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

 $Q \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

 $\mathcal{M} \left\{ \begin{matrix} \text{Doctor} & \mapsto & \text{SELECT Name FROM Doctor} \\ \begin{array}{rcl} \text{Patient} & \mapsto & \text{SELECT Name FROM Patient} \\ \text{treats} & \mapsto & \text{SELECT DName, PName FROM Treats} \end{matrix} \right.$

- $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$
- $\mathcal{Q} \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

 $\mathcal{Q}' \begin{cases} Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x)) \\ Q(x) \leftarrow \mathsf{treats}(x, f(x)) \land \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Consultant}(x) \end{cases}$

 $\mathcal{M} \left\{ \begin{matrix} \text{Doctor} & \mapsto & \text{SELECT Name FROM Doctor} \\ \begin{array}{rcl} \text{Patient} & \mapsto & \text{SELECT Name FROM Patient} \\ \text{treats} & \mapsto & \text{SELECT DName, PName FROM Treats} \end{matrix} \right.$

- $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$
- Q $Q(x) \leftarrow \text{treats}(x, y) \land \text{Patient}(y)$

$$\mathcal{Q}' \begin{cases} Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y) \\ \hline Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x)) \\ \hline Q(x) \leftarrow \mathsf{treats}(x, f(x)) \land \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Consultant}(x) \end{cases}$$

- $\mathcal{M} \left\{ \begin{matrix} \text{Doctor} & \mapsto & \text{SELECT Name FROM Doctor} \\ \begin{array}{rcl} \text{Patient} & \mapsto & \text{SELECT Name FROM Patient} \\ \text{treats} & \mapsto & \text{SELECT DName, PName FROM Treats} \end{matrix} \right.$

- $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$
- Q $Q(x) \leftarrow \text{treats}(x, y) \land \text{Patient}(y)$

$$\mathcal{Q}' \begin{cases} Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y) \\ \hline Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x)) \\ \hline Q(x) \leftarrow \mathsf{treats}(x, f(x)) \land \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \\ \hline Q(x) \leftarrow \mathsf{Consultant}(x) \end{cases}$$

- $\mathcal{M} \left\{ \begin{matrix} \text{Doctor} & \mapsto & \text{SELECT Name FROM Doctor} \\ \begin{array}{rcl} \text{Patient} & \mapsto & \text{SELECT Name FROM Patient} \\ \text{treats} & \mapsto & \text{SELECT DName, PName FROM Treats} \end{matrix} \right.$

- $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$
- $\mathcal{Q} \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

$$Q' \begin{cases} Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y) \\ \hline Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x)) \\ \hline Q(x) \leftarrow \mathsf{treats}(x, f(x)) \land \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \\ \hline Q(x) \leftarrow \mathsf{Consultant}(x) \end{cases}$$

 $\mathcal{M} \left\{ \begin{matrix} \text{Doctor} & \mapsto & \text{SELECT Name FROM Doctor} \\ \begin{array}{rcl} \text{Patient} & \mapsto & \text{SELECT Name FROM Patient} \\ \text{treats} & \mapsto & \text{SELECT DName, PName FROM Treats} \end{matrix} \right.$

$\mathcal{SQL} \left\{ \begin{matrix} \mathsf{SELECT} \text{ Name FROM Doctor UNION} \\ \mathsf{SELECT} \text{ DName FROM Treats, Patient WHERE PName=Name} \end{matrix} \right.$

Query Rewriting — Issues

Rewriting

- May be large (worst case exponential in size of ontology)
- Queries may be hard for existing DBMSs
- Ongoing work on OBDA optimisation techniques, e.g., [5]

2 Mappings

- May be difficult to develop and maintain
- Little work in this area to date

[5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite Ontologies. KR 2012

Various Approaches — Different Tradeoffs

3 Use full power of OWL and incomplete reasoner:

- \checkmark Well-suited for modeling complex domains
- ✓ Favourable scalability properties
- ✓ Flexibility: no inputs rejected
- Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners:

- E.g., Oracle's Semantic Datastore, Sesame, Jena, OWLim, ...
- Based on RDF triple stores and chase-like materialisation
- Widely used in practice to reason with large datasets
- Complete (only) for RL ontologies and ground atomic queries

Materialisation — How Does It Work?

Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

Materialisation — How Does It Work?

Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

■ Materialise (RDF) data DB → DB' s.t. evaluating Q w.r.t. DB' equivalent to answering Q w.r.t. DB and O

nb: Closely related to chase procedure used with DB dependencies

Materialisation — How Does It Work?

Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

- Materialise (RDF) data DB → DB' s.t. evaluating Q w.r.t. DB' equivalent to answering Q w.r.t. DB and O
 nb: Closely related to chase procedure used with DB dependencies
- Evaluate Q against DB'


```
\mathcal{O} \left\{ \begin{array}{l} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right. \\ \mathsf{DB} \left\{ \begin{array}{l} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \end{array} \right. \\ \end{array} \right.
```


 $\mathcal{O} \left\{ \begin{array}{l} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{Consultant}(c_1) \end{array} \right. \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{C} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{C} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{D} \\ \mathsf{C} \\ \mathsf{D} \\ \mathsf{$

 $\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$

 $\mathcal{O} \left\{ \begin{array}{l} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right. \\ \mathsf{DB} \left\{ \begin{array}{l} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \end{array} \right. \\ \mathsf{DB}' \right. \end{array} \right.$

 $\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$

$\mathcal{Q}_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\mathcal{O} \left\{ \begin{array}{l} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right. \\ \mathsf{DB} \left\{ \begin{array}{l} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \end{array} \right. \\ \mathsf{DB}' \right. \end{array} \right.$

$$Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$$

 $\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$

 $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$ $\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$ $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$ $\rightsquigarrow \{d_2, d_1, c_1\}$ $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$ $\mathcal{Q}_2 \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$ $\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$ $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$ $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$ $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$ $\mathcal{Q}_2 \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y) \quad \rightsquigarrow \quad \{d_1\}$ Information Systems Group DEPARTMENT OF

Dealing With Frequently Changing Data

Adding data is relatively easy

- Monotonicity of FOL means that extending existing materialisation is sound
- Can still be quite costly if naively implemented

Changing/retracting data is much harder

- Naive solution requires all materialised facts to be discarded
- Re-materialisation very costly for large data sets
- But incremental reasoning is possible using view maintenance based techniques [6]

[6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent mobile platform. In Proc. of WWW 2012.

Dealing with Incompleteness

- Materialisation based reasoning complete for OWL 2 RL profile (and ground atomic queries)
- But for ontologies outside the profile:
 - Reasoning may be incomplete
 - Incompleteness difficult to measure via empirical testing
- Possible solutions offered by recent work:
 - Measuring and repairing incompleteness
 - Chase materialisation
 - Computing upper and lower bounds

Measuring and Repairing Incompleteness

• Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite

Measuring and Repairing Incompleteness

- Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite
- A test suite for ${\cal O}$ is a pair ${f S}=\langle {f S}_{\perp},{f S}_Q
 angle$
 - \mathbf{S}_{\perp} a set of ABoxes that are unsatisfiable w.r.t. $\mathcal O$
 - S_Q a set of paris $\langle A, Y \rangle$ with A an ABox and Y a query

Measuring and Repairing Incompleteness

- Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite
- A test suite for ${\cal O}$ is a pair ${f S}=\langle {f S}_{\perp}, {f S}_Q
 angle$
 - \mathbf{S}_{\perp} a set of ABoxes that are unsatisfiable w.r.t. $\mathcal O$
 - S_Q a set of paris $\langle A, Y \rangle$ with A an ABox and Y a query
- A reasoner \mathcal{R} passes S if:
 - ${\mathcal R}$ finds ${\mathcal O}\cup{\mathcal A}$ unsatisfiable for each ${\mathcal A}\in{\mathbf S}_\perp$
 - \mathcal{R} complete for \mathcal{Y} w.r.t. $\mathcal{O} \cup \mathcal{A}$ for each $\langle \mathcal{A}, \mathcal{Y} \rangle \in \mathbf{S}_Q$

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

- Applicable to acyclic ontologies
 - Acyclicity can be checked using, e.g., graph based techniques (weak acyclicity, joint acyclicity, etc.)
 - Many realistic ontologies turn out to be acyclic
- Given acyclic ontology \mathcal{O} , can apply chase materialisation:
 - Ontology translated into existential rules (aka dependencies)
 - Existential rules can introduce fresh Skolem individuals
 - Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering in Description Logics. In Proc. of KR 2012.

Chase Materialisation — Example

```
\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
```

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```


$$Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$ $treats(d_1, p_1)$ $\mathsf{Patient}(p_1)$ $\mathsf{Doctor}(d_2)$ $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$ $\mathsf{DB'} \left\{ \begin{array}{l} \mathsf{Doctor}(a_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_2, f(d_2)) \\ \mathsf{Patient}(f(d_2)) \\ \mathsf{treats}(c_1, f(c_1)) \\ \mathsf{Patient}(f(c_1)) \end{array} \right\} \mathsf{Skolems}$ $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$ $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

- RL reasoning w.r.t. OWL ontology ${\cal O}$ gives lower bound answer L

- RL reasoning w.r.t. OWL ontology ${\cal O}$ gives lower bound answer L
- Transform \mathcal{O} into strictly stronger OWL RL ontology
 - Transform ontology into $\mathsf{Datalog}^{\pm, \nu}$ rules
 - Eliminate V by transforming to Λ
 - Eliminate existentials by replacing with Skolem constants
 - Discard rules with empty heads
 - Transform rules into OWL 2 RL ontology O'

 RL reasonting w.r.t. O' gives (complete but unsound) upper bound answer U

- RL reasonting w.r.t. O' gives (complete but unsound) upper bound answer U
- If L = U, then both answers are sound and complete
- If $L \neq U$, then $U \setminus L$ identifies a (small) set of "possible" answers
 - Indicates range of uncertainty
 - Can (more efficiently) check possible answers using, e.g., HermiT
 - Future work: use U \ L to identify (small) "relevant" subset of data needed to efficiently compute exact answer

[9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query Answers in Expressive Description Logics. In Proc. of DL 2012, volume 846 of CEUR.

Numerous exciting developments & research areas

- Rewriting: optimisations, extensions (datalog engines), etc.
- Materialisation: chase, repair, truth maintenance, upper bounds etc.
- Combined techniques (materialisation+rewriting), Datalog
- Specialised RDF stores, Column stores, massive parallelism, etc.
- Parameterised complexity, new query evaluation techniques, etc.

Numerous exciting developments & research areas

- Rewriting: optimisations, extensions (datalog engines), etc.
- Materialisation: chase, repair, truth maintenance, upper bounds etc.
- Combined techniques (materialisation+rewriting), Datalog
- Specialised RDF stores, Column stores, massive parallelism, etc.
- Parameterised complexity, new query evaluation techniques, etc.

Consider progress on schema reasoning:

Year	$\mathcal{O} ext{-size}$	Complete	Time (s)
1995	3,000	No	10^{5}
1998	$3,\!000$	Yes	300
2005	30,000	Yes	30
2010	400,000	Yes	5

Numerous exciting developments & research areas

- Rewriting: optimisations, extensions (datalog engines), etc.
- Materialisation: chase, repair, truth maintenance, upper bounds etc.
- Combined techniques (materialisation+rewriting), Datalog
- Specialised RDF stores, Column stores, massive parallelism, etc.
- Parameterised complexity, new query evaluation techniques, etc.

Consider progress on schema reasoning:

Looking forward to similar progress on query answering!

Numerous exciting developments & research areas

- Rewriting: optimisations, extensions (datalog engines), etc.
- Materialisation: chase, repair, truth maintenance, upper bounds etc.
- Hybrid techniques (materialisation+rewriting), Datalog

Semantics \sqcap Scalability $\not\models \perp$!

Consider progress on schema reasoning:

Acknowledgements

Engineering and Physical Sciences Research Council

References

- [1] Armas Romero, Cuenca Grau, and Horrocks. Modular Combination of Reasoners for Ontology Classification. In Proc. of ISWC 2012 (to appear).
- [2] Kontchakov, Lutz, Toman, Wolter, Zakharyaschev: The Combined Approach to Ontology-Based Data Access. IJCAI 2011.
- [3] Stefanoni, Motik, Horrocks: Small Datalog Query Rewritings for EL. DL 2012
- [4] Kazakov, Kroetzsch, Simancik: Practical Reasoning with Nominals in the EL Family of Description Logics. KR 2012
- [5] Rodriguez-Muro, Calvanese: High Performance Query Answering over DL-Lite Ontologies. KR 2012
- [6] Motik, Horrocks, and Kim. Delta-reasoner: a semantic web reasoner for an intelligent mobile platform. In Proc. of WWW 2012.
- [7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012
- [8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering in Description Logics. In Proc. of KR 2012.
- [9] Zhou, Cuenca Grau, and Horrocks. Efficient Upper Bound Computation of Query Answers in Expressive Description Logics. In Proc. of DL 2012

Thank you for listening

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions?

