Ontology-Based Information Systems

Ian Horrocks

<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

- Introduces **vocabulary** relevant to domain, e.g.:
 - Anatomy

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Dogs

A model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Dogs

. . .

Hotdogs

A model of (some aspect of) the world

- Introduces vocabulary
 relevant to domain
- Specifies meaning (semantics) of terms

Heart is a muscular organ that is part of the circulatory system

A model of (some aspect of) the world

- Introduces vocabulary
 relevant to domain
- Specifies meaning (semantics) of terms

Heart is a muscular organ that is part of the circulatory system

• Formalised using suitable logic

 $\begin{aligned} \forall x. [\mathsf{Heart}(x) \to \mathsf{MuscularOrgan}(x) \land \\ \exists y. [\mathsf{isPartOf}(x, y) \land \\ \mathsf{CirculatorySystem}(y)]] \end{aligned}$

The Web Ontology Language OWL

• Motivated by **Semantic Web** activity

Add meaning (semantics) to web content by annotating with terms defined in ontologies

- Developed by W3C WebOnt working group
 - Based on earlier languages
 RDF, OIL and DAML+OIL
 - Became a recommendation on 10 Feb 2004
- Supported by tools and infrastructure
 - APIs (e.g., OWL API, Thea, OWLink)
 - Development environments (e.g., Protégé, TopBraid Composer)
 - Reasoners & Information Systems (e.g., Pellet, HermiT, Quonto)
- Based on a **Description Logic** (SHOIN)

Description Logics (DLs)

- Fragments of **first order logic** designed for KR
- Desirable computational properties
 - Decidable (essential)
 - Low complexity (desirable)
- Succinct and quantifier free syntax

 $\begin{aligned} \forall x. [\mathsf{Heart}(x) & \to \mathsf{MuscularOrgan}(x) \land \\ & \exists y. [\mathsf{isPartOf}(x, y) \land \\ & \mathsf{CirculatorySystem}(y)]] \end{aligned}$

Heart \sqsubseteq MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem

Description Logics (DLs)

DL Knowledge Base (KB) consists of two parts:

Ontology (aka TBox) axioms define terminology (schema)

Heart \sqsubseteq MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$

- Ground facts (aka ABox) use the terminology (data)

John : Patient □ ∃suffersFrom.HeartDisease

Why should I care about semantics?

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

Why should I care about semantics?

Well, from a philosophical POV, we need to specify the relationship between statements in the logic and the existential phenomena they describe.

That's OK, but I don't get paid for philosophy.

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

In FOL we define the semantics in terms of models (a model theory). A model is supposed to be an analogue of (part of) the world being modeled. FOL uses a very simple kind of model, in which "objects" in the world (not necessarily physical objects) are modeled as elements of a set, and relationships between objects are modeled as sets of tuples.

Note that this is exactly the same kind of model as used in a database: objects in the world are modeled as values (elements) and relationships as tables (sets of tuples).

What are Ontologies Good For?

- Coherent user-centric view of domain
 - Help identify and resolve disagreements
- Ontology-based Information Systems
 - View of data that is independent of logical/physical schema
 - Queries use terms familiar to users
 - Answers reflect knowledge & data, e.g.:
 "Patients suffering from Vascular Disease"
 - Query navigation/refinement
 - Incomplete and semi-structured data
 - Integration of heterogeneous sources

Now... *that* should clear up a few things around here

e-Science

- E.g., for "in silico" investigations and "hypothesis testing"
 - Comparing data (e.g., on proteins) to (model of) biological knowledge
 - Characteristics of proteins captured in an ontology $\ensuremath{\mathcal{O}}$
 - Abox populated with e.g., data from gene sequencing experiments

e-Science

- E.g., for "in silico" investigations and "hypothesis testing"
 - Comparing data (e.g., on proteins) to (model of) biological knowledge
 - Characteristics of proteins captured in an ontology $\ensuremath{\mathcal{O}}$
 - Abox populated with e.g., data from gene sequencing experiments
 - Expert compares hypotheses with query answers
 - E.g., all human phosphotases are of type p1, ..., pi
 - Result may be, e.g., discovery of new kinds of protein
 - And these may be potential **drug targets** if unique to a pathenogen
 - Result may also be discovery of errors in model
 - Which may reflect gaps/errors in existing knowledge

Healthcare

- UK NHS has a £6.2 billion "Connecting for Health" IT programme
- Key component is **Care Records Service** (CRS)
 - "Live, interactive patient record service accessible 24/7"
 - Patient data distributed across local centres in 5 regional clusters, and a national DB
 - Detailed records held by local service providers
 - Diverse **applications** support radiology, pharmacy, etc
 - Applications exchange messages containing "semantically rich clinical information"
 - Summaries sent to national database
 - SNOMED-CT ontology provides common vocabulary for data
 - Clinical data uses terms drawn from ontology

SNOMED

• Over 400,000 concepts

SNOMED

- Over 400,000 concepts
- Schema only no instances
- Language used is a (well known) fragment of OWL
- NHS version extended with 1,000s of additional classes
 - **OWL reasoner** (FaCT++) used to classify and check ontology
 - Currently takes \approx 10 minutes
 - 180 missing subClass relationships were found, e.g.:
 - Periocular_dermatitis subClassOf Disease_of_face
 - Fibrin_measurement subClassOf Coagulation_factor_assay

SNOMED

- Vocabulary is extensible at point of use: "post coordination"
 - Users (e.g. clinicians) may add/define new vocabulary
 - Terminology service (reasoner) used to insert in ontology
- Typical new term:
 - almond_allergy = "allergy caused_by almond"
 - OWL reasoner (FaCT++) used to classify new term
 - Takes <10 ms
 - Classified as a kind of "nut allergy"
 - Clearly of **crucial importance** to recognise patients with allergy caused by almond as kinds of patient with nut allergy

Columbia Presbyterian Medical Center

- Ontology used in analysis of results in path lab
- OWL reasoner used to check this ontology
- Several errors and omissions found that:
 - "would have led to missed test results"
- Result: improvement in improvement in patient care

Online Self-Medication Advice

- Self-medication is pervasive, but can be hazardous
 - 180 deaths in the USA in 2006
- French project to provide **on-line advice**
 - Will be made available to 20 million customers of French health insurance companies
 - Patients have their own simple health care record (SEHR)
 - Diagnosis system considers symptom descriptions, SEHR, Q&A and self-medication KB
 - Uses an ontology for vocabulary and knowledge (axioms) about treatments, contra-indications, side-effects, etc.
 - E.g., do not take x if patient suffers from y; side-effects of x may include z

Online Self-Medication Advice

Online Self-Medication Application

- Data taken from **drug terminologies**, e.g.:
 - European Pharmaceutical Market Research Association (EphMRA)
 - Anatomical Therapeutic Chemical (ATC)
- Data transformed into OWL ontology
 - Expert uses reasoner to check and enhance ontology
- **OWL reasoner** also used to check and enhance data
 - Combined with induction and interaction with expert
 - Corrected missing/incorrect information on interactions, contra-indications, allergies, side-effects, etc.
 - Quality of data improved by factor of 8%

Thank you for listening

Any questions?

Resources:

- This talk:
 - http://www.comlab.ox.ac.uk/people/ian.horrocks/Seminars/
- OWL 2 Proposed Recommendation:
 - <u>http://www.w3.org/2007/OWL/wiki/OWL_Working_Group#Deliverables</u>