DEPARTMENT OF COMPUTER SCIENCE

OBDA: Theory and Practice

Ian Horrocks Information Systems Group

A fundamental branch of metaphysics

- Studies "being" or "existence" and their basic categories
- Aims to find out what entities and types of entities exist

A conceptual model of (some aspect of) the world

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Cell Phones

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Cell Phones
 - Oil and gas

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain
- Specifies meaning (semantics) of terms

Oil pipeline is a pipeline from a facility that is an oil facility

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain
- Specifies meaning (semantics) of terms

Oil pipeline is a pipeline from a facility that is an oil facility

Formalised using suitable logic

 $\begin{aligned} \forall x. [\mathsf{OilPipeline}(x) \rightarrow \mathsf{Pipeline}(x) \land \\ \exists y. [\mathsf{fromFacility}(x, y) \land \\ \mathsf{OilFacility}(y)]] \end{aligned}$

A conceptual model of (some aspect of) the world

- Introduces vocabulary relevant to domain
- Specifies meaning (semantics) of terms

Oil pipeline is a pipeline from a facility that is an oil facility

Formalised using suitable logic

OilPipeline ⊑ Pipeline ⊓ ∃fromFacility.OilFacility

Applications: Semantic Web

Applications: Semantic Web

• SemWeb motivated development of **robust infrastructure**:

- SemWeb motivated development of robust infrastructure:
 - Languages

- SemWeb motivated development of robust infrastructure:
 - Languages

COMPUTER

Storage and querying

- SemWeb motivated development of **robust infrastructure**:
 - Languages
 - Storage and querying
 - Development tools

- SemWeb motivated development of **robust infrastructure**:
 - Languages
 - Storage and querying
 - Development tools
- Increasingly used in "Intelligent Information Systems", and in particular Ontology Based Data Access (OBDA)

Applications: HCLS

- OBO foundry includes more than 100 biological and biomedical ontologies
- Siemens "actively building OWL based clinical solutions"
- SNOMED-CT (Clinical Terms) ontology
 - used in healthcare systems of more than 15 countries, including Australia, Canada, Denmark, Spain, Sweden and the UK
 - also used by major US providers, e.g., Kaiser Permanente
 - ontology provides common vocabulary for recording clinical data

Applications: Energy Supply Industry

- EDF Energy offer personalised energy saving advice to every customer
- OWL ontology used to model relevant environmental factors

 Oxford's HermiT reasoner used to match customer circumstances with relevant pieces of advice

Applications: Intelligent Mobile Platform

- Samsung developing Intelligent Mobile
 Platform to support context-aware applications
- IMP monitors environment via sensor data (GPS, compass, accelerometer, ...)
- OWL ontology used to model environment and infer context (e.g., coffee with friends)
- Applications exploit context to enable more intelligent behaviour

OBDA: Practical Issues

- Scalability is always an issue, particularly when we have large and heterogeneous data sources
- Can be a large (startup) cost for building and maintaining ontologies (and mappings)
- Users may still have difficulty formulating queries

Optique Objectives

 Provide semantic end-to-end connection between users and data sources

Optique Objectives

- Provide semantic end-to-end connection between users and data sources
- Enable users to rapidly formulate intuitive queries using familiar vocabularies and conceptualisations

Optique Objectives

- Provide semantic end-to-end connection between users and data sources
- Enable users to rapidly formulate intuitive queries using familiar vocabularies and conceptualisations
- Return timely answers from large scale and heterogeneous data sources

•

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

 Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

 Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset

 $Q(x) \leftarrow \mathsf{Pipeline}(x) \land \mathsf{fromFacility}(x,y) \land \mathsf{OilFacility}(y)$

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

 Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset

 $\begin{array}{l} Q(x) \leftarrow \mathsf{Pipeline}(x) \land \mathsf{fromFacility}(x,y) \land \mathsf{OilFacility}(y) \\ \lor \mathsf{OilPipeline}(x) \end{array}$

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

- Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query

 $\begin{array}{l} Q(x) \leftarrow \mathsf{Pipeline}(x) \land \mathsf{fromFacility}(x,y) \land \mathsf{OilFacility}(y) \\ \lor \mathsf{OilPipeline}(x) \end{array}$

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

- Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query

SELECT name FROM pipeline,fromfac,facility . . . UNION SELECT name FROM oilpipeline

Given ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

- Rewrite Q → Q' s.t. answering Q' without O equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query
- Evaluate (SQL) query against DB

Query Formulation

Optique

SEVENTH FRAMEWORK

SEVENTH FRAMEWORK

UiO : University of Oslo

National and Kapodistrian UNIVERSITY OF ATHENS

SIEMENS

TUHH Hamburg University of Technology

Department of Telecommunications

Freie Universität Bozen

Libera Università di Bolzano

FREE UNIVERSITY OF BOZEN · BOLZANO

Thank you for listening

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions? • Optique

