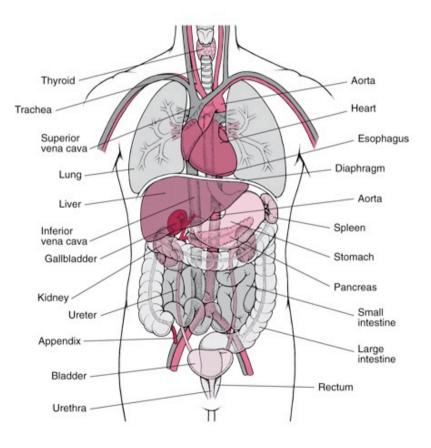
OWL: a Reasonable Ontology Language?

Ian Horrocks

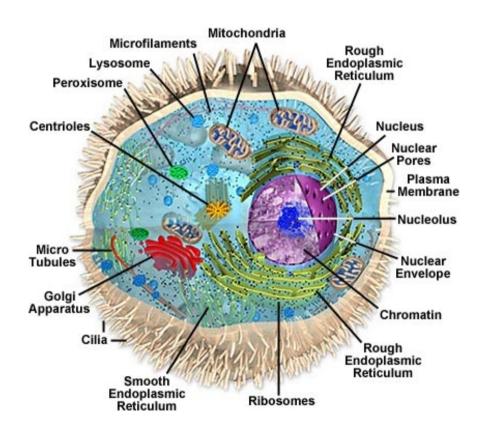
<ian.horrocks@comlab.ox.ac.uk> Information Systems Group Oxford University Computing Laboratory

An explicit specification of a conceptualization

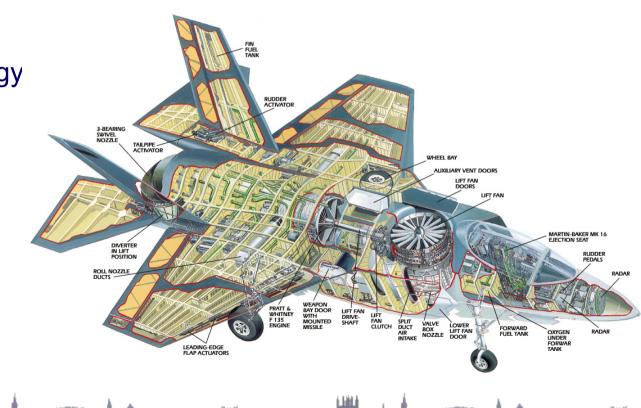
- Introduces **vocabulary** relevant to domain, e.g.:
 - Anatomy



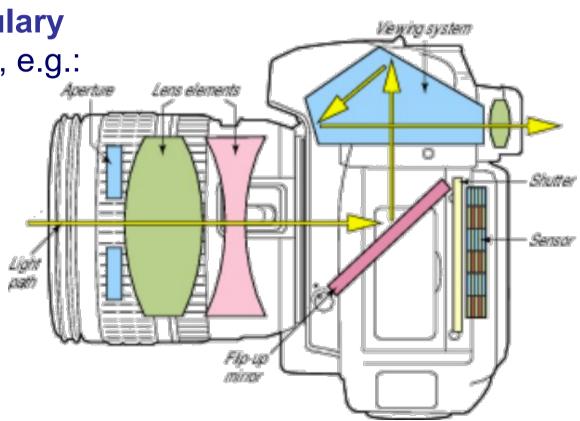
- Introduces **vocabulary** relevant to domain, e.g.:
 - Anatomy
 - Cellular biology



- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace



- Introduces **vocabulary** relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Photography



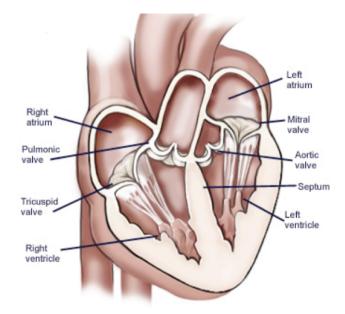
- Introduces **vocabulary** relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Photography
 - Pizzas



A model of (some aspect of) the world

- Introduces vocabulary
 relevant to domain
- Specifies *relative* **meaning** (aka semantics) of terms

Heart is a muscular organ that is part of the circulatory system



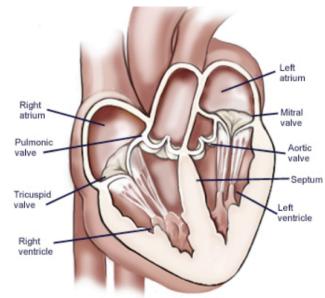
A model of (some aspect of) the world

- Introduces vocabulary
 relevant to domain
- Specifies *relative* **meaning** (aka semantics) of terms

Heart is a muscular organ that is part of the circulatory system

• Formalised e.g. using suitable logic

 $\begin{array}{l} \mathsf{Heart}\sqsubseteq\mathsf{MuscularOrgan}\sqcap\\ \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \end{array}$



- Coherent **shared view** of domain
 - Help identify and resolve disagreements
- Ontology-based Information Systems
 - User-centric view of data that is independent of logical/physical schema
 - Answers reflect knowledge & data, e.g.:

Now... *that* should clear up a few things around here

- $Q(x) \gets \mathsf{Patient}(x) \land \mathsf{suffersFrom}(x,y) \land \mathsf{VascularDisease}(y)$
- i.e., "Patients suffering from Vascular Disease"

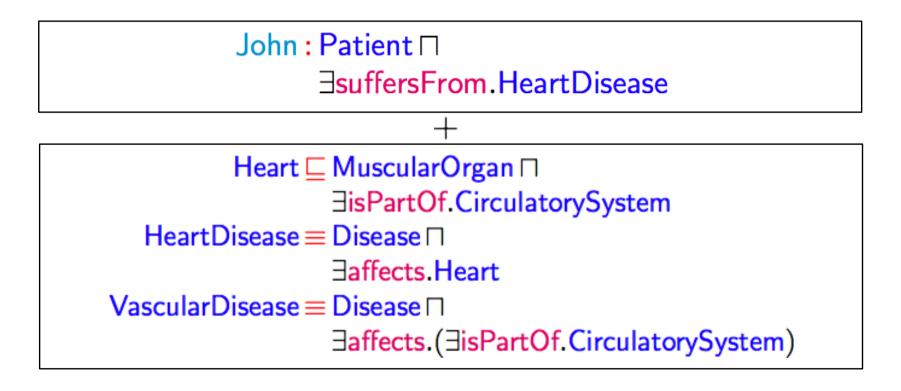
 $Q(x) \leftarrow \mathsf{Patient}(x) \land \mathsf{suffersFrom}(x,y) \land \mathsf{VascularDisease}(y)$

i.e., "Patients suffering from Vascular Disease"

John : Patient □ ∃suffersFrom.HeartDisease

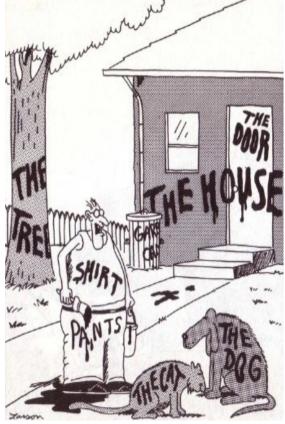
 $Q(x) \gets \mathsf{Patient}(x) \land \mathsf{suffersFrom}(x,y) \land \mathsf{VascularDisease}(y)$

i.e., "Patients suffering from Vascular Disease"

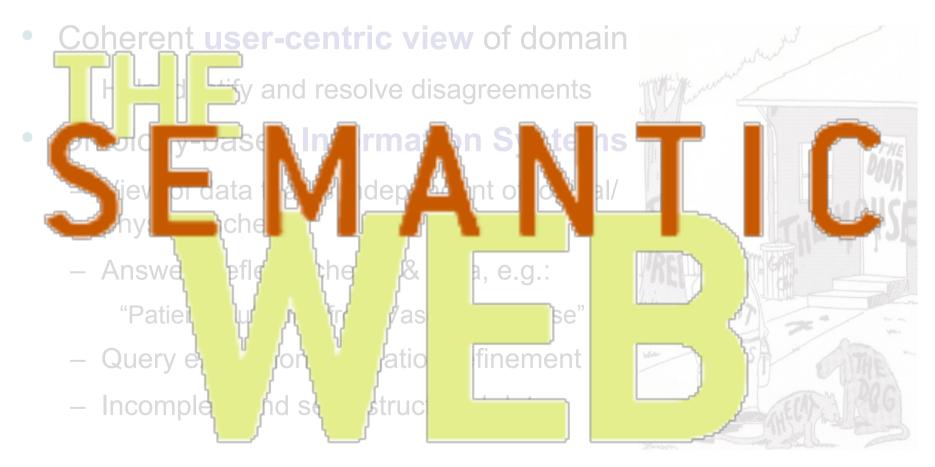


- Coherent **shared view** of domain
 - Help identify and resolve disagreements
- Ontology-based Information Systems
 - User-centric view of data that is independent of logical/physical schema
 - Answers reflect knowledge & data, e.g.:
 "Patients suffering from Vascular Disease"
 - Query expansion/navigation/refinement
 - Incomplete and semi-structured data

More "intelligent" applications



Now... *that* should clear up a few things around here



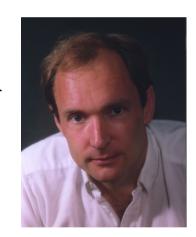
More "intelligent" applications

Now... *that* should clear up a few things around here

• According to **TBL** circa 1998:

"... a consistent logical web of data ..." in which

"... information is given well-defined meaning ..."



- According to **TBL** circa 1998:
 - "... a consistent logical web of data ..." in which
 - "... information is given well-defined meaning ..."
- By now has evolved into:

"a platform for distributed applications and sharing (linking) data"

- According to **TBL** circa 1998:
 - "... a **consistent logical web of data** ..." in which "... information is given **well-defined meaning** ..."
- By now has evolved into:
 - "a platform for distributed applications and sharing (linking) data"
 - RDF provides uniform syntactic structure for data
 - OWL provides machine readable schemas (ontologies)

• According to **TBL** circa 1998:

"... a **consistent logical web of data** ..." in which "... information is given **well-defined meaning** ..."

- By now has evolved into:
 - "a platform for distributed applications and sharing (linking) data"
 - RDF provides uniform syntactic structure for data
 - OWL provides machine readable schemas (ontologies)

i.e., a large distributed ontology based information system

- RDF standard first published 1999; revised 2004
- RDF extended to **RDFS**, a primitive ontology language
 - classes and properties; sub/super-classes (and properties); range and domain (of properties)
- But RDFS lacks important features, e.g.:
 - existence/cardinality constraints; transitive/inverse properties;
 localised range and domain constraints, ...
- And RDF(S) has "higher order flavour" with no (later non-standard) formal semantics
 - difficult to understand or to provide reasoning support

• EU On-To-Knowledge project developed OIL

- EU On-To-Knowledge project developed OIL
- DAML program developed DAML-ONT
- Efforts soon merged to produce DAML+OIL
 - Further development carried out by "Joint EU/US Committee"

- EU On-To-Knowledge project developed OIL
- DAML program developed DAML-ONT
- Efforts soon merged to produce **DAML+OIL**
 - Further development carried out by "Joint EU/US Committee"
- DAML+OIL submitted to WSC as basis for standardisation
 - WebOnt WG developed OWL (2004)
 - OWL WG developed OWL 2 (2009)
- OWL (2) based on SHOIN (SROIQ)
 Description Logics!?

What are Description Logics (DLs)?

- Fragments of first order logic designed for KR
- Useful computational properties
 - Decidable (essential)
 - Low complexity (desirable)
- Succinct and variable free syntax

 $\begin{array}{l} \mathsf{Heart}\sqsubseteq\mathsf{MuscularOrgan}\sqcap\\ \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \end{array}$

 $\begin{aligned} \forall x. [\mathsf{Heart}(x) & \to \mathsf{MuscularOrgan}(x) \land \\ & \exists y. [\mathsf{isPartOf}(x, y) \land \\ & \mathsf{CirculatorySystem}(y)]] \end{aligned}$

Can exploit the results of 20+ years of DL research

- Well defined (model theoretic) semantics

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \lor \ldots \lor C_n(x)$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y. P(x, y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x, y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists \leq n y. P(x, y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n}y.P(x,y)$

Can exploit the results of 20+ years of DL research

- Well defined (model theoretic) semantics
- Formal properties well understood (complexity, decidability)

I can't find an efficient algorithm, but neither can all these famous people.

[Garey & Johnson. Computers and Intractability]

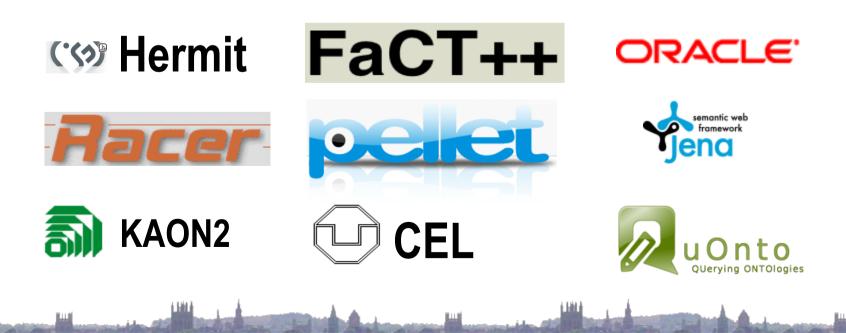
Can exploit the results of 20+ years of DL research

- Well defined (model theoretic) semantics
- Formal properties well understood (complexity, decidability)
- Practical reasoning algorithms

□-rule	if 1. $(C_1 \sqcap C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \not\subseteq \mathcal{L}(v)$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{C_1, C_2\}.$
⊔-rule	if 1. $(C_1 \sqcup C_2) \in \mathcal{L}(v)$, v is not indirectly blocked, and
	2. $\{C_1, C_2\} \cap \mathcal{L}(v) = \emptyset$
	then $\mathcal{L}(v) \to \mathcal{L}(v) \cup \{E\}$ for some $E \in \{C_1, C_2\}$
∃-rule	if 1. $\exists r. C \in \mathcal{L}(v_1), v_1$ is not blocked, and
	2. v_1 has no safe r-neighbour v_2 with $C \in \mathcal{L}(v_1)$,
	then create a new node v_2 and an edge $\langle v_1, v_2 \rangle$
	with $\mathcal{L}(v_2) = \{C\}$ and $\mathcal{L}(\langle v_1, v_2 \rangle) = \{r\}.$
∀-rule	if 1. $\forall r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{C\}.$
∀ ₊ -rule	if 1. $\forall r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is some role r' with $Trans(r')$ and $r' \equiv r$
	3. there is an r'-neighbour v_2 of v_1 with $\forall r'.C \notin \mathcal{L}(v_2)$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{ \forall r'.C \}.$
choose-rule	if $1. \leq n r.C \in \mathcal{L}(v_1), v_1$ is not indirectly blocked, and
	2. there is an r-neighbour v_2 of v_1 with $\{C, \neg C\} \cap \mathcal{L}(v_2) = \emptyset$
	then $\mathcal{L}(v_2) \to \mathcal{L}(v_2) \cup \{E\}$ for some $E \in \{C, \neg C\}$.
≽-rule	if $1. \ge n r.C \in \mathcal{L}(v)$, v is not blocked, and
	2. there are not n safe r-neighbours v_1, \ldots, v_n of v
	with $C \in \mathcal{L}(v_i)$ and $v_i \neq v_j$ for $1 \leq i < j \leq n$
A SAME A	a a construction of the second s

Can exploit the results of 20+ years of DL research

- Well defined (model theoretic) semantics
- Formal properties well understood (complexity, decidability)
- Practical reasoning algorithms
- Effective implemented systems



Ontologies before:

Name	Original	de-	primi-	arti-	Σ	de-	primi-
	Language	fined	tive	ficial		fined	tive
		concepts			roles		
CKB	SB-ONE	23	57	58	138	2	46
Companies	BACK	70	45	81	196	1	39
FSS	SB-ONE	34	98	75	207	0	47
Espresso	SB-ONE	0	145	79	224	11	41
Wisber	TURQ	50	81	152	283	6	18
Wines	CLASSIC	50	148	237	435	0	10

Ontologies after:

Swoogle Semantic Web Search Engine				
🔺 🕨 🕂 🐺 http://swoogle.uml	oc.edu/	C Qr Google		
Semantic v	veb search	Want more results? Login		
ontology <u>document</u>	term more >> Swoogle Search	3		
Searchir	ng over 10,000 ontologies			
		11		

Ontologies after:

Welcome to the Protege Ontology Library!

OWL ontologies

- AIM@SHAPE Ontologies A: Ontologies pertaining to digital shapes. Source: AIM@SHAPE NoE Advanced and Innovative Models And Tools for the development of Semantic-based systems for Handling, Acquiring, and Processing knowledge Embedded in multidimensional digital objects.
- amino-acid.owl

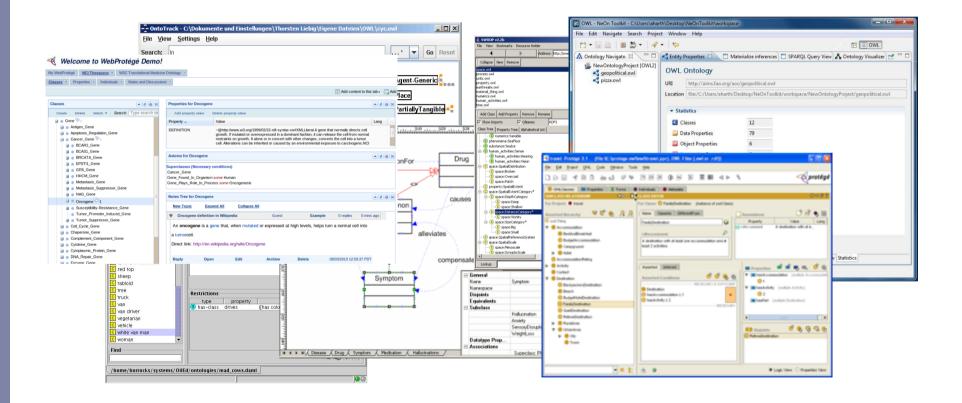
 A small OWL ontology of amino acids and their properties. Source: Amino Acid Ontology Web site

 Acid Ontology Web site
- Basic Formal Ontology (BFO) 🗗
- bhakti.owl : An OWL ontology for the transcendental states of consciousness experienced by practitioners of bhakti-yoga, a form of Vedic consciousness engineering.
- Biochemical Ontologies &: Over 30 ontologies for knowledge representation and reasoning across scientific domains. Ontologies are normalized into non-disjoint primitive skeletons and

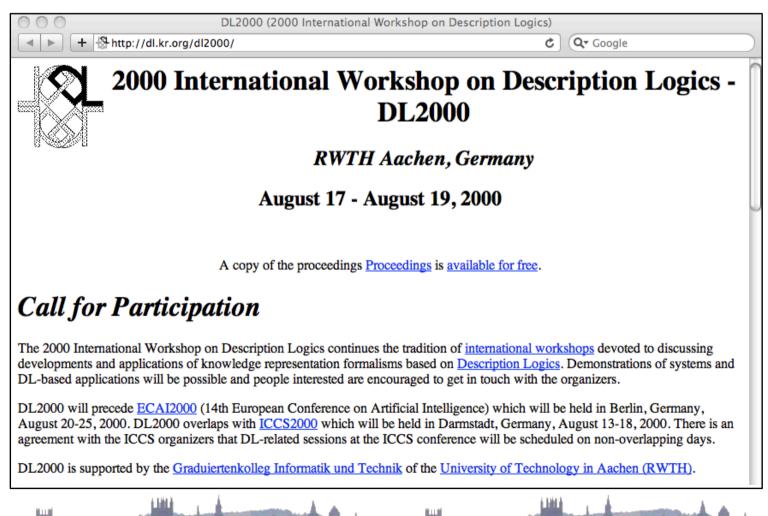
Tools before:

```
> (load-tkb "demo.kb" :verbose T)
                    . . . . . . . . . . . . . . .
> (classify-tkb :mode :stars)
  pppppppppppppppccpcpcccpcppcpcpppcccpcp
  pccccppcpcppcccp
  ጥ
> (direct-supers 'MAN)
  (C[HUMAN] C[MALE])
>
```


Tools after:



"Profile" before:



"Profile" after:

Applications before:

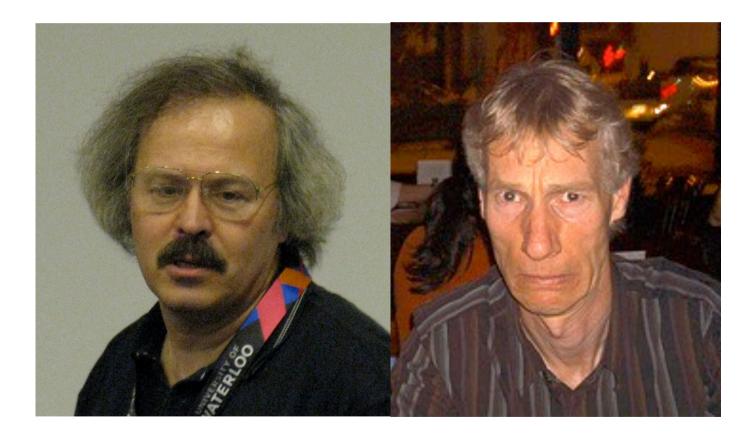
Applications after:

Applications after:

- eScience, eCommerce, geography, engineering, defence, ...
- Major impact in healthcare and life sciences
- Mainstream technology supported by, e.g., ORACLE 11g
- Increasing impact in business applications

Peter and lan before:

Peter and Ian after:



Where We Are Now

- OWL (2) ontology language a W3C standard
- OWL (2) based on **AI research** (in particular DLs)
- Wide range of tools and infrastructure now available
- High profile applications
- Support from mainstream technology vendors

So everybody's happy?

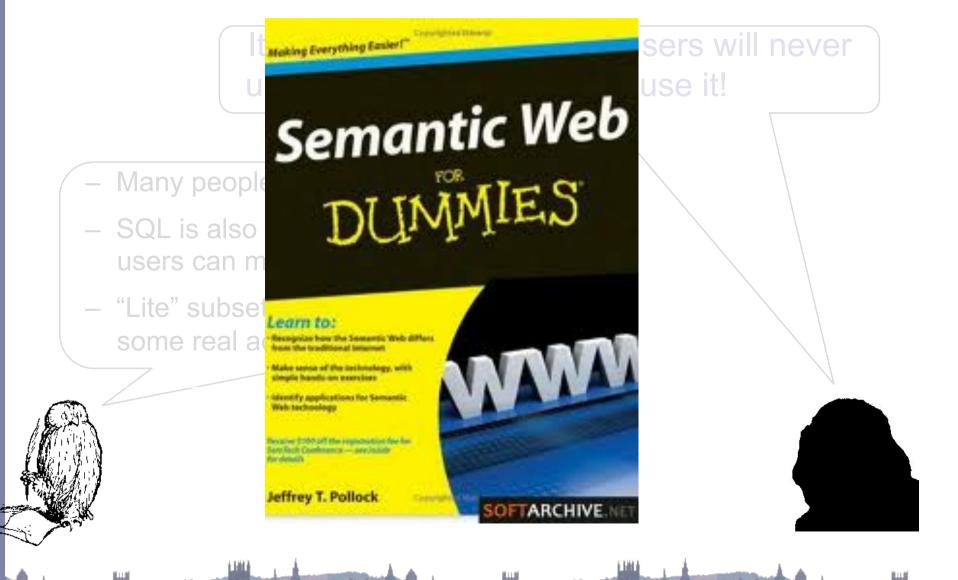
So everybody's happy?

Of course not!

It is too complicated, and users will never understand it or be able to use it!

It is too complicated, and users will never understand it or be able to use it!

- Many people are now using it!
- Naive users can manage with a small subset (c.f. SQL, MS-Word, ...)
- "Lite" subsets only useful if they confer some computational advantage



Complexity is too high, and it won't scale!

Complexity is too high, and it won't scale!

– What do we mean by "scale"?

Reasoning with whole web doesn't make sense

– Even so, scalability is a real problem

 \mathcal{SROIQ} satisfiability/subsumption is 2NEXPTIME-complete

Thanks to: Arthur Gordon, Alison Gurlitz, Stephen Lam and Eugene Moy

So is OWL reasoning doomed to failure?

- High complexity doesn't mean that *bad* performance is guaranteed
 - Just that we can't guarantee **good** performance
- Highly optimised implementations (may) work well in practice
- Main problem is relatively low "robustness"
 - Optimisations exploit features of *typical* ontologies
 - Small changes in ontology can lead to large changes in performance – "it worked OK yesterday"
- Large data sets may also be problematical
- Users/applications can choose tractable subsets (profiles) if greater scalability and/or robustness is needed

OWL 2 profiles:

- **OWL 2 EL**

- polynomial (combined) complexity
- highly effective "one pass" classification algorithms

- **OWL 2 RL**

- polynomial (combined) complexity
- convenient rule-extended database implementation

– **OWL 2 QL**

- AC⁰ (data) complexity (< logspace)
- highly scalable query rewriting implementation

Rules!

- ✓ More natural/intuitive and easy to understand
- Can describe arbitrary relational structures
- ✓ UNA and CWA semantics is more intuitive/appropriate

Rules!

✓ Better scalability

- More natural/intuitive and easy to understand
- Can describe arbitrary relational structures
- ✓ UNA and CWA semantics is more intuitive/appropriate

Rules!

- ✓ Better scalability
- Less natural/intuitive and easy to understand
- X Can't describe unbounded structures
- X UNA and CWA inappropriate in Web setting
- X Poor at dealing with incomplete information

Fuzzy

Logic!

✓ Need to deal with vague concepts, e.g., "tall"

- ✓ Information may also be vague/noisy, e.g., the Web
- ✓ Strictly extends "crisp" languages (1 = true; 0 = false)

Fuzzy

Logic!

- ✓ Need to deal with vague concepts, e.g., "tall"
- ✓ Information may also be vague/noisy, e.g., the Web
- ✓ Strictly extends "crisp" languages (1 = true; 0 = false)
- X Developing ontologies may be more difficult
- X How will fuzzy values be determined/agreed?
- Keasoner implementations still prototypical
- Practicality still an open question

Fuzzy

Logic!

FOL/CL!

Expressive superset of most other languages

✓ FOL reasoners now highly capable

and Specialised reasoners can be used for subsets

FOL/CL!

Undecidability not important

and little different from high complexity

- Expressive superset of most other languages
- ✓ FOL reasoners now highly capable
 - and Specialised reasoners can be used for subsets

FOL/CL!

- Undecidability not important
 and little different from high complete
 - and little different from high complexity
- Reasoners are much less robust
- X Poor at proving non-subsumption (normal case)
- X Difficult to recognise subsets
- Incomplete answers typically used in unsound way
- * Insert favourite logic/KR-formalism

Undecidability -v- High Complexity

Undecidability -v- High Complexity

- Can think of undecidable as a very high complexity class
 - Result is very low robustness of reasoner performance

Users have to make do with imperfect tests which sometimes fail to yield results" ... "analogous to 404 errors on the Web

Undecidability -v- High Complexity

- Can think of undecidable as a very high complexity class
 - Result is very low robustness of reasoner performance

Users have to make do with imperfect tests which sometimes fail to yield results" ... "analogous to 404 errors on the Web

- But in practice
 - Even SOTA FOL theorem provers are not very effective for non-theorems/non-subsumption
 - Vast majority tests are non-subsumptions, so answer to most tests is "don't know" (almost every link gives a 404 error)
 - Users expect/demand (fast and) complete reasoning; otherwise they simply won't use the reasoner

Incompleteness -v- Incorrectness

Incompleteness -v- Incorrectness

- Applications often treat failure to prove "yes" as "no"
 - and incomplete reasoners often don't even distinguish

Incompleteness -v- Incorrectness

- Applications often treat failure to prove "yes" as "no"
 - and incomplete reasoners often don't even distinguish

Incompleteness -v- Incorrectness

- Applications often treat failure to prove "yes" as "no"
 - and incomplete reasoners often don't even distinguish

Isn't this just negation as failure?

- Absolutely not!
 - Failure in NAF means failure of entailment
 - $eg \phi$ is true if ϕ is not entailed
 - It doesn't mean failure of an incomplete reasoner to prove that ϕ is entailed
 - Treating "don't know" as "no" is simply incorrect

I need to express,* which I can't express in OWL

* Insert favourite expressive feature

I need to express,* which I can't express in OWL

✓ There are many things that can't be expressed in OWL

✓ Some of them would certainly be very useful

* Insert favourite expressive feature

I need to express,* which I can't express in OWL

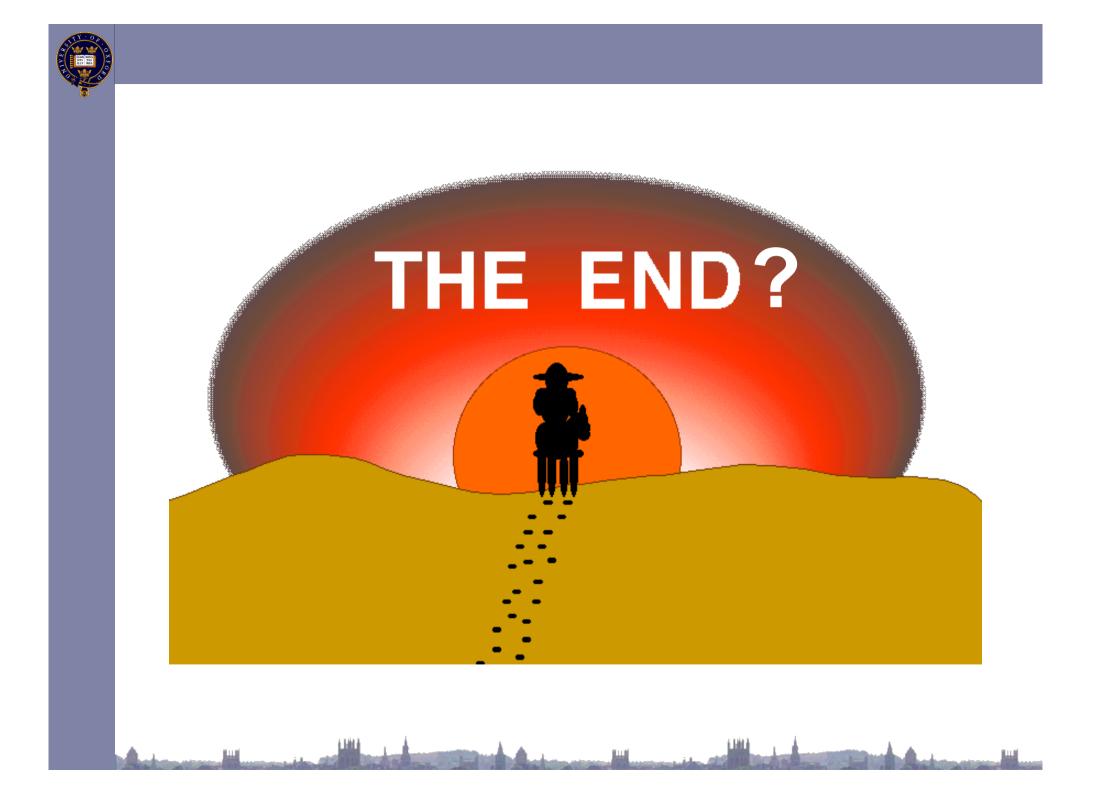
✓ There are many things that can't be expressed in OWL

- ✓ Some of them would certainly be very useful
- ✗ It's too complicated
- X It's too complex
- It should have been based on

* Insert favourite expressive feature

Conclusions?

- There is no "right choice" of ontology language "you pays your money, and you takes your choice"
- Standardisation requires *some* choice
- Claim: OWL was a (not totally un-)reasonable choice:
 - good compromise between expressive power and robust tool performance
 - has allowed for the development of a range of tools, infrastructure and applications that could previously only have been dreamt of



Ongoing Research

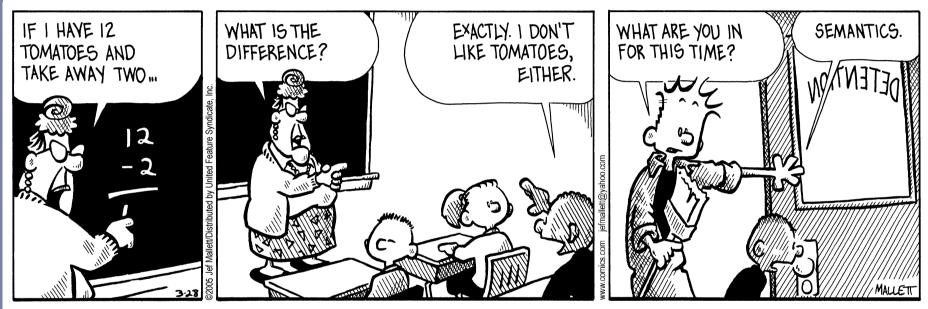
- Optimisation/Profiles
 - [Kazakov], [Glimm et al], [Faddoul et al], [Savo et al]
- Query answering
 - [Kontchakov et al], [Konev et al], [Baader et al]
- Diagnosis and repair
 - [Horridge et al], [Peñaloza et al]
- Extensions
 - [Motik et al], [Artale et al]

Ongoing Standardisation Efforts

- Standardised query language
 - SPARQL standard for RDF
 - Currently being extended for OWL, see <u>http://www.w3.org/TR/sparql11-entailment/</u>
- RDF
 - Revision currently being considered, see http://www.w3.org/2009/12/rdf-ws/

Thank you for listening

Thank you for listening



FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions?