
Description Logics—Basics, Applications, and More

Ian Horrocks

Information Management Group

University of Manchester, UK

Ulrike Sattler

Institut für Theoretische Informatik

TU Dresden, Germany

TU Dresden
Germany

1

Overview of the Tutorial

• History and Basics: Syntax, Semantics, ABoxes, Tboxes, Inference Problems

and their interrelationship, and Relationship with other (logical) formalisms

• Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including

system demonstration

• Reasoning Procedures: simple tableaux and why they work

• Reasoning Procedures II: more complex tableaux, non-standard inference prob-

lems

• Complexity issues

• Implementing/Optimising DL systems

TU Dresden
Germany

2

Description Logics

• family of logic-based knowledge representation formalisms well-suited for the

representation of and reasoning about

à terminological knowledge

à configurations

à ontologies

à database schemata

– schema design, evolution, and query optimisation

– source integration in heterogeneous databases/data warehouses

– conceptual modelling of multidimensional aggregation

à . . .

• descendents of semantics networks, frame-based systems, and KL-ONE

• aka terminological KR systems, concept languages, etc.
TU Dresden

Germany
3

Architecture of a Standard DL System

...

Concrete Situation

Terminology

Father = Man u ∃ has child.>...
Human = Mammal u Biped

...

John:Human u Father
John has child Bill

Knowledge Base I

N

F

E

R

E

N

C

E

S

Y

S

T

E

M

I

N

T

E

R

F

A

C

E

Description
Logic

TU Dresden
Germany

4

Introduction to DL I

A Description Logic - mainly characterised by a set of constructors that allow

to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL ALC

� � � � � � �� � � � � � �� � � � � � �� � � � � � �
� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � ��� � � � � � �� � � � � � �

Man u (∃has-child.Blue) u

(∃has-child.Green) u

(∀has-child.Happy t Rich)

TU Dresden
Germany

5

Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation I = (∆I, ·I):

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R likes RI ⊆ ∆I × ∆I

For C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Nice t Rich CI ∪ DI

negation ¬C ¬ Meat ∆I \ CI

exists restrict. ∃R.C ∃has-child.Human {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restrict. ∀R.C ∀has-child.Blond {x | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}

TU Dresden
Germany

6

Introduction to DL: Other DL Constructors

Constructor Syntax Example Semantics

number restriction (≥ n R) (≥ 7 has-child) {x | |{y.〈x, y〉 ∈ RI}| ≥ n}

(≤ n R) (≤ 1 has-mother) {x | |{y.〈x, y〉 ∈ RI}| ≤ n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans. role R∗ has-child∗ (RI)∗

concrete domain u1, . . . , un.P h-father·age, age. > {x | 〈uI
1 , . . . , uI

n〉 ∈ P}

etc.

Many different DLs/DL constructors have been investigated

TU Dresden
Germany

7

Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

Concept definitions A =̇ C (A a concept name, C a complex concept)

Father =̇ Man u ∃has-child.Human

Human =̇ Mammal u ∀has-child−.Human

; introduce macros/names for concepts, can be (a)cyclic

Axioms C1 v C2 (Ci complex concepts)

∃favourite.Brewery v ∃drinks.Beer

; restrict your models

An interpretation I satisfies

a concept definition A
.
= C iff AI = CI

an axiom C1 v C2 iff CI
1 ⊆ CI

2

a TBox T iff I satisfies all definitions and axioms in T
; I is a model of T

TU Dresden
Germany

8

Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions a : C (a an individual name, C a complex concept)

John : Man u ∀has-child.(Male u Happy)

Role assertions 〈a1, a2〉 : R (ai individual names, R a role)

〈John, Bill〉 : has-child

An interpretation I satisfies

a concept assertion a : C iff aI ∈ CI

a role assertion 〈a1, a2〉 : R iff 〈aI
1 , aI

2 〉 ∈ RI

an ABox A iff I satisfies all assertions in A
; I is a model of A

TU Dresden
Germany

9

Introduction to DL: Basic Inference Problems

Subsumption: C v D Is CI ⊆ DI in all interpretations I?

w.r.t. TBox T : C vT D Is CI ⊆ DI in all models I of T ?

; structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. T ? Is there a model I of T with CI 6= ∅?

of ABox A: Is A consistent? Is there a model of A?

of KB (T ,A): Is (T ,A) consistent? Is there a model of both T and A?

Inference Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T ,

(no model of I has an instance of C u ¬D)

C is consistent w.r.t. T iff not C vT A u ¬A

; Decision Procdures for consistency (w.r.t. TBoxes) suffice

TU Dresden
Germany

10

Introduction to DL: Basic Inference Problems II

For most DLs, the basic inference problems are decidable,

with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

à subsumption is semi-decidable, then consistency is not semi-decidable

à consistency is semi-decidable, then subsumption is not semi-decidable

à Quest for a “highly expressive” DL with “practicable” inference problems

where expressiveness depends on the application

practicability changed over the time

TU Dresden
Germany

11

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

late
’80s

early
’90s ’90s

mid
’90s
late

Undecidable

ExpTime

PSpace

NP

PTime

Investigation of Complexity of Inference Problems/Algorithms starts

Crack, Kris

Classic (AT&T)

Loom
KL-ONE
NIKL

Fact, DLP, Race

TU Dresden
Germany

12

Introduction to DL: State-of-the-implementation-art

In the last 5 years, DL-based systems were built that

4 can handle DLs far more expressive than ALC (close relatives of converse-DPDL)

• Number restrictions: “people having at most 2 cats and exactly 1 dog”

• Complex roles: inverse (“has-child” — “child-of”),

transitive closure (“offspring” — “has-child”),

role inclusion (“has-daughter” — “has-child”), etc.

4 implement provably sound and complete inference algorithms

(for ExpTime-complete problems)

4 can handle large knowledge bases

(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

4 are highly optimised versions of tableau-based algorithms

4 perform (surprisingly well) on benchmarks for modal logic reasoners

(Tableaux’98, Tableaux’99)

TU Dresden
Germany

13

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name A

a binary relation R for a role name R

Translate complex concepts C, D as follows:

tx(A) = A(x), ty(A) = A(y),

tx(C u D) = tx(C) ∧ tx(D), ty(C u D) = ty(C) ∧ ty(D),

tx(C t D) = tx(C) ∨ tx(D), ty(C t D) = ty(C) ∨ ty(D),

tx(∃R.C) = ∃y.R(x, y) ∧ ty(C), ty(∃R.C) = ∃x.R(y, x) ∧ tx(C),

tx(∀R.C) = ∀y.R(x, y) ⇒ ty(C), ty(∀R.C) = ∀x.R(y, x) ⇒ tx(C).

A TBox T = {Ci
.
= Di} is translated as

ΦT = ∀x.
∧

1≤i≤n

tx(Ci) ⇔ tx(Di)

TU Dresden
Germany

14

Relationship with Other Logical Formalisms: First Order Predicate Logic II

C is consistent iff its translation tx(C) is satisfiable,

C is consistent w.r.t. T iff its translation tx(C) ∧ ΦT is satisfiable,

C v D iff tx(C) ⇒ tx(D) is valid

C vT D iff Φt ⇒ ∀x.(tx(C) ⇒ tx(D)) is valid.

; ALC is a fragment of FOL with 2 variables (L2), known to be decidable

; ALC with inverse roles and Boolean operators on roles is a fragment of L2

; further adding number restrictions yields a fragment of C2

(L2 with “counting quantifiers”), known to be decidable

F in contrast to most DLs, adding transitive roles (binary relations/

transitive closure operator) to L2 leads to undecidability

F many DLs (like many modal logics) are fragments of the Guarded Fragment

F most DLs are less complex than L2:

L2 is NExpTime-complete, most DLs are in ExpTime

TU Dresden
Germany

15

Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

ALC À multi-modal K:

C u D À C ∧ D, C t D À C ∨ D

¬C À ¬C ,

∃R.C À 〈R〉C , ∀R.C À [R]C

transitive roles À̇ transitive frames (e.g., in K4)

regular expressions on roles À̇ regular expressions on programs (e.g., in PDL)

inverse roles À̇ converse programs (e.g., in C-PDL)

number restrictions À̇ deterministic programs (e.g., in D-PDL)

ë no TBoxes available in modal logics

; “internalise” axioms using a universal role u: C
.
= D À [u](C ⇔ D)

ë no ABox available in modal logics ; use nominals
TU Dresden

Germany
16

Applications of Description Logics

Applications – p. 1/9

Application Areas I

+ Terminological KR and Ontologies
• DLs initially designed for terminological KR (and reasoning)
• Natural to use DLs to build and maintain ontologies

+ Semantic Web
• Semantic markup will be added to web resources

Ù Aim is “machine understandability”
• Markup will use Ontologies to provide common terms of

reference with clear semantics
• Requirement for web based ontology language

Ù Well defined semantics
Ù Builds on existing Web standards (XML, RDF, RDFS)

• Resulting language (DAML+OIL) is based on a DL (SHIQ)
• DL reasoning can be used to, e.g.,

Ù Support ontology design and maintenance
Ù Classify resources w.r.t. ontologies

Applications – p. 2/9

Application Areas II

+ Configuration
• Classic system used to configure telecoms equipment
• Characteristics of components described in DL KB
• Reasoner checks validity (and price) of configurations

+ Software information systems
• LaSSIE system used DL KB for flexible software documentation

and query answering

+ Database applications

+ . . .

Applications – p. 3/9

Database Schema and Query Reasoning

+ DLR (n-ary DL) can capture semantics of many conceptual
modelling methodologies (e.g., EER)

+ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

+ DL Abox can also capture semantics of conjunctive queries
• Can reason about query containment w.r.t. schema

+ DL reasoning can be used to support
• Schema design, evolution and query optimisation
• Source integration in heterogeneous databases/data

warehouses
• Conceptual modelling of multidimensional aggregation

+ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico Franconi)
• Uses FaCT system to provide reasoning support for EER

Applications – p. 4/9

I.COM Demo

Applications – p. 5/9

Terminological KR and Ontologies

+ General requirement for medical terminologies

+ Static lists/taxonomies difficult to build and maintain
• Need to be very large and highly interconnected
• Inevitably contain many errors and omissions

+ Galen project aims to replace static hierarchy with DL
• Describe concepts (e.g., spiral fracture of left femur)
• Use DL classifier to build taxonomy

+ Needed expressive DL and efficient reasoning
• Descriptions use transitive/inverse roles, GCIs etc.
• Very large KBs (tens of thousands of concepts)

Ù Even prototype KB is very large (≈3,000 concepts)
Ù Existing (incomplete) classifier took ≈24 hours to classify KB
Ù FaCT system (sound and complete) takes ≈60 seconds

Applications – p. 6/9

Reasoning Support for Ontology Design

+ DL reasoner can be used to support design and maintenance

+ Example is OilEd ontology editor (for DAML+OIL)
• Frame based interface (like Protegé, OntoEdit, etc.)
• Extended to clarify semantics and capture whole DAML+OIL

language
Ù Slots explicitly existential or value restrictions
Ù Boolean connectives and nesting
Ù Properties for slot relations (transitive, functional etc.)
Ù General axioms

+ Reasoning support for OilEd provided by FaCT system
• Frame representation translated into SHIQ

• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
• Can make implicit subsumptions explicit in KB

Applications – p. 7/9

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology

+ Transitive roles capture transitive partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Cancer v FatalThing

+ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .

= Ulcer u ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

+ Inverse roles capture e.g. causes/causedBy relationship
Death u ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v CauseOfPrematureDeath

+ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

Applications – p. 8/9

OilEd Demo

Applications – p. 9/9

Reasoning Procedures: Deciding Consistency of ALCN Concepts

As a warm-up, we describe a tableau-based algorithm that

• decides consistency of ALCN concepts,

• tries to build a (tree) model I for input concept C0,

• breaks down C0 syntactically, inferring constraints on elements in I ,

• uses tableau rules corresponding to operators in ALCN (e.g., →u, →∃)

• works non-deterministically, in PSpace

• stops when clash occurs

• terminates

• returns “C0 is consistent” iff C0 is consistent

TU Dresden
Germany

17

Reasoning Procedures: Tableau Algorithm

• works on a tree (semantics through viewing tree as an ABox):

nodes represent elements of ∆I , labelled with sub-concepts of C0

edges represent role-successorships between elements of ∆I

• works on concepts in negation normal form: push negation inside using de Morgan’

laws and

¬(∃R.C) ; ∀R.¬C ¬(∀R.C) ; ∃R.¬C

¬(≤ n R) ; (≥ (n + 1)R) ¬(≥ n R) ; (≤ (n − 1)R) (n ≥ 1)

¬(≥ 0 R) ; A u ¬A

• is initialised with a tree consisting of a single (root) node x0 with L(x0) = {C0}:

• a tree T contains a clash if, for a node x in T,

{A, ¬A} ⊆ L(x) or

{(≥ m R), (≤ n R)} ⊆ L(x) for n < m

• returns “C0 is consistent” if rules can be applied s.t. they yield

clah-free, complete (no more rules apply) tree

TU Dresden
Germany

18

Reasoning Procedures: ALC Tableau Rules

� ��� �

� ��	 	

�� � � ��

� ��� �

� ��� �

� ��� �� ��� �

� ��� �

� ��� �

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

� ��� �

{C1 t C2, C, . . .}

x {C1 u C2, . . .} x {C1 u C2, C1, C2, . . .}

x {C1 t C2, . . .}

→u

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x

R

y {. . . , C}y

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→t

for C ∈ {C1, C2}

x

TU Dresden
Germany

19

Reasoning Procedures: N Tableau Rules

� ��� �

 �! !

" "�# #$ $�% % & &�' '((�))* * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * *

+ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + +

, , , ,, , , ,, , , ,, , , ,, , , ,

- - - -- - - -- - - -- - - -- - - -

.

/ / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / /0 0�1 1

2 2�3 34 4�5 5 6 6�7 7

8 8�9 9

: :�; ;

< < < < < < < < << < < < < < < < << < < < < < < < << < < < < < < < << < < < < < < < <

= = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = == = = = = = = = =

> > > >> > > >> > > >> > > >> > > >

? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?

@ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @

A A A A A A A A AA A A A A A A A AA A A A A A A A AA A A A A A A A AA A A A A A A A A

BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB

C CD DEE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE

x {(≥ n R), . . .}

x has no R-succ.

x

R

merge two R-succs.

{(≤ n R), . . .}x {(≤ n R), . . .}

...

R

> n

→≤

x

R

y

→≥

{}

{(≥ n R), . . .}

TU Dresden
Germany

20

Reasoning Procedures: Soundness and Completeness

Lemma Let C0 be an ALCN concept and T obtained by applying the

tableau rules to C0. Then

1. the rule application terminates,

2. if T is clash-free and complete,

then T defines (canonical) (tree) model for C0, and

3. if C0 has a model I , then the rules can be applied such that they yield

a clash-free and complete T.

Corollary

(1) The tableau algorithm is a (PSpace) decision procedure for

consistency (and subsumption) of ALCN concepts

(2) ALCN has the tree model property

TU Dresden
Germany

21

Reasoning Procedures: Soundness and Completeness II

Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose

depth is linear in |C0|: quantifier depth decreases from node to succs.

breadth is linear in |C0| (even if number in NRs are coded binarily)

2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model I :

nodes x correspond to elements x ∈ ∆I

edges x
R
→ y define role-relationship

x ∈ AI iff A ∈ L(x) for concept names A

; Easy to that C ∈ L(x) ⇒ x ∈ CI — if C 6= (≥ n R)

If (≥ n R) ∈ L(x), then x might have less than n R-successors, but

the →≥-rule ensures that there is ≥ 1 R-successor. . .

TU Dresden
Germany

22

Reasoning Procedures: Soundness and Completeness III

copy some R-successors (including

sub-trees) to obtain n R-successors:

F FHG GI IHJ J K KHL L M MHN N

O OHP P

Q QHR RS SHT T U UHV V W WHX XY Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y
Z Z Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z ZZ Z Z Z Z Z Z Z Z

[[[[[[[[
[[[[[[[[[[[[
\ \ \ \\ \ \ \
\ \ \ \\ \ \ \\ \ \ \
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ ^ ^
_ __ __ __ __ _
` `` `` `` `` `

a a a a a a a a aa a a a a a a a aa a a a a a a a aa a a a a a a a aa a a a a a a a a
b b b b b b b b bb b b b b b b b bb b b b b b b b bb b b b b b b b bb b b b b b b b b

c c c cc c c c
c c c cc c c cc c c c
d d d dd d d d
d d d dd d d dd d d d

e e e e e e e e ee e e e e e e e ee e e e e e e e ee e e e e e e e ee e e e e e e e e
f f f f f f f f ff f f f f f f f ff f f f f f f f ff f f f f f f f ff f f f f f f f f

g g g g g g g g g g g g g g g g gg g g g g g g g g g g g g g g g gg g g g g g g g g g g g g g g g gg g g g g g g g g g g g g g g g gg g g g g g g g g g g g g g g g g
h h h h h h h h h h h h h h h hh h h h h h h h h h h h h h h hh h h h h h h h h h h h h h h hh h h h h h h h h h h h h h h hh h h h h h h h h h h h h h h hi iHj j

= n

x

...

R

{(≥ n R), . . .}x

...

R

{(≥ n R), . . .}

...< n

; canonical tree model for input concept

3. (Completeness) Use model I of C0 to steer application of non-determistic rules

(→t, →≤) via mapping

π : Nodes of Tree −→ ∆I with C ∈ L(x) ⇒ π(x) ∈ CI .

This easily implies clash-freenes of the tree generated.

TU Dresden
Germany

23

Make the Tableau Algorithm run in PSpace:

To make the tableau algorithm run in PSpace:

¬ observe that branches are independent from each other

­ observe that each node (label) requires linear space only

® recall that paths are of length ≤ |C0|

¯ construct/search the tree depth first

° re-use space from already constructed branches

; space polynomial in |C0| suffices for each branch/for the algorithm

; tableau algorithm runs in NPspace (Savitch: NPspace = PSpace)

TU Dresden
Germany

24

Reasoning Procedures: Extensibility

This tableau algorithm can be modified to a PSpace decision procedure for

4 ALC with qualifying number restrictions

(≥ n R C) and (≤ n R C)

4 ALC with inverse roles has-child−

4 ALC with role conjunction

∃(R u S).C and ∀(R u S).C

4 TBoxes with acyclic concept definitions:

unfolding (macro expansion) is easy, but suboptimal:

may yield exponential blow-up

lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

TU Dresden
Germany

25

Reasoning Procedures: Extensibility II

Language extensions that require more elaborate techniques include

à TBoxes with general axioms Ci v Di:

each node must be labelled with ¬Ci t Di

quantifier depth no longer decreases

; termination not guaranteed

à Transitive closure of roles:

node labels (∀R∗.C) yields C in all Rn-successor labels

quantifier depth no longer decreases

; termination not guaranteed

Use blocking (cycle detection) to ensure termination

(but the right blocking to retain soundness and completeness)

TU Dresden
Germany

26

Reasoning Procedures II

Reasoning Procedures II – p. 1/9

Non-Termination

+ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

+ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}w

y

has-mother

x L(x) = {human, (¬human t ∃has-mother.human),∃has-mother.human}

has-mother

L(y) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}

Reasoning Procedures II – p. 2/9

Blocking

+ When creating new node, check ancestors for equal (superset) label

+ If such a node is found, new node is blocked

L(w) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}w

x

has-mother

L(x) = {human, (¬human t ∃has-mother.human)}

Blocked

Reasoning Procedures II – p. 3/9

Blocking with More Expressive DLs

+ Simple subset blocking may not work with more complex logics

+ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),
L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C, ∃S.C,∀R−.(∀S−.¬C),

∃R.C}
∃R.C}

∃R.C}

Blocked
Blocked

Reasoning Procedures II – p. 4/9

Dynamic Blocking

+ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

z

w

x

S

R

y

R

∃R.C,∀S−.¬C,¬C}

L(x) = {C,∀R−.(∀S−.¬C),

∃R.C,∀S−.¬C}

L(z) = {C,∀R−.(∀S−.¬C),

∃R.C}

L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C, ∃S.C,∀R−.(∀S−.¬C),

∃R.C}

Clash

Reasoning Procedures II – p. 5/9

Non-finite Models

+ With number restrictions some satisfiable concepts have only
non-finite models

+ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

y

x

R

R

L(w) = {¬C,∃R.C, 61R−}

L(x) = {C, ∃R.C, 61R−}

L(y) = {C,∃R.C, 61R−}

R

model must be non-finite

Reasoning Procedures II – p. 6/9

Inadequacy of Dynamic Blocking

+ With non-finite models, even dynamic blocking not enough

+ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

y

x

R

R−

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C), ∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

But ∃R−.¬C ∈ L(y) not satisfied

Inconsistency due to 61R− ∈ L(y) and C ∈ L(x)

Reasoning Procedures II – p. 7/9

Double Blocking I

+ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C, ∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C), ∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

+ Solution is Double Blocking (pairwise blocking)
• Predecessors of blocked and blocking nodes also considered
• In particular, ∃R.C terms satisfied in predecessor of blocking

node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)

Reasoning Procedures II – p. 8/9

Double Blocking II

+ Due to pairwise condition, block no longer holds

+ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C), ∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C,¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

Clash

Reasoning Procedures II – p. 9/9

Complexity of DLs: Overview of the Complexity of Concept Consistency

(co-)NPP PSpace ExpTime NExpTime

ALCreg

ALCNO

add regular roles

add universal role
ALCu

ALCO

+ QI still in ExpTime

wrt general TBoxes

Q Qual. NRs: (≥ n h-child Blond)

I inverse roles: h-child−

O nominals: ”John” is a concept

without t
ALN

subsumption of

wrt acyc. TBoxes

subsumption of
FL0

wrt acyc. TBoxes
ALCF

ALCF

ALCIO

ALC¬

ALCIQO

ALC¬,∩,∪

ALCN
(wrt acyc. TBoxes)

FL0 (co-NP)

ALUN (NP)
without ∃,
only ¬A

ALE (co-NP)

only ¬A
without t and NRs,

add role hierarchies
ALCHIQR+

N NRs: (≥ n h-child)

u and ∀ only

F feature chain (dis)agreement

ALCIQR+

ALC

·R+ declare roles as transitive

·¬,∩,∪ Boolean ops on roles

TU Dresden
Germany

40

Complexity of DLs: What was left out

We left out a variety of complexity results for

ë concept consistency of other DLs

(e.g., those with “concrete domains”)

ë other standard inferences

(e.g., deciding consistency of ABoxes w.r.t. TBoxes)

ë “non-standard” inferences such as

– matching and unification of concepts

– rewriting concepts

– least common subsumer (of a set of concepts)

– most specific concept (of an ABox individual)

TU Dresden
Germany

41

Implementing DL Systems

Implementation – p. 1/14

Naive Implementations

Problems include:

+ Space usage
l Storage required for tableaux datastructures
l Rarely a serious problem in practice

+ Time usage
l Search required due to non-deterministic expansion
l Serious problem in practice
l Mitigated by:

Ù Careful choice of algorithm
Ù Highly optimised implementation

Implementation – p. 2/14

Careful Choice of Algorithm

+ Transitive roles instead of transitive closure
l Deterministic expansion of ∃R.C, even when R ∈ R+

l (Relatively) simple blocking conditions
l Cycles always represent (part of) cyclical models

+ Direct algorithm/implementation instead of encodings
l GCI axioms can be used to “encode” additional

operators/axioms
l Powerful technique, particularly when used with FL closure
l Can encode cardinality constraints, inverse roles, range/domain,

. . .
Ù E.g., (domain R.C) ≡ ∃R.> v C

l (FL) encodings introduce (large numbers of) axioms
l BUT even simple domain encoding is disastrous with large

numbers of roles

Implementation – p. 3/14

Highly Optimised Implementation

Optimisation performed at 2 levels

+ Computing classification (partial ordering) of concepts
l Objective is to minimise number of subsumption tests
l Can use standard order-theoretic techniques

Ù E.g., use enhanced traversal that exploits information from
previous tests

l Also use structural information from KB
Ù E.g., to select order in which to classify concepts

+ Computing subsumption between concepts
l Objective is to minimise cost of single subsumption tests
l Small number of hard tests can dominate classification time
l Recent DL research has addressed this problem (with

considerable success)

Implementation – p. 4/14

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

+ Pre-processing optimisations
l Aim is to simplify KB and facilitate subsumption testing
l Largely algorithm independent
l Particularly important when KB contains GCI axioms

+ Algorithmic optimisations
l Main aim is to reduce search space due to non-determinism
l Integral part of implementation
l But often generally applicable to search based algorithms

Implementation – p. 5/14

Pre-processing Optimisations

Useful techniques include

+ Normalisation and simplification of concepts
l Refinement of technique first used in KRIS system
l Lexically normalise and simplify all concepts in KB
l Combine with lazy unfolding in tableaux algorithm
l Facilitates early detection of inconsistencies (clashes)

+ Absorption (simplification) of general axioms
l Eliminate GCIs by absorbing into “definition” axioms
l Definition axioms efficiently dealt with by lazy expansion

+ Avoidance of potentially costly reasoning whenever possible
l Normalisation can discover “obvious” (un)satisfiability
l Structural analysis can discover “obvious” subsumption

Implementation – p. 6/14

Normalisation and Simplification

+ Normalise concepts to standard form, e.g.:
l ∃R.C −→ ¬∀R.¬C

l C t D −→ ¬(¬C u ¬D)

+ Simplify concepts, e.g.:
l (D u C) u (A u D) −→ A u C u D

l ∀R.> −→ >

l . . . u C u . . . u ¬C u . . . −→ ⊥

+ Lazily unfold concepts in tableaux algorithm
l Use names/pointers to refer to complex concepts
l Only add structure as required by progress of algorithm
l Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash
{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Implementation – p. 7/14

Absorption I

+ Reasoning w.r.t. set of GCI axioms can be very costly
l GCI C v D adds D t ¬C to every node label
l Expansion of disjunctions leads to search

l With 10 axioms and 10 nodes search space already 2100

l GALEN (medical terminology) KB contains hundreds of axioms

+ Reasoning w.r.t. “primitive definition” axioms is relatively efficient
l For CN v D, add D only to node labels containing CN
l For CN w D, add ¬D only to node labels containing ¬CN
l Can expand definitions lazily

Ù Only add definitions after other local (propositional)
expansion

Ù Only add definitions one step at a time

Implementation – p. 8/14

Absorption II

+ Transform GCIs into primitive definitions, e.g.
l CN u C v D −→ CN v D t ¬C

l CN t C w D −→ CN w D u ¬C

+ Absorb into existing primitive definitions, e.g.
l CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

l CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

+ Use lazy expansion technique with primitive definitions
l Disjunctions only added to “relevant” node labels

+ Performance improvements often too large to measure
l At least four orders of magnitude with GALEN KB

Implementation – p. 9/14

Algorithmic Optimisations

Useful techniques include

+ Avoiding redundancy in search branches
l Davis-Putnam style semantic branching search
l Syntactic branching with no-good list

+ Dependency directed backtracking
l Backjumping
l Dynamic backtracking

+ Caching
l Cache partial models
l Cache satisfiability status (of labels)

+ Heuristic ordering of propositional and modal expansion
l Min/maximise constrainedness (e.g., MOMS)
l Maximise backtracking (e.g., oldest first)

Implementation – p. 10/14

Dependency Directed Backtracking

+ Allows rapid recovery from bad branching choices

+ Most commonly used technique is backjumping
l Tag concepts introduced at branch points (e.g., when expanding

disjunctions)
l Expansion rules combine and propagate tags
l On discovering a clash, identify most recently introduced

concepts involved
l Jump back to relevant branch points without exploring

alternative branches
l Effect is to prune away part of the search space
l Performance improvements with GALEN KB again too large to

measure

Implementation – p. 11/14

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

Backjump Pruning
t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Clash Clash Clash . . . Clash

Implementation – p. 12/14

Caching

+ Cache the satisfiability status of a node label
l Identical node labels often recur during expansion
l Avoid re-solving problems by caching satisfiability status

Ù When L(x) initialised, look in cache
Ù Use result, or add status once it has been computed

l Can use sub/super set caching to deal with similar labels
l Care required when used with blocking or inverse roles
l Significant performance gains with some kinds of problem

+ Cache (partial) models of concepts
l Use to detect “obvious” non-subsumption
l C 6v D if C u ¬D is satisfiable
l C u ¬D satisfiable if models of C and ¬D can be merged
l If not, continue with standard subsumption test
l Can use same technique in sub-problems

Implementation – p. 13/14

Summary

+ Naive implementation results in effective non-termination

+ Problem is caused by non-deterministic expansion (search)
l GCIs lead to huge search space

+ Solution (partial) is
l Careful choice of logic/algorithm
l Avoid encodings
l Highly optimised implementation

+ Most important optimisations are
l Absorption
l Dependency directed backtracking (backjumping)
l Caching

+ Performance improvements can be very large
l E.g., more than four orders of magnitude

Implementation – p. 14/14

DL Resources

• The official DL homepage: http://dl.kr.org/

• The DL mailing list: dl@dl.kr.org

• Patrick Lambrix’s very useful DL site (including lots of interesting links):

http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html

• The annual DL workshop:

DL2002 (co-located KR2002): http://www.cs.man.ac.uk/dl2002

Proceedings on-line available at:

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

• The OIL homepage: http://www.ontoknowledge.org/oil/

• More about i·com: http://www.cs.man.ac.uk/~franconi/

• More about FaCT: http://www.cs.man.ac.uk/~horrocks/

TU Dresden
Germany

42

