Description Logics—Basics, Applications, and More

lan Horrocks
Information Management Group
University of Manchester, UK

Ulrike Sattler
Institut fiir Theoretische Informatik
TU Dresden, Germany

TU Dresden

Germany

Overview of the Tutorial

e History and Basics: Syntax, Semantics, ABoxes, Thoxes, Inference Problems
and their interrelationship, and Relationship with other (logical) formalisms

e Applications of DLs: ER-diagrams with i.com demo, ontologies, etc. including
system demonstration

e Reasoning Procedures: simple tableaux and why they work

e Reasoning Procedures Il: more complex tableaux, non-standard inference prob-
lems

e Complexity issues

e Implementing/Optimising DL systems

TU Dresden

Germany

Description Logics

e family of logic-based knowledge representation formalisms well-suited for the
representation of and reasoning about

w terminological knowledge
 configurations

m ontologies

w database schemata

— schema design, evolution, and query optimisation
— source integration in heterogeneous databases/data warehouses
— conceptual modelling of multidimensional aggregation

-

e descendents of semantics networks, frame-based systems, and KL-ONE

e aka terminological KR systems, concept languages, etc.

TU Dresden
Germany

Architecture of a Standard DL System

Knowledge Base

Terminology

Father = Man M 3 has_child.T...

Description
Logic

\Ge,ncrete Situation

John:Human [Father
John has_child Bill

mAOX>mTXom—=Z2"—

?
Human = Mmal M Biped é
j

‘gmHM<m mozmommz=z—

TU Dresden
Germany

Introduction to DL |

A Description Logic - mainly characterised by a set of constructors that allow
to build complex concepts and roles from atomic ones,

concepts correspond to classes / are interpreted as sets of objects,

roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL ALC

Man M (Jhas-child.Blue) M

)) (Jhas-child.) M

(Vhas-child.Happy LI Rich)

TU Dresden
Germany

Introduction to DL: Syntax and Semantics of ALC

Semantics given by means of an interpretation Z = (AZ, .7):

Constructor Syntax Example Semantics
atomic concept, A Human AT C AT
atomic role R likes RT C AT x AT

For C, D concepts and R a role name

conjunction |C 1 D| Human 1 Male C* n D?
disjunction C U D| Nice U Rich ctu D?
negation -C — Meat AT\ C*

exists restrict. | IR.C |Jhas-child.Human| {z | y.(z,y) € RT Ay € CT}
value restrict. | VR.C | Vhas-child.Blond {z | Vy.(x,y) € RT = y € C?}

TU Dresden
Germany

Introduction to DL: Other DL Constructors

Constructor Syntax Example Semantics

number restriction, (> n R) (> 7 has-child) | {z | |{y-(z,y) € RT}| > n}

(SnR) | (<1hasmother) {z | [{y.(z,y) € RT}| < n}

inverse role R~ has-child~ {{z,y) | {y,x) € RT}

trans. role R* has-child* (RI)*

concrete domain | uq, ..., u,.P h-father-age, age. > {z | (u?,...,u?) € P}

etc.

Many different DLs/DL constructors have been investigated

TU Dresden
Germany

Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

Concept definitions A = C (A aconcept name, C' a complex concept)

Father = Man M 3has-child.Human
Human = Mammal M1 Vhas-child™.Human
~~ introduce macros/names for concepts, can be (a)cyclic

Axioms C; C C; (C; complex concepts)
dfavourite.Brewery [drinks.Beer
~~ restrict your models

An interpretation Z satisfies
a concept definition A =C iff AT =C?
an axiom C,;CC, iff CTCcC?t

a TBox T iff Z satisfies all definitions and axioms in 7~
~» 7T is a model of 7T

Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions a : C (a an individual name, C a complex concept)
John : Man 1 Vhas-child.(Male M1 Happy)

Role assertions (a1,a2) : R (a; individual names, R a role)
(John, Bill) : has-child

An interpretation Z satisfies

a concept assertion a:C iff af € C?
a role assertion (ai,az) : R iff (at,al) € R*
an ABox A iff T satisfies all assertions in A

~» T is a model of A

TU Dresden
Germany

Introduction to DL: Basic Inference Problems

Subsumption: C C D Is CT C D? in all interpretations Z?
wrt. TBox 7: C Ty D Is CT C D7 in all models Z of 7?7

~~ structure your knowledge, compute taxonomy

Consistency: Is C consistent w.r.t. 7?7 Is there a model Z of T with C% # (?

of ABox A: Is A consistent? Is there a model of A7
of KB (7,.A): Is (7 ,.A) consistent? Is there a model of both Z7"and A?

Inference Problems are closely related:

C 7 D iff C1m1—D is inconsistent w.r.t. 7,
(no model of Z has an instance of C M —D)

C is consistent w.r.t. 7 iff not C E+ AT1-A

~> Decision Procdures for consistency (w.r.t. TBoxes) suffice

10

Introduction to DL: Basic Inference Problems II

For most DLs, the basic inference problems are decidable,
with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?
If subsumption (and hence consistency) is undecidable, and

w subsumption is semi-decidable, then consistency is not semi-decidable

w» consistency is semi-decidable, then subsumption is not semi-decidable

w Quest for a “highly expressive” DL with “practicable” inference problems

where expressiveness depends on the application
practicability changed over the time

TU Dresden

Germany 11

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

Investigation of Complexity of Inference Problems/Algorithms starts

KL-ONE Loom
NIKL
Undecidable
ExpTime Fact, DLP, Race
PSpace Crack, Kris
NP
PTime | Classic (AT&T)
| | | |
late early mid late
'80s '90s '90s '90s

TU Dresden
Germany

12

Introduction to DL: State-of-the-implementation-art

In the last b years, DL-based systems were built that

¢ can handle DLs far more expressive than .ALC (close relatives of converse-DPDL)

e Number restrictions: “people having at most 2 cats and exactly 1 dog”

e Complex roles: inverse (“has-child” — “child-of”),
transitive closure (“offspring” — “has-child”),
role inclusion (“has-daughter” — “has-child”), etc.

v/ implement provably sound and complete inference algorithms
(for ExpTime-complete problems)

v’ can handle large knowledge bases
(e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)

v are highly optimised versions of tableau-based algorithms
v perform (surprisingly well) on benchmarks for modal logic reasoners
(Tableaux'98, Tableaux’'99)

TU Dresden 13
Germany

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name A
a binary relation R for a role name R

Translate complex concepts C', D as follows:

t:(A) = A(x), ty(A) = A(y),
t,(CM D) = t,(C)Aty(D), t,(CnD) =t,(C)Aty(D),
t,(C U D) = t,(C) V ty(D), t,(CuD) = t,(C)Vt,(D),

t,(3R.C) = Fy.R(z,y) A t,(C), t,(IR.C) = Fx.R(y,x) A t(C),
t.(VR.C) = Vy.R(z,y) = t,(C), t,(VR.C) = Vz.R(y,x) = t,(C).

A TBox 7T = {C; = D} is translated as
b, = V. /\ tw(C,) = tw(Dl)

1<i<n

Tg Dresden 14

Relationship with Other Logical Formalisms: First Order Predicate Logic Il

C is consistent iff its translation ¢, (C) is satisfiable,
C is consistent w.r.t. 7 iff its translation t,.(C) A ®7 is satisfiable,
C C D iff t,(C) = t,(D) is valid
C Cr D iff &, = Vx.(t,(C) = t.(D)) is valid.

~» ALC is a fragment of FOL with 2 variables (L2), known to be decidable
~» ALC with inverse roles and Boolean operators on roles is a fragment of L2

~ further adding number restrictions yields a fragment of C2
(L2 with “counting quantifiers”), known to be decidable

4 in contrast to most DLs, adding transitive roles (binary relations/

transitive closure operator) to L2 leads to undecidability
4 many DLs (like many modal logics) are fragments of the Guarded Fragment
4 most DLs are less complex than L2:

L2 is NExpTime-complete, most DLs are in ExpTime

TU Dresden 15
Germany

Relationship with Other Logical Formalisms: Modal Logics

DLs and Modal Logics are closely related:

ALC = multi-modal K:

CnbD = CAND, cCub =CvVvD
-C =2 -C ,
dR.C = (R)C , VR.C = [R|C

transitive roles transitive frames (e.g., in K4)

regular expressions on roles regular expressions on programs (e.g., in PDL)

e 1l 1L

inverse roles converse programs (e.g., in C-PDL)

1l

number restrictions deterministic programs (e.g., in D-PDL)

< no TBoxes available in modal logics
~> “internalise” axioms using a universal role u: C = D & [u](C < D)

< no ABox available in modal logics ~» use nominals

16
eeeee y

Applications of Description Logics

Applications — p. 1/9

Application Areas I

iz Terminological KR and Ontologies
e DLs initially designed for terminological KR (and reasoning)
e Natural to use DLs to build and maintain ontologies

i Semantic Web
e Semantic markup will be added to web resources
= Aim is “machine understandability”
Markup will use Ontologies to provide common terms of
reference with clear semantics

Requirement for web based ontology language
= Well defined semantics
— Builds on existing Web standards (XML, RDF, RDFS)

Resulting language (DAML+OIL) is based on a DL (SHZ Q)

DL reasoning can be used to, e.g.,
= Support ontology design and maintenance
—> Classify resources w.r.t. ontologies

Applications — p. 2/9

Application Areas II

i Configuration
e Classic system used to configure telecoms equipment
e Characteristics of components described in DL KB
e Reasoner checks validity (and price) of configurations
i Software information systems

e LaSSIE system used DL KB for flexible software documentation
and query answering

1z Database applications

Applications — p. 3/9

Database Schema and Query Reasoning

i DLR (n-ary DL) can capture semantics of many conceptual
modelling methodologies (e.g., EER)

i Satisfiability preserving mapping to SHZQ allows use of DL
reasoners (e.g., FaCT, RACER)
i DL Abox can also capture semantics of conjunctive queries
e Can reason about query containment w.r.t. schema

= DL reasoning can be used to support
e Schema design, evolution and query optimisation

e Source integration in heterogeneous databases/data
warehouses

e Conceptual modelling of multidimensional aggregation

iz E.g., .COM Intelligent Conceptual Modelling tool (Enrico Franconi)
e Uses FaCT system to provide reasoning support for EER

Applications — p. 4/9

|.COM Demo

FEEE

ICOM - Intelligent Conceptual Modelling Tool

| File Edit Schema Connect Tool Option Help
| EXE |#

Ol &

|||||||

)

4

Employee

|Researcher || Developer | |WBHRL|I'I

(1,m)
.

rl

[Responsibilities i

| DemaEnglish r

[I oa
tssomenoceie FIA I o [0 [® o | (004 HESAN

Terminological KR and Ontologies

=

=

General requirement for medical terminologies
Static lists/taxonomies difficult to build and maintain

e Need to be very large and highly interconnected

e Inevitably contain many errors and omissions

Galen project aims to replace static hierarchy with DL
e Describe concepts (e.g., spiral fracture of left femur)

=

e Use DL classifier to build taxonomy

=

Needed expressive DL and efficient reasoning

e Descriptions use transitive/inverse roles, GClIs etc.

e Very large KBs (tens of thousands of concepts)

= Even prototype KB is very large (3,000 concepts)
= Existing (incomplete) classifier took ~24 hours to classify KB
— FaCT system (sound and complete) takes ~60 seconds

Applications — p. 5/9

Applications — p. 6/9

Reasoning Support for Ontology Design

1= DL reasoner can be used to support design and maintenance

= Example is OIlEd ontology editor (for DAML+OIL)
e Frame based interface (like Protegé, OntoEdit, etc.)

e Extended to clarify semantics and capture whole DAML+OIL
language
— Slots explicitly existential or value restrictions
— Boolean connectives and nesting
= Properties for slot relations (transitive, functional etc.)
= General axioms
i Reasoning support for OIlEd provided by FaCT system
Frame representation translated into SHZ Q
Communicates with FaCT via CORBA interface
Indicates inconsistencies and implicit subsumptions

Can make implicit subsumptions explicit in KB

Applications — p. 7/9

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology

1= Transitive roles capture transitive partonomy, causality, etc.
Smoking C dcauses.Cancer plus Cancer C dcauses.Death
=- Cancer C FatalThing
i GCls represent additional non-definitional knowledge
Stomach-Ulcer = Ulcer " 3hasLocation.Stomach plus
Stomach-Ulcer C JhasLocation.Lining-Of-Stomach
=- Ulcer M JhasLocation.Stomach C OrganLiningLesion
= |nverse roles capture e.qg. causes/causedBy relationship
Death M dcausedBy.Smoking C PrematureDeath
= Smoking C CauseOfPrematureDeath
i Cardinality restrictions add consistency constraints

BloodPressure C JhasValue.(High U Low) 1 <1hasValue plus
High C —Low = HighLowBloodPressure C |

Applications — p. 8/9

OIlEd Demo

& Diled M= E
File Log Export Reasoner Help
- = B
Classes | Documentation
anirmal -1
anirmal_|over 7

bicycle
bay ¥ Primitive

Hroperties

hroadsheet

bus =
bus_driver |2 | —
car &

cat

C

c

£

c

E

= Superclasses

C

c

€ i

L) cat_hater | c| X

C) cat_liker i

C) cat_owner i Slot Constr aints

£ colour 'ﬁé SRR [N e fller

C company) has-value drives bus

C! dog |

C! dog_hater

C) dog_liker

C! dog_owner

CJ driver

Cl girl X

C! magazine s + *
F:ProjectsiOil tools ontologies people

| @z

Applications — p. 9/9

Reasoning Procedures: Deciding Consistency of ALCN Concepts

As a warm-up, we describe a tableau-based algorithm that

e decides consistency of ALCN concepts,

e tries to build a (tree) model Z for input concept Cj,

e breaks down Cj syntactically, inferring constraints on elements in Z,

e uses tableau rules corresponding to operators in ALCN (e.g., —n, —3)
e works non-deterministically, in PSpace

e stops when clash occurs

e terminates

e returns “C) is consistent” iff Cy is consistent

TU Dresden

Germany

17

Reasoning Procedures: Tableau Algorithm

e works on a tree (semantics through viewing tree as an ABox):
nodes represent elements of AZ, labelled with sub-concepts of C
edges represent role-successorships between elements of A%

e works on concepts in negation normal form: push negation inside using de Morgan’
laws and
-(3R.C) ~ VR.-C -(VR.C) ~ 3IR.-C
~(<nR)~ (> (m+1)R) —(>nR)~ (<(n—1)R) (n>1)
-(>0R) ~ AN -A
e is initialised with a tree consisting of a single (root) node xo with £(x¢) = {Co}:
e a tree T contains a clash if, for a node x in T,
{A,~A} C L(x)or
{(>mR),(<nR)} C L(z)forn<m

e returns “Cy is consistent” if rules can be applied s.t. they yield
clah-free, complete (no more rules apply) tree

Tg Dresden 18

eeeee

Reasoning Procedures: ALC Tableau Rules

xTre {Cl|_|02,...} —nM xTre {Cll—|02, Cl,Cz,...}

$'{Cl|_|02,...} — L w'{CllJCQ,C,...}
for C € {Cl, CQ}

xe {IR.C,...} —3 xe {IR.C,...}

R

ye {C}
xe {VR.C,...} —v | xze{VR.C,...}
R R

ye {...} ye {...,C}

Tg Dresden 19

eeeee

Reasoning Procedures: A/ Tableau Rules

4AN 4N\

merge two R-succs.

e {(>n R),...} —s @ {(>nR),...}
y
x has no R-succ. ye {}
ze {(<n R),...} —< ze {(<n R),...
R R

TU Dresden
Germany

Reasoning Procedures: Soundness and Completeness

Lemma Let C, be an ALCN concept and T obtained by applying the
tableau rules to Cy. Then

1. the rule application terminates,

2. if T is clash-free and complete,
then T defines (canonical) (tree) model for Cy, and

3. if Cy has a model Z, then the rules can be applied such that they yield
a clash-free and complete T.

Corollary

(1) The tableau algorithm is a (PSpace) decision procedure for
consistency (and subsumption) of ALCN concepts

(2) ALCN has the tree model property

20

21

Reasoning Procedures: Soundness and Completeness I

Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose

depth s linear in |Cy|: quantifier depth decreases from node to succs.
breadth is linear in |Cy| (even if number in NRs are coded binarily)

2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model Z:

nodes = correspond to elements x € AT

edges R y define role-relationship
x € AT iff A € L(x) for concept names A

~» Easytothat C € L(z) => 2z € CT —ifC # (> n R)
If (> n R) € L(x), then might have less than n R-successors, but
the —>-rule ensures that there is > 1 R-successor. . .

TU Dresden 2
Germany

Reasoning Procedures: Soundness and Completeness IlI

mO{(>nR),...} wO{(ZnR),...}

copy some R-successors (including <n

sub-trees) to obtain n. R-successors: 4 /\ /\ 4 /\

~» canonical tree model for input concept

3. (Completeness) Use model Z of C|, to steer application of non-determistic rules
(—wu, —<) via mapping

7 : Nodes of Tree — AT with C € L(z) = =(x) € CZ.

This easily implies clash-freenes of the tree generated.

TU Dresden 23
Germany

Make the Tableau Algorithm run in PSpace:

To make the tableau algorithm run in PSpace:

@ observe that branches are independent from each other
@ observe that each node (label) requires linear space only
@ recall that paths are of length < |Cy|
@ construct/search the tree depth first

® re-use space from already constructed branches

~~ space polynomial in |Cy| suffices for each branch/for the algorithm

~~ tableau algorithm runs in NPspace (Savitch: NPspace = PSpace)

TU Dresden

Germany 24

Reasoning Procedures: Extensibility

This tableau algorithm can be modified to a PSpace decision procedure for

v ALC with qualifying number restrictions
(>nRC)and (<n RC)

v ALC with inverse roles has-child™

v ALC with role conjunction
(R MS).Cand V(R S).C
v TBoxes with acyclic concept definitions:

unfolding (macro expansion) is easy, but suboptimal:
may yield exponential blow-up
lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

25
eeeee y

Reasoning Procedures: Extensibility |l

Language extensions that require more elaborate techniques include

= TBoxes with general axioms C; L D;:

each node must be labelled with =C; LI D;
quantifier depth no longer decreases
~~ termination not guaranteed

w Transitive closure of roles:

node labels (VR*.C) yields C' in all R™-successor labels
quantifier depth no longer decreases
~~ termination not guaranteed

Use blocking (cycle detection) to ensure termination
(but the right blocking to retain soundness and completeness)

TU Dresden
Germany

Reasoning Procedures Il

Reasoning Procedures Il — p. 1/9

26

Non-Termination

i As already mentioned, for ALC with general axioms basic algorithm
IS non-terminating

iz E.g. if human C Jhas-mother.human € 7, then
—human U Jhas-mother.human added to every node

@ L(w) = {human, (=human U 3has-mother.human), 3has-mother.human}

has-mother

st L(x) = {human, (=human U 3has-mother.human), 3has-mother.human}

has-mother

@ L(y) = {human, (—=human LI 3has-mother.human), 3has-mother.human}

v

Reasoning Procedures Il — p. 2/9

Blocking

1z \When creating new node, check ancestors for equal (superset) label
i |f such a node is found, new node is blocked

L(w) = {human, (=human U Fhas-mother.human), 3has-mother.human}

has-mother Blocked

L(xz) = {human, (=human U 3has-mother.human)}

Reasoning Procedures Il — p. 3/9

Blocking with More Expressive DLs

= Simple subset blocking may not work with more complex logics

iz E.g., reasoning with inverse roles
e Expanding node label can affect predecessor
e Label of blocking node can affect predecessor
e E.g., testing C 1 d45.C w.r.t. Tbox

T ={T CVYR .(¥S™.=C), T C 3R.C}

L(w) = {C,3S.C,YR~.(¥§~ —C),
3R.C)
Blocked R S Blocked
L(y) = {C, YR .(vS~.=C),
W=t VRHR(VC} " @ @ L(z) = {C,YR~.(¥S~ ~C),
' JR.C}

Reasoning Procedures Il — p. 4/9

Dynamic Blocking

i Solution (for inverse roles) is dynamic blocking
e Blocks can be established broken and re-established
e Continue to expand VR.C' terms in blocked nodes
e Check that cycles satisfy VR.C' concepts

L(w) = {C,35.C,YR™.(¥S~.—C),
IR.C,VS~.~C, ~C}

R S Clash

L(y) = {C,YR™.(¥S~.=C), o

JR.CY L(z) ={C,VR™.(VS~.=C),

. JR.C,¥S~.~C}
(2) L(2) = {C,¥R™.(¥S™.~0),
IR.C}

Reasoning Procedures Il — p. 5/9

Non-finite Models

= \With number restrictions some satisfiable concepts have only
non-finite models

w E.g., testing -Cw.rt. 7 ={TC3JRC, TC<IR}

@)L (w) = {~C,3R.C,<1R"}
R
@)L (x) = {C.3RC,<1R"}

R

@)L ={C.IRC, 1R}

'R
V model must be non-finite

Reasoning Procedures Il — p. 6/9

Inadequacy of Dynamic Blocking

iz With non-finite models, even dynamic blocking not enough
w E.g., testing -Cw.rt. 7 ={T C3IR(CMNIR™.-C), TC<KIR™}

L(w) = {=C,3R.(CNIR".=C),<1R"}
R
) L(z) = {(C 3R~ .~C),3IR.(C M 3IR™.~C),<1R~,C,3R".~C}
R~ Blocked
@) L(y) ={(CN3R".=C),3R.(CN3IR".=C),<1R",C,3R™.~C}

But 3R~ .—C € L(y) not satisfied
Inconsistency due to <1R™ € L(y) and C' € L(x)

Reasoning Procedures Il — p. 7/9

Double Blocking |

1= Problem due to 3R~ .~C term only satisfied in predecessor of
blocking node

L(w) = {~C,3R.(CNIR™.~C),<1R"}
R

L(z)={(CN3IR".-C),IR.(CN IR .-C),<1R™,C, IR .-C}

i Solution is Double Blocking (pairwise blocking)
e Predecessors of blocked and blocking nodes also considered

e In particular, 3R.C terms satisfied in predecessor of blocking
node must also be satisfied in predecessor of blocked node

-C € L(w)

Reasoning Procedures Il — p. 8/9

Double Blocking Il

1 Due to pairwise condition, block no longer holds
i Expansion continues and contradiction discovered

@) £(w) = {~C,3R.(CN3IR"~C),<1R"}
R

ér? £(z) = {(CM3R™.~C),3R.(CN3IR".~C),<1R~,C,3R".~C,~C}
R Clash

@ L(y)={(CN3IR”.-C),JR.(CNIR".-C),<1R",C,3IR™.—-C}

Reasoning Procedures Il — p. 9/9

Complexity of DLs: Overview of the Complexity of Concept Consistency

P (co-)NP PSpace ExpTime NExpTime
ALC, .,
A‘CZ’{N (NP) ALCN add regular roles
| without 3, / (wrt acyc. TBoxes) Acc
- nly = A u
A['N . add universal role + QT still in ExpTime
without LU ALE (co-NP) ALC
without LI and NRs, ALCTOp+ wrt general TBoxes
only = A
subsumption of | subsumption of ALCN O ALCHIOR:
FLo F Lo (co-NP) ALCO add role hierarchies
M and V only —wrt acyc. TBoxes
T inverse roles: h-child™ ALCTIO ALCIQO
N NRs: (> n h-child)
Q Qual. NRs: (> n h-child Blond) ALC™ AU
O nominals: 7John” is a concept ALC™
F feature chain (dis)agreement ALCF
- g+ declare roles as transitive ALCF
7MY Boolean ops on roles wrt acyc. TBoxes

TU Dresden
Germany

40

Complexity of DLs: What was left out

We left out a variety of complexity results for

< concept consistency of other DLs
(e.g., those with “concrete domains”)

< other standard inferences
(e.g., deciding consistency of ABoxes w.r.t. TBoxes)

= “non-standard”’ inferences such as

— matching and unification of concepts

— rewriting concepts

— least common subsumer (of a set of concepts)

— most specific concept (of an ABox individual)

TU Dresden
Germany

41

Implementing DL Systems

Naive Implementations

Problems include:

1= Space usage
@® Storage required for tableaux datastructures
@® Rarely a serious problem in practice

1= Time usage
@® Search required due to non-deterministic expansion
@® Serious problem in practice
® Mitigated by:
= Careful choice of algorithm
— Highly optimised implementation

Implementation — p. 1/14

Implementation — p. 2/14

Careful Choice of Algorithm

1= Transitive roles instead of transitive closure
® Deterministic expansion of 3R.C', even when R € R
® (Relatively) simple blocking conditions
@® Cycles always represent (part of) cyclical models

i Direct algorithm/implementation instead of encodings

® GCIl axioms can be used to “encode” additional
operators/axioms

® Powerful technique, particularly when used with FL closure
@® Can encode cardinality constraints, inverse roles, range/domain,

= E.g., (domain R.C)=3dR.TCC
® (FL) encodings introduce (large numbers of) axioms

® BUT even simple domain encoding is disastrous with large
numbers of roles

Implementation — p. 3/14

Highly Optimised Implementation

Optimisation performed at 2 levels

i Computing classification (partial ordering) of concepts
@® Objective is to minimise number of subsumption tests

@® Can use standard order-theoretic techniques
= E.g., use enhanced traversal that exploits information from
previous tests

@® Also use structural information from KB
—> E.g., to select order in which to classify concepts
iz Computing subsumption between concepts
@® Objective is to minimise cost of single subsumption tests
® Small number of hard tests can dominate classification time

® Recent DL research has addressed this problem (with
considerable success)

Implementation — p. 4/14

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

1z Pre-processing optimisations
@® Aimisto simplify KB and facilitate subsumption testing
@® Largely algorithm independent
@ Particularly important when KB contains GCI axioms

i Algorithmic optimisations
@® Main aim is to reduce search space due to non-determinism
@® Integral part of implementation
@® But often generally applicable to search based algorithms

Implementation — p. 5/14

Pre-processing Optimisations

Useful techniques include

i Normalisation and simplification of concepts
® Refinement of technique first used in KRZS system
@® Lexically normalise and simplify all concepts in KB
@® Combine with lazy unfolding in tableaux algorithm
@ Facilitates early detection of inconsistencies (clashes)

i Absorption (simplification) of general axioms
® Eliminate GCls by absorbing into “definition” axioms
@ Definition axioms efficiently dealt with by lazy expansion
= Avoidance of potentially costly reasoning whenever possible
@® Normalisation can discover “obvious” (un)satisfiability
@ Structural analysis can discover “obvious” subsumption

Implementation — p. 6/14

Normalisation and Simplification

== Normalise concepts to standard form, e.g.:
® IRC — =VR.-C
® CUD— —~(-CN~=D)
iz Simplify concepts, e.g.:
® (DnC)Nn(AnD)— ANNCND
® VRT — T
® .nCcn...n=Cnm...— 1L

i Lazily unfold concepts in tableaux algorithm
@® Use names/pointers to refer to complex concepts
@® Only add structure as required by progress of algorithm
@® Detect clashes between lexically equivalent concepts

{HappyFather, -HappyFather} — clash
{V¥has-child.(Doctor LI Lawyer), 3has-child.(—Doctor M —Lawyer)} — search

Implementation — p. 7/14

Absorption |

1z Reasoning w.r.t. set of GCIl axioms can be very costly
® GCIC C D adds DL —C to every node label
@® Expansion of disjunctions leads to search
@ \With 10 axioms and 10 nodes search space already 21°°
® GALEN (medical terminology) KB contains hundreds of axioms

i Reasoning w.r.t. “primitive definition” axioms is relatively efficient
® ForCNC D, add D only to node labels containing CN
® ForCN O D, add =D only to node labels containing =CN

® Can expand definitions lazily
= Only add definitions after other local (propositional)
expansion
= Only add definitions one step at a time

Implementation — p. 8/14

Absorption Il

i Transform GCls into primitive definitions, e.g.
® CNNCCD-—CNCDU-C
® CNUCID-—CNIDMN=C
i Absorb into existing primitive definitions, e.g.
® CNCACNCDU-C—CNLCAMN(DU-C)
® CNJACNIDMN-C—CNIJIAU(DMN-C)
i Use lazy expansion technique with primitive definitions
@® Disjunctions only added to “relevant” node labels

1 Performance improvements often too large to measure
@ Atleast four orders of magnitude with GALEN KB

Implementation — p. 9/14

Algorithmic Optimisations

Useful techniques include

i Avoiding redundancy in search branches
@® Davis-Putnam style semantic branching search
@® Syntactic branching with no-good list
1= Dependency directed backtracking
® Backjumping
® Dynamic backtracking
i Caching
@® Cache partial models
@® Cache satisfiability status (of labels)

i Heuristic ordering of propositional and modal expansion
@® Min/maximise constrainedness (e.g., MOMS)
@® Maximise backtracking (e.g., oldest first)

Implementation — p. 10/14

Dependency Directed Backtracking

i Allows rapid recovery from bad branching choices
iz Most commonly used technique is backjumping

Tag concepts introduced at branch points (e.g., when expanding
disjunctions)

Expansion rules combine and propagate tags

On discovering a clash, identify most recently introduced

concepts involved

Jump back to relevant branch points without exploring
alternative branches

Effect is to prune away part of the search space

Performance improvements with GALEN KB again too large to
measure

Implementation — p. 11/14

Backjumping

E.g.,ifdR-ANVR.(ANB)N(C,uUDy)M...NM(Cp,UD,) C L(x)

Backjump Pruning
L(z) U{C1}) A(@) U{=Cr, D}
>
|_|// \I—\I/ N » L
.7 I\,\’\/\\’ L(ZU) U {—|CQ, DQ}
¥ Q

L(y) ={(ANB),-A, A, B}
Clash Clash

Implementation — p. 12/14

Caching

i Cache the satisfiability status of a node label
@® Identical node labels often recur during expansion

@® Avoid re-solving problems by caching satisfiability status
= When L(z) initialised, look in cache
— Use result, or add status once it has been computed

@® Can use sub/super set caching to deal with similar labels
@® Care required when used with blocking or inverse roles
@® Significant performance gains with some kinds of problem

1z Cache (partial) models of concepts

Use to detect “obvious” non-subsumption

C IZ Dif C =D is satisfiable

C M =D satisfiable if models of C' and —D can be merged
If not, continue with standard subsumption test

Can use same technique in sub-problems

Implementation — p. 13/14

Summary

1= Naive implementation results in effective non-termination

= Problem is caused by non-deterministic expansion (search)
® GCls lead to huge search space

i Solution (partial) is
@® Careful choice of logic/algorithm
@® Avoid encodings
@® Highly optimised implementation
i Most important optimisations are
@® Absorption
® Dependency directed backtracking (backjumping)
@® Caching

1= Performance improvements can be very large
@® E.g., more than four orders of magnitude

Implementation — p. 14/14

DL Resources

TU Dresde

Germany

e The official DL homepage: http://dl.kr.org/
e The DL mailing list: d1@d1l.kr.org

e Patrick Lambrix’s very useful DL site (including lots of interesting links):
http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html

e The annual DL workshop:

DL2002 (co-located KR2002): http://www.cs.man.ac.uk/d12002

Proceedings on-line available at:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

e The OIL homepage: http://www.ontoknowledge.org/oil/
e More about i-com: http://www.cs.man.ac.uk/ " franconi/

e More about FaCT: http://www.cs.man.ac.uk/ horrocks/

n 42

