Overview of the Tutorial

- **History and Basics**: Syntax, Semantics, ABoxes, Tboxes, Inference Problems and their interrelationship, and Relationship with other (logical) formalisms
- **Applications of DLs**: ER-diagrams with i.com demo, ontologies, etc. including system demonstration
- **Reasoning Procedures**: simple tableaux and why they work
- **Reasoning Procedures II**: more complex tableaux, non-standard inference problems
- **Complexity issues**
- **Implementing/Optimising DL systems**
Description Logics

- family of logic-based knowledge representation formalisms well-suited for the representation of and reasoning about
 - terminological knowledge
 - configurations
 - ontologies
 - database schemata
 - schema design, evolution, and query optimisation
 - source integration in heterogeneous databases/data warehouses
 - conceptual modelling of multidimensional aggregation
 - ...

- descendents of semantics networks, frame-based systems, and KL-ONE
- aka terminological KR systems, concept languages, etc.

Architecture of a Standard DL System
Introduction to DL I

A Description Logic - mainly characterised by a set of constructors that allow to build complex concepts and roles from atomic ones,

- concepts correspond to classes / are interpreted as sets of objects,
- roles correspond to relations / are interpreted as binary relations on objects,

Example: Happy Father in the DL \mathcal{ALC}

\[\text{Man} \sqcap (\exists \text{has-child. Blue}) \sqcap \]
\[(\exists \text{has-child. Green}) \sqcap \]
\[(\forall \text{has-child. Happy} \sqsubseteq \text{Rich}) \]

Introduction to DL: Syntax and Semantics of \mathcal{ALC}

Semantics given by means of an interpretation $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic concept</td>
<td>A</td>
<td>Human</td>
<td>$A^\mathcal{I} \subseteq \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>atomic role</td>
<td>R</td>
<td>likes</td>
<td>$R^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$</td>
</tr>
</tbody>
</table>

For C, D concepts and R a role name

- conjunction: $C \sqcap D$ Human \sqcap Male $C^\mathcal{I} \cap D^\mathcal{I}$
- disjunction: $C \sqcup D$ Nice \sqcup Rich $C^\mathcal{I} \cup D^\mathcal{I}$
- negation: $\neg C$ \neg Meat $\Delta^\mathcal{I} \setminus C^\mathcal{I}$
- exists restrict: $\exists R.C$ \existshas-child.Human \[\{ x \mid \exists y. \langle x, y \rangle \in R^\mathcal{I} \land y \in C^\mathcal{I} \} \]
- value restrict: $\forall R.C$ \forallhas-child.Blond \[\{ x \mid \forall y. \langle x, y \rangle \in R^\mathcal{I} \Rightarrow y \in C^\mathcal{I} \} \]
Introduction to DL: Other DL Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>number restriction</td>
<td>$(\geq n , R)$</td>
<td>$(\geq 7 \text{ has-child})$</td>
<td>${ x \mid { y. \langle x, y \rangle \in R^I } \geq n }$</td>
</tr>
<tr>
<td></td>
<td>$(\leq n , R)$</td>
<td>$(\leq 1 \text{ has-mother})$</td>
<td>${ x \mid { y. \langle x, y \rangle \in R^I } \leq n }$</td>
</tr>
<tr>
<td>inverse role</td>
<td>R^-</td>
<td>has-child^-</td>
<td>${ (x, y) \mid \langle y, x \rangle \in R^I }$</td>
</tr>
<tr>
<td>trans. role</td>
<td>R^*</td>
<td>has-child^*</td>
<td>$(R^I)^*$</td>
</tr>
<tr>
<td>concrete domain</td>
<td>$u_1, \ldots, u_n., P$</td>
<td>$\text{h-father}\cdot,\text{age, age.}$</td>
<td>${ x \mid \langle u_1^I, \ldots, u_n^I \rangle \in P }$</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Many different DLs/DL constructors have been investigated.

Introduction to DL: Knowledge Bases: TBoxes

For terminological knowledge: TBox contains

- **Concept definitions**: $A \doteq C$ (A a concept name, C a complex concept)
 - Father \doteq Man $\cap \exists\text{has-child}.\,\text{Human}$
 - Human \doteq Mammal $\cap \forall\text{has-child}^-\cdot\,\text{Human}$
 - \leadsto introduce macros/names for concepts, can be (a)cyclic

- **Axioms**: $C_1 \sqsubseteq C_2$ (C, complex concepts)
 - $\exists\text{favourite}.\,\text{Brewery} \sqsubseteq \exists\text{drinks}.\,\text{Beer}$
 - \leadsto restrict your models

An interpretation \mathcal{I} satisfies

- a concept definition $A \doteq C$ iff $A^\mathcal{I} = C^\mathcal{I}$
- an axiom $C_1 \sqsubseteq C_2$ iff $C_1^\mathcal{I} \sqsubseteq C_2^\mathcal{I}$
- a TBox \mathcal{I} if \mathcal{I} satisfies all definitions and axioms in \mathcal{T}
 - \leadsto \mathcal{I} is a model of \mathcal{T}
Introduction to DL: Knowledge Bases: ABoxes

For assertional knowledge: ABox contains

Concept assertions
\(a : C \)
(a an individual name, \(C \) a complex concept)
John : Man \(\sqcap \forall \text{has-child}.(\text{Male} \sqcap \text{Happy}) \)

Role assertions
\(\langle a_1, a_2 \rangle : R \)
(a_i individual names, \(R \) a role)
\(\langle \text{John}, \text{Bill} \rangle : \text{has-child} \)

An interpretation \(\mathcal{I} \) satisfies

a concept assertion
\(a : C \)
iff
\(a^\mathcal{I} \in C^\mathcal{I} \)

a role assertion
\(\langle a_1, a_2 \rangle : R \)
iff
\(\langle a_1^\mathcal{I}, a_2^\mathcal{I} \rangle \in R^\mathcal{I} \)

an ABox
\(\mathcal{A} \)
iff
\(\mathcal{I} \) satisfies all assertions in \(\mathcal{A} \)

\(\sim \)
\(\mathcal{I} \) is a model of \(\mathcal{A} \)

Introduction to DL: Basic Inference Problems

Subsumption:
\(C \sqsubseteq D \)
Is \(C^\mathcal{I} \subseteq D^\mathcal{I} \) in all interpretations \(\mathcal{I} \)?

w.r.t. TBox \(\mathcal{T} \):
\(C \sqsubseteq_T D \)
Is \(C^\mathcal{I} \subseteq D^\mathcal{I} \) in all models \(\mathcal{I} \) of \(\mathcal{T} \)?

\(\sim \)
structure your knowledge, compute taxonomy

Consistency:
Is \(C \) consistent w.r.t. \(\mathcal{T} \)?
Is there a model \(\mathcal{I} \) of \(\mathcal{T} \) with \(C^\mathcal{I} \neq \emptyset \)?

of ABox \(\mathcal{A} \):
Is \(\mathcal{A} \) consistent?
Is there a model of \(\mathcal{A} \)?

of KB \((\mathcal{T}, \mathcal{A}) \):
Is \((\mathcal{T}, \mathcal{A}) \) consistent?
Is there a model of both \(\mathcal{T} \) and \(\mathcal{A} \)?

Inference Problems are closely related:

\(C \sqsubseteq_T D \)
iff
\(C \sqcap \neg D \) is inconsistent w.r.t. \(\mathcal{T} \),
(no model of \(\mathcal{I} \) has an instance of \(C \sqcap \neg D \))

\(C \) is consistent w.r.t. \(\mathcal{T} \)
iff
not \(C \sqsubseteq_T A \sqcap \neg A \)

\(\sim \)
Decision Procedures for consistency (w.r.t. TBoxes) suffice
For most DLs, the basic inference problems are *decidable*, with complexities between P and ExpTime.

Why is decidability important? Why does semi-decidability not suffice?

If subsumption (and hence consistency) is undecidable, and

- subsumption is semi-decidable, then consistency is not semi-decidable
- consistency is semi-decidable, then subsumption is not semi-decidable

- Quest for a “highly expressive” DL with “practicable” inference problems

where expressiveness depends on the application
practicability changed over the time

Introduction to DL: History

Complexity of Inferences provided by DL systems over the time

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Complexity Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>late '80s</td>
<td>Undecidable</td>
</tr>
<tr>
<td>early '90s</td>
<td>ExpTime</td>
</tr>
<tr>
<td>mid '90s</td>
<td>PSpace</td>
</tr>
<tr>
<td>late '90s</td>
<td>PTime</td>
</tr>
</tbody>
</table>

- KL-ONE, NIKL
- Classic (AT&T)
- Crack, Kris
- Fact, DLP, Race

Investigation of Complexity of Inference Problems/Algorithms starts
Introduction to DL: State-of-the-implementation-art

In the last 5 years, DL-based systems were built that

- can handle DLs far more expressive than \mathcal{ALC} (close relatives of converse-DPDL)
 - Number restrictions: “people having at most 2 cats and exactly 1 dog”
 - Complex roles: inverse (“has-child” — “child-of”),
 transitive closure (“offspring” — “has-child”),
 role inclusion (“has-daughter” — “has-child”), etc.

- implement provably sound and complete inference algorithms
 (for ExpTime-complete problems)
- can handle large knowledge bases
 (e.g., Galen medical terminology ontology: 2,740 concepts, 413 roles, 1,214 axioms)
- are highly optimised versions of tableau-based algorithms
- perform (surprisingly well) on benchmarks for modal logic reasoners
 (Tableaux’98, Tableaux’99)

Relationship with Other Logical Formalisms: First Order Predicate Logic

Most DLs are decidable fragments of FOL: Introduce

a unary predicate A for a concept name A

a binary relation R for a role name R

Translate complex concepts C, D as follows:

- $t_x(A) = A(x)$, $t_y(A) = A(y)$,
- $t_x(C \cap D) = t_x(C) \land t_x(D)$, $t_y(C \cap D) = t_y(C) \land t_y(D)$,
- $t_x(C \cup D) = t_x(C) \lor t_x(D)$, $t_y(C \cup D) = t_y(C) \lor t_y(D)$,
- $t_x(\exists R.C) = \exists y.R(x, y) \land t_y(C)$, $t_y(\exists R.C) = \exists x.R(y, x) \land t_x(C)$,
- $t_x(\forall R.C) = \forall y.R(x, y) \Rightarrow t_y(C)$, $t_y(\forall R.C) = \forall x.R(y, x) \Rightarrow t_x(C)$.

A TBox $\mathcal{T} = \{C_i \vdash D_i\}$ is translated as

$$\Phi_\mathcal{T} = \forall x. \bigwedge_{1 \leq i \leq n} t_x(C_i) \Leftrightarrow t_x(D_i)$$
C is consistent iff its translation $t_x(C)$ is satisfiable,

C is consistent w.r.t. T iff its translation $t_x(C) \land \Phi_T$ is satisfiable,

$C \sqsubseteq D$ iff $t_x(C) \Rightarrow t_x(D)$ is valid

$C \sqsubseteq_T D$ iff $\Phi_t \Rightarrow \forall x.(t_x(C) \Rightarrow t_x(D))$ is valid.

$\rightarrow \mathcal{ALC}$ is a fragment of FOL with 2 variables (L2), known to be decidable

$\rightarrow \mathcal{ALC}$ with inverse roles and Boolean operators on roles is a fragment of L2

\rightarrow further adding number restrictions yields a fragment of C2

(L2 with “counting quantifiers”), known to be decidable

\star in contrast to most DLs, adding transitive roles (binary relations/transitive closure operator) to L2 leads to undecidability

\star many DLs (like many modal logics) are fragments of the Guarded Fragment

\star most DLs (like many modal logics) are fragments of the Guarded Fragment

$L2$ is NExpTime-complete, most DLs are in ExpTime

DLs and Modal Logics are closely related:

$\mathcal{ALC} \equiv \text{multi-modal K:}$

\[
\begin{align*}
C \sqcap D & \equiv C \land D, \\
\neg C & \equiv \neg C, \\
\exists R.C & \equiv \langle R \rangle C, \\
\forall R.C & \equiv [R]C
\end{align*}
\]

transitive roles \equiv transitive frames (e.g., in K4)

regular expressions on roles \equiv regular expressions on programs (e.g., in PDL)

inverse roles \equiv converse programs (e.g., in C-PDL)

number restrictions \equiv deterministic programs (e.g., in D-PDL)

\rightarrow no TBoxes available in modal logics

\rightarrow “internalise” axioms using a universal role u: $C \vdash D \equiv [u](C \Leftrightarrow D)$

\rightarrow no ABox available in modal logics \rightarrow use nominals
Applications of Description Logics

Application Areas

Terminological KR and Ontologies
- DLs initially designed for terminological KR (and reasoning)
- Natural to use DLs to build and maintain ontologies

Semantic Web
- Semantic markup will be added to web resources
 - Aim is “machine understandability”
- Markup will use Ontologies to provide common terms of reference with clear semantics
- Requirement for web based ontology language
 - Well defined semantics
 - Builds on existing Web standards (XML, RDF, RDFS)
- Resulting language (DAML+OIL) is based on a DL (SHIQ)
- DL reasoning can be used to, e.g.,
 - Support ontology design and maintenance
 - Classify resources w.r.t. ontologies
Application Areas II

- **Configuration**
 - **Classic** system used to configure telecoms equipment
 - Characteristics of components described in DL KB
 - Reasoner checks validity (and price) of configurations

- **Software information systems**
 - LaSSIE system used DL KB for flexible software documentation and query answering

- **Database applications**
 - ...

Database Schema and Query Reasoning

- **DLR** (n-ary DL) can capture semantics of many conceptual modelling methodologies (e.g., EER)
- Satisfiability preserving mapping to *SHIQ* allows use of DL reasoners (e.g., FaCT, RACER)
- DL Abox can also capture semantics of conjunctive queries
 - Can reason about query containment w.r.t. schema
- DL reasoning can be used to support
 - Schema design, evolution and query optimisation
 - Source integration in heterogeneous databases/data warehouses
 - Conceptual modelling of multidimensional aggregation
- E.g., **I.COM** Intelligent Conceptual Modelling tool (Enrico Franconi)
 - Uses FaCT system to provide reasoning support for EER
Terminological KR and Ontologies

- General requirement for medical terminologies
- Static lists/taxonomies difficult to build and maintain
 - Need to be very **large** and highly interconnected
 - Inevitably contain many **errors** and **omissions**
- Galen project aims to replace static hierarchy with DL
 - **Describe** concepts (e.g., spiral fracture of left femur)
 - Use DL classifier to **build taxonomy**
- Needed expressive DL **and** efficient reasoning
 - Descriptions use transitive/inverse roles, GCIs etc.
 - Very large KBs (tens of thousands of concepts)
 - Even prototype KB is very large (\approx3,000 concepts)
 - Existing (incomplete) classifier took \approx24 hours to classify KB
 - FaCT system (sound and complete) takes \approx60 seconds
Reasoning Support for Ontology Design

DL reasoner can be used to support design and maintenance

Example is OilEd ontology editor (for DAML+OIL)
- Frame based interface (like Protegé, OntoEdit, etc.)
- Extended to clarify semantics and capture whole DAML+OIL language
 - Slots explicitly existential or value restrictions
 - Boolean connectives and nesting
 - Properties for slot relations (transitive, functional etc.)
 - General axioms

Reasoning support for OilEd provided by FaCT system
- Frame representation translated into $SHIQ$
- Communicates with FaCT via CORBA interface
- Indicates inconsistencies and implicit subsumptions
- Can make implicit subsumptions explicit in KB

DAML+OIL Medical Terminology Examples

E.g., DAML+OIL medical terminology ontology
- Transitive roles capture transitive partonomy, causality, etc.
 - Smoking $\sqsubseteq \exists causes.Cancer$ plus Cancer $\sqsubseteq \exists causes.Death$
 - \Rightarrow Cancer \sqsubseteq FatalThing

- GCIs represent additional non-definitional knowledge
 - Stomach-Ulcer \equiv Ulcer $\sqcap \exists hasLocation.Stomach$ plus
 - Stomach-Ulcer $\sqsubseteq \exists hasLocation.Lining-Of-Stomach$
 - \Rightarrow Ulcer $\sqcap \exists hasLocation.Stomach$ \sqsubseteq OrganLiningLesion

- Inverse roles capture e.g. causes/causedBy relationship
 - Death $\sqcap \exists causedBy.Smoking$ \sqsubseteq PrematureDeath
 - \Rightarrow Smoking \sqsubseteq CauseOfPrematureDeath

- Cardinality restrictions add consistency constraints
 - BloodPressure $\sqsubseteq \exists hasValue.(High \sqcup Low) \sqsubseteq 1 hasValue$ plus
 - High $\sqsubseteq \neg$Low \Rightarrow HighLowBloodPressure $\sqsubseteq \bot$
Reasoning Procedures: Deciding Consistency of \mathcal{ALCN} Concepts

As a warm-up, we describe a **tableau-based algorithm** that

- decides consistency of \mathcal{ALCN} concepts,
- tries to build a (tree) model \mathcal{I} for input concept C_0,
- breaks down C_0 syntactically, inferring constraints on elements in \mathcal{I},
- uses **tableau rules** corresponding to operators in \mathcal{ALCN} (e.g., $\rightarrow\sqcap$, $\rightarrow\exists$)
- works non-deterministically, in PSpace
- stops when clash occurs
- terminates
- returns “C_0 is consistent” iff C_0 is consistent
Reasoning Procedures: Tableau Algorithm

- works on a tree (semantics through viewing tree as an ABox):
 nodes represent elements of Δ^I, labelled with sub-concepts of C_0
edges represent role-successorships between elements of Δ^I
- works on concepts in negation normal form: push negation inside using de Morgan’ laws and
 \[
 \neg(\exists R.C) \leadsto \forall R.\neg C \quad \neg(\forall R.C) \leadsto \exists R.\neg C
 \]
 \[
 \neg(\leq n R) \leadsto (\geq (n + 1)R) \quad \neg(\geq n R) \leadsto (\leq (n - 1)R) \quad (n \geq 1)
 \]
 \[
 \neg(\geq 0 R) \leadsto A \sqcap \neg A
 \]
- is initialised with a tree consisting of a single (root) node x_0 with $L(x_0) = \{C_0\}$:
- a tree T contains a clash if, for a node x in T,
 \[
 \{A, \neg A\} \subseteq L(x) \quad \text{or} \quad \{(\geq m R), (\leq n R)\} \subseteq L(x) \quad \text{for } n < m
 \]
- returns “C_0 is consistent” if rules can be applied s.t. they yield clash-free, complete (no more rules apply) tree

Reasoning Procedures: \mathcal{ALC} Tableau Rules

<table>
<thead>
<tr>
<th>$x\bullet {C_1 \sqcap C_2, \ldots}$</th>
<th>$\rightarrow \sqcap$</th>
<th>$x\bullet {C_1 \sqcap C_2, C_1, C_2, \ldots}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x\bullet {C_1 \sqcup C_2, \ldots}$</td>
<td>$\rightarrow \sqcup$</td>
<td>$x\bullet {C_1 \sqcup C_2, C, \ldots}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for $C \in {C_1, C_2}$</td>
</tr>
<tr>
<td>$x\bullet {\exists R.C, \ldots}$</td>
<td>$\rightarrow \exists$</td>
<td>$x\bullet {\exists R.C, \ldots}$</td>
</tr>
<tr>
<td>$\downarrow R$</td>
<td></td>
<td>$y\bullet {C}$</td>
</tr>
<tr>
<td>$y\bullet {\ldots}$</td>
<td>$\rightarrow \forall$</td>
<td>$x\bullet {\forall R.C, \ldots}$</td>
</tr>
<tr>
<td>$\downarrow R$</td>
<td></td>
<td>$y\bullet {\ldots, C}$</td>
</tr>
</tbody>
</table>
\[x \cdot \{ (\geq n \ R), \ldots \} \rightarrow_{\geq} x \cdot \{ (\geq n \ R), \ldots \} \]

\[R \]

\[x \cdot \{ (\leq n \ R), \ldots \} \rightarrow_{\leq} x \cdot \{ (\leq n \ R), \ldots \} \]

\[R \]

Reasoning Procedures: Soundness and Completeness

Lemma Let \(C_0 \) be an \(\mathcal{ALCN} \) concept and \(T \) obtained by applying the tableau rules to \(C_0 \). Then

1. the rule application terminates,
2. if \(T \) is clash-free and complete,
 then \(T \) defines (canonical) (tree) model for \(C_0 \), and
3. if \(C_0 \) has a model \(\mathcal{I} \), then the rules can be applied such that they yield a clash-free and complete \(T \).

Corollary

1. The tableau algorithm is a (PSpace) decision procedure for consistency (and subsumption) of \(\mathcal{ALCN} \) concepts
2. \(\mathcal{ALCN} \) has the tree model property
Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 depth is linear in $|C_0|$: quantifier depth decreases from node to succs.
 breadth is linear in $|C_0|$ (even if number in NRs are coded binarily)

2. (Canonical model) Complete, clash-free tree T defines a (tree) pre-model I:

 - nodes x correspond to elements $x \in \Delta^T$
 - edges $x \xrightarrow{R} y$ define role-relationship
 - $x \in A^T$ iff $A \in \mathcal{L}(x)$ for concept names A

 \leadsto Easy to that $C \in \mathcal{L}(x) \Rightarrow x \in C^T$ — if $C \neq (\geq n \ R)$
 If $(\geq n \ R) \in \mathcal{L}(x)$, then x might have less than $n \ R$-successors, but
 the $\rightarrow\geq$-rule ensures that there is $\geq 1 \ R$-successor...

3. (Completeness) Use model I of C_0 to steer application of non-deterministic rules
 $(\rightarrow_{\cup}, \rightarrow_{\leq})$ via mapping

 $$\pi : \text{Nodes of Tree} \rightarrow \Delta^T \quad \text{with} \quad C \in \mathcal{L}(x) \Rightarrow \pi(x) \in C^T.$$

 This easily implies clash-freenes of the tree generated.
To make the tableau algorithm run in PSpace:

1. observe that branches are independent from each other
2. observe that each node (label) requires linear space only
3. recall that paths are of length $\leq |C_0|$
4. construct/search the tree depth first
5. re-use space from already constructed branches

\Rightarrow space polynomial in $|C_0|$ suffices for each branch/for the algorithm

\Rightarrow tableau algorithm runs in NPspace (Savitch: NPspace = PSpace)

Reasoning Procedures: Extensibility

This tableau algorithm can be modified to a PSpace decision procedure for

- \mathcal{ALC} with qualifying number restrictions $\geq n R C$ and $\leq n R C$
- \mathcal{ALC} with inverse roles has-child$^-$
- \mathcal{ALC} with role conjunction $\exists (R \cap S).C$ and $\forall (R \cap S).C$
- TBoxes with acyclic concept definitions:
 - unfolding (macro expansion) is easy, but suboptimal: may yield exponential blow-up
 - lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable
Language extensions that require more elaborate techniques include

- **TBoxes with general axioms** $C_i \sqsubseteq D_i$:
 - each node must be labelled with $\neg C_i \cup D_i$
 - quantifier depth no longer decreases
 - \leadsto termination not guaranteed

- **Transitive closure of roles**:
 - node labels $(\forall R^* . C)$ yields C in all R^n-successor labels
 - quantifier depth no longer decreases
 - \leadsto termination not guaranteed

 Use **blocking** (cycle detection) to ensure termination
 (but the right blocking to retain soundness and completeness)
Non-Termination

As already mentioned, for $\mathcal{A}\mathcal{LC}$ with general axioms basic algorithm is non-terminating

E.g. if $\text{human} \sqsubseteq \exists \text{has-mother}. \text{human} \in T$, then

~$\text{human} \sqcup \exists \text{has-mother}. \text{human}$ added to every node

\[
\mathcal{L}(w) = \{\text{human}, (\neg \text{human} \sqcup \exists \text{has-mother}. \text{human}), \exists \text{has-mother}. \text{human}\}
\]

Blocking

When creating new node, check ancestors for equal (superset) label

If such a node is found, new node is blocked
Blocking with More Expressive DLs

- Simple subset blocking may not work with more complex logics
- E.g., reasoning with inverse roles
 - Expanding node label can affect predecessor
 - Label of blocking node can affect predecessor
 - E.g., testing $C \sqcap \exists S . C$ w.r.t. Tbox

$$T = \{ \top \sqsubseteq \forall R^-(\forall S^- . \neg C), \top \sqsubseteq \exists R.C \}$$

Dynamic Blocking

- Solution (for inverse roles) is **dynamic blocking**
 - Blocks can be established broken and re-established
 - Continue to expand $\forall R.C$ terms in blocked nodes
 - Check that cycles satisfy $\forall R.C$ concepts

Diagram of dynamic blocking with labels for nodes and arrows indicating blocking.
Non-finite Models

- With number restrictions some satisfiable concepts have only non-finite models
- E.g., testing \(\neg C \) w.r.t. \(T = \{ \top \subseteq \exists R. C, \top \subseteq \leq 1 R^- \} \)

\[
\begin{align*}
\mathcal{L}(w) &= \{ \neg C, \exists R. C, \leq 1 R^- \} \\
\mathcal{L}(x) &= \{ C, \exists R. C, \leq 1 R^- \} \\
\mathcal{L}(y) &= \{ C, \exists R. C, \leq 1 R^- \}
\end{align*}
\]

model must be non-finite

Inadequacy of Dynamic Blocking

- With non-finite models, even dynamic blocking not enough
- E.g., testing \(\neg C \) w.r.t. \(T = \{ \top \subseteq \exists R. (C \cap \exists R^- . \neg C), \top \subseteq \leq 1 R^- \} \)

\[
\begin{align*}
\mathcal{L}(w) &= \{ \neg C, \exists R.(C \cap \exists R^- . \neg C), \leq 1 R^- \} \\
\mathcal{L}(x) &= \{ (C \cap \exists R^- . \neg C), \exists R.(C \cap \exists R^- . \neg C), \leq 1 R^-, C, \exists R^- . \neg C \} \\
\mathcal{L}(y) &= \{ (C \cap \exists R^- . \neg C), \exists R.(C \cap \exists R^- . \neg C), \leq 1 R^-, C, \exists R^- . \neg C \}
\end{align*}
\]

\(\exists R^- . \neg C \in \mathcal{L}(y) \) not satisfied

Inconsistency due to \(\leq 1 R^- \in \mathcal{L}(y) \) and \(C \in \mathcal{L}(x) \)
Double Blocking I

Problem due to $\exists R^- . \neg C$ term only satisfied in predecessor of blocking node

\[
\mathcal{L}(w) = \{ \neg C, \exists R. (C \cap \exists R^- . \neg C), \leq 1R^- \}
\]

Solution is **Double Blocking** (pairwise blocking)
- Predecessors of blocked and blocking nodes also considered
- In particular, $\exists R . C$ terms satisfied in predecessor of blocking node must also be satisfied in predecessor of blocked node $\neg C \in \mathcal{L}(w)$

Double Blocking II

Due to pairwise condition, block no longer holds
- Expansion continues and contradiction discovered

\[
\mathcal{L}(w) = \{ \neg C, \exists R. (C \cap \exists R^- . \neg C), \leq 1R^- \}
\]

\[
\mathcal{L}(x) = \{(C \cap \exists R^- . \neg C), \exists R. (C \cap \exists R^- . \neg C), \leq 1R^-, C, \exists R^- . \neg C, \neg C \}
\]

\[
\mathcal{L}(y) = \{(C \cap \exists R^- . \neg C), \exists R. (C \cap \exists R^- . \neg C), \leq 1R^-, C, \exists R^- . \neg C \}
\]

Clash
We left out a variety of complexity results for

- concept consistency of other DLs
 (e.g., those with “concrete domains”)

- other standard inferences
 (e.g., deciding consistency of ABoxes w.r.t. TBoxes)

- “non-standard” inferences such as
 - matching and unification of concepts
 - rewriting concepts
 - least common subsumer (of a set of concepts)
 - most specific concept (of an ABox individual)
Implementing DL Systems

Naive Implementations

Problems include:

- **Space usage**
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice

- **Time usage**
 - Search required due to non-deterministic expansion
 - **Serious** problem in practice
 - Mitigated by:
 - Careful *choice of algorithm*
 - Highly *optimised implementation*
Careful Choice of Algorithm

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in R_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models

- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to “encode” additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain,
 ...
 - E.g., (domain $R.C) \equiv \exists R. \top \sqsubseteq C$
 - (FL) encodings introduce (large numbers of) axioms
 - BUT even simple domain encoding is disastrous with large numbers of roles

Highly Optimised Implementation

Optimisation performed at 2 levels

- Computing **classification** (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - E.g., to select order in which to classify concepts

- Computing **subsumption** between concepts
 - Objective is to minimise cost of single subsumption tests
 - Small number of hard tests can dominate classification time
 - Recent DL research has addressed this problem (with considerable success)
Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

- Pre-processing optimisations
 - Aim is to simplify KB and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms

- Algorithmic optimisations
 - Main aim is to reduce search space due to non-determinism
 - Integral part of implementation
 - But often generally applicable to search based algorithms

Pre-processing Optimisations

Useful techniques include

- Normalisation and simplification of concepts
 - Refinement of technique first used in KRIS system
 - Lexically normalise and simplify all concepts in KB
 - Combine with lazy unfolding in tableaux algorithm
 - Facilitates early detection of inconsistencies (clashes)

- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into “definition” axioms
 - Definition axioms efficiently dealt with by lazy expansion

- Avoidance of potentially costly reasoning whenever possible
 - Normalisation can discover “obvious” (un)satisfiability
 - Structural analysis can discover “obvious” subsumption
Normalisation and Simplification

- Normalise concepts to standard form, e.g.:
 - $\exists R. C \rightarrow \neg \forall R. \neg C$
 - $C \sqcup D \rightarrow \neg (\neg C \sqcap \neg D)$

- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \rightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \rightarrow \top$
 - $\ldots \sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \rightarrow \bot$

- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts
 - Only add structure as required by progress of algorithm
 - Detect clashes between lexically equivalent concepts

\{HappyFather, $\neg \text{HappyFather}\} \rightarrow \text{clash}
\{\forall \text{has-child.}(\text{Doctor} \sqcup \text{Lawyer}), \exists \text{has-child.}(\neg \text{Doctor} \sqcap \neg \text{Lawyer})\} \rightarrow \text{search}

Absorption I

- Reasoning w.r.t. set of GCI axioms can be very costly
 - GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
 - Expansion of disjunctions leads to search
 - With 10 axioms and 10 nodes search space already 2^{100}
 - GALEN (medical terminology) KB contains hundreds of axioms

- Reasoning w.r.t. “primitive definition” axioms is relatively efficient
 - For CN $\sqsubseteq D$, add D only to node labels containing CN
 - For CN $\sqsupseteq D$, add $\neg D$ only to node labels containing \negCN
 - Can expand definitions lazily
 - Only add definitions after other local (propositional) expansion
 - Only add definitions one step at a time
Absorption II

Transform GCIs into primitive definitions, e.g.

- \(CN \cap C \subseteq D \rightarrow CN \subseteq D \cup \neg C \)
- \(CN \cup C \supseteq D \rightarrow CN \supseteq D \cap \neg C \)

Absorb into existing primitive definitions, e.g.

- \(CN \subseteq A, CN \subseteq D \cup \neg C \rightarrow CN \subseteq A \cap (D \cup \neg C) \)
- \(CN \supseteq A, CN \supseteq D \cap \neg C \rightarrow CN \supseteq A \cup (D \cap \neg C) \)

Use lazy expansion technique with primitive definitions

- Disjunctions only added to “relevant” node labels

Performance improvements often too large to measure

- At least **four orders of magnitude** with GALEN KB

Algorithmic Optimisations

Useful techniques include

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list

- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking

- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)

- Heuristic ordering of propositional and modal expansion
 - Min/maximise constrainedness (e.g., MOMS)
 - Maximise backtracking (e.g., oldest first)
Dependency Directed Backtracking

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
- Effect is to prune away part of the search space
- Performance improvements with GALEN KB again too large to measure

Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

![Diagram](attachment://dependency-directed-backtracking-diagram.png)
Caching

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 - When $\mathcal{L}(x)$ initialised, look in cache
 - Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem

- Cache (partial) models of concepts
 - Use to detect “obvious” non-subsumption
 - $C \nsubseteq D$ if $C \cap \neg D$ is satisfiable
 - $C \cap \neg D$ satisfiable if models of C and $\neg D$ can be merged
 - If not, continue with standard subsumption test
 - Can use same technique in sub-problems

Summary

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)
 - Caching
- Performance improvements can be very large
 - E.g., more than four orders of magnitude
- The official DL homepage: http://dl.kr.org/
- The DL mailing list: dl@dl.kr.org
- Patrick Lambrix’s very useful DL site (including lots of interesting links):
 http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html
- The annual DL workshop:
 Proceedings on-line available at:
 http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
- The OIL homepage: http://www.ontoknowledge.org/oil/
- More about i-com: http://www.cs.man.ac.uk/~franconi/
- More about FaCT: http://www.cs.man.ac.uk/~horrocks/