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Introduction



History of the Semantic Web
• Web was “invented” by Tim Berners-Lee (amongst others), a 

physicist working at CERN
• TBL’s original vision of the Web was much more ambitious than 

the reality of the existing (syntactic) Web:

• TBL (and others) have since been working towards realising this 
vision, which has become known as the Semantic Web

– E.g., article in May 2001 issue of Scientific American…

“... a goal of the Web was that, if the interaction between person and 
hypertext could be so intuitive that the machine-readable information 
space gave an accurate representation of the state of people's 
thoughts, interactions, and work patterns, then machine analysis could 
become a very powerful management tool, seeing patterns in our work 
and facilitating our working together through the typical problems which 
beset the management of large organizations.”



• Realising the complete “vision” is too hard for now (probably)
• But we can make a start by adding semantic annotation to web 

resources

Scientific American, May 2001:



Where we are Today: the Syntactic Web

[Hendler & Miller 02]



The Syntactic Web is…
• A hypermedia, a digital library

– A library of documents called (web pages) interconnected by a 
hypermedia of links

• A database, an application platform
– A common portal to applications accessible through web pages, and 

presenting their results as web pages
• A platform for multimedia

– BBC Radio 4 anywhere in the world!  Terminator 3 trailers!
• A naming scheme

– Unique identity for those documents

A place where computers do the presentation (easy) and people 
do the linking and interpreting (hard). 

Why not get computers to do more of the hard work?

[Goble 03]



Hard Work using the Syntactic Web…
Find images of Peter Patel-Schneider, Frank van Harmelen and 
Alan Rector…

Rev. Alan M. Gates, Associate Rector of the 
Church of the Holy Spirit, Lake Forest, Illinois



Hard Work using the Syntactic Web…

To bee or not to bee

Search engines may be remarkable resources, but they're not intelligent. 
Will a new 'semantic' web be clever enough, asks Danny Bradbury, to tell 
a flying insect from a work of music?

18 June 2003

Web searches have always been a bit hit and miss. Even when your searches 
are clearly defined, you'll turn up irrelevant web pages that happen to have the 
same keywords. Looking for details of bumble bees' flight? Google's first result 
points to the composer Rimsky-Korsakov… 

Semantic Web Hype:
“We’ll soon be letting 

machines do the 
thinking for us”



Impossible (?) using the Syntactic Web…
• Complex queries involving background knowledge

– Find information about “animals that use sonar but are 
not either bats or dolphins”

• Locating information in data repositories
– Travel enquiries
– Prices of goods and services
– Results of human genome experiments

• Finding and using “web services”
– Visualise surface interactions between two proteins

• Delegating complex tasks to web “agents”
– Book me a holiday next weekend somewhere warm, not 

too far away, and where they speak French or English

, e.g., Barn Owl



What is the Problem?
• Consider a typical web page:

• Markup consists of:
– rendering 

information (e.g., 
font size and 
colour)

– Hyper-links to 
related content

• Semantic content 
is accessible to 
humans but not 
(easily) to 
computers…



What information can we see…
WWW2002
The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact
Registered participants coming from
australia, canada, chile denmark, france, germany, ghana, hong kong, india, 

ireland, italy, japan, malta, new zealand, the netherlands, norway, 
singapore, switzerland, the united kingdom, the united states, vietnam, 
zaire

Register now
On the 7th May Honolulu will provide the backdrop of the eleventh 

international world wide web conference. This prestigious event …
Speakers confirmed
Tim berners-lee  
Tim is the well known inventor of the Web, …
Ian Foster
Ian is the pioneer of the Grid, the next generation internet …



What information can a machine see…
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Solution: XML markup with “meaningful” tags?
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But What About…
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Machine sees…
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Need to Add “Semantics”
• External agreement on meaning of annotations

– E.g., Dublin Core
• Agree on the meaning of a set of annotation tags

– Problems with this approach
• Inflexible
• Limited number of things can be expressed

• Use Ontologies to specify meaning of annotations
– Ontologies provide a vocabulary of terms
– New terms can be formed by combining existing ones
– Meaning (semantics) of such terms is formally specified
– Can also specify relationships between terms in multiple 

ontologies



a philosophical discipline—a branch of philosophy that 
deals with the nature and the organisation of reality

• Science of Being (Aristotle, Metaphysics, IV, 1)

• Tries to answer the questions:

What characterizes being?

Eventually, what is being?

Ontology: Origins and History
Ontology in Philosophy



Ontology in Linguistics

“Tank“

ReferentForm
Stands for

Relates toactivates

Concept

[Ogden, Richards, 1923]
?



• An ontology is an engineering artifact: 
– It is constituted by a specific vocabulary used to describe a 

certain reality, plus 
– a set of explicit assumptions regarding the intended meaning 

of the vocabulary. 

• Thus, an ontology describes a formal specification of a certain 
domain:
– Shared understanding of a domain of interest
– Formal and machine manipulable model of a domain of 

interest

“An explicit specification of a conceptualisation” 
[Gruber93]

Ontology in Computer Science



Structure of an Ontology
Ontologies typically have two distinct components:

• Names for important concepts in the domain
– Elephant is a concept whose members are a kind of animal
– Herbivore is a concept whose members are exactly those 

animals who eat only plants or parts of plants 
– Adult_Elephant is a concept whose members are exactly those 

elephants whose age is greater than 20 years

• Background knowledge/constraints on the domain
– Adult_Elephants weigh at least 2,000 kg
– All Elephants are either African_Elephants or Indian_Elephants
– No individual can be both a Herbivore and a Carnivore



Example Ontology



A Semantic Web — First Steps

• Extend existing rendering markup with semantic markup
– Metadata annotations that describe content/funtion of web 

accessible resources
• Use Ontologies to provide vocabulary for annotations

– “Formal specification” is accessible to machines

• A prerequisite is a standard web ontology language
– Need to agree common syntax before we can share semantics
– Syntactic web based on standards such as HTTP and HTML

Make web resources more accessible to automated processes



[AKT 2003]



Ontology Design and Deployment
• Given key role of ontologies in the Semantic Web, it will be 

essential to provide tools and services to help users:
– Design and maintain high quality ontologies, e.g.:

• Meaningful — all named classes can have instances
• Correct — captured intuitions of domain experts
• Minimally redundant — no unintended synonyms
• Richly axiomatised — (sufficiently) detailed descriptions

– Store (large numbers) of instances of ontology classes, e.g.:
• Annotations from web pages

– Answer queries over ontology classes and instances, e.g.:
• Find more general/specific classes
• Retrieve annotations/pages matching a given description

– Integrate and align multiple ontologies



Ontology Languages
for the

Semantic Web



Resources
• Course material (including slides):

http://www.cs.man.ac.uk/~horrocks/ESSLLI2003/

• Description Logic Handbook

http://books.cambridge.org/0521781760.htm



Ontology Languages
• Wide variety of languages for “Explicit Specification” 

– Graphical notations
• Semantic networks
• Topic Maps (see http://www.topicmaps.org/)
• UML
• RDF

– Logic based
• Description Logics (e.g., OIL, DAML+OIL, OWL)
• Rules (e.g., RuleML, LP/Prolog)
• First Order Logic (e.g., KIF)
• Conceptual graphs
• (Syntactically) higher order logics (e.g., LBase)
• Non-classical logics (e.g., Flogic, Non-Mon, modalities)

– Probabilistic/fuzzy
• Degree of formality varies widely

– Increased formality makes languages more amenable to machine 
processing (e.g., automated reasoning)



• Objects/Instances/Individuals
– Elements of the domain of discourse
– Equivalent to constants in FOL

• Types/Classes/Concepts
– Sets of objects sharing certain characteristics
– Equivalent to unary predicates in FOL

• Relations/Properties/Roles
– Sets of pairs (tuples) of objects
– Equivalent to binary predicates in FOL

• Such languages are/can be:
– Well understood
– Formally specified
– (Relatively) easy to use
– Amenable to machine processing

Many languages use “object oriented” model based on:



Web “Schema” Languages
• Existing Web languages extended to facilitate content 

description
– XML → XML Schema (XMLS)
– RDF → RDF Schema (RDFS)

• XMLS not an ontology language
– Changes format of DTDs (document schemas) to be XML
– Adds an extensible type hierarchy

• Integers, Strings, etc.
• Can define sub-types, e.g., positive integers

• RDFS is recognisable as an ontology language
– Classes and properties
– Sub/super-classes (and properties)
– Range and domain (of properties)



RDF and RDFS
• RDF stands for Resource Description Framework
• It is a W3C candidate recommendation 

(http://www.w3.org/RDF)
• RDF is graphical formalism ( + XML syntax + semantics)

– for representing metadata
– for describing the semantics of information in a machine-

accessible way
• RDFS extends RDF with “schema vocabulary”, e.g.:

– Class, Property
– type, subClassOf, subPropertyOf
– range, domain



The RDF Data Model
• Statements are <subject, predicate, object> triples:

<Ian,hasColleague,Uli>

• Can be represented as a graph:

Ian Uli
hasColleague

• Statements describe properties of resources
• A resource is any object that can be pointed to by a URI:

– a document, a picture, a paragraph on the Web;
– http://www.cs.man.ac.uk/index.html
– a book in the library, a real person (?)
– isbn://5031-4444-3333
– …

• Properties themselves are also resources (URIs)



URIs
• URI = Uniform Resource Identifier
• "The generic set of all names/addresses that are short 

strings that refer to resources"
• URLs (Uniform Resource Locators) are a particular type of 

URI, used for resources that can be accessed on the WWW 
(e.g., web pages)

• In RDF, URIs typically look like “normal” URLs, often with 
fragment identifiers to point at specific parts of a 
document:
– http://www.somedomain.com/some/path/to/file#fragmentID



Linking Statements
• The subject of one statement can be the object of another
• Such collections of statements form a directed, labeled

graph

• Note that the object of a triple can also be a “literal” (a 
string)

Ian Uli
hasColleague

Carole http://www.cs.mam.ac.uk/~sattler

hasColleague
hasHomePage



RDF Syntax
• RDF has an XML syntax that has a specific meaning:
• Every Description element describes a resource
• Every attribute or nested element inside a Description is a property

of that Resource
• We can refer to resources by using URIs

<Description about="some.uri/person/ian_horrocks">
<hasColleague resource="some.uri/person/uli_sattler"/>

</Description>
<Description about="some.uri/person/uli_sattler">

<hasHomePage>http://www.cs.mam.ac.uk/~sattler</hasHomePage>
</Description>
<Description about="some.uri/person/carole_goble">

<hasColleague resource="some.uri/person/uli_sattler"/>
</Description>



RDF Schema (RDFS)
• RDF gives a formalism for meta data annotation, and a way 

to write it down in XML, but it does not give any special 
meaning to vocabulary such as subClassOf or type
– Interpretation is an arbitrary binary relation

• RDF Schema allows you to define vocabulary terms and the 
relations between those terms
– it gives “extra meaning” to particular RDF predicates and 

resources
– this “extra meaning”, or semantics, specifies how a term 

should be interpreted



RDFS Examples
• RDF Schema terms (just a few examples):

– Class
– Property
– type
– subClassOf
– range
– domain

• These terms are the RDF Schema building blocks 
(constructors) used to create vocabularies:
<Person,type,Class>
<hasColleague,type,Property>
<Professor,subClassOf,Person>
<Carole,type,Professor>
<hasColleague,range,Person>
<hasColleague,domain,Person>



RDF/RDFS “Liberality”
• No distinction between classes and instances (individuals)

<Species,type,Class>
<Lion,type,Species>
<Leo,type,Lion>

• Properties can themselves have properties
<hasDaughter,subPropertyOf,hasChild>
<hasDaughter,type,familyProperty>

• No distinction between language constructors and 
ontology vocabulary, so constructors can be applied to 
themselves/each other
<type,range,Class>
<Property,type,Class>
<type,subPropertyOf,subClassOf>



RDF/RDFS Semantics
• RDF has “Non-standard” semantics in order to deal with this
• Semantics given by RDF Model Theory (MT)



Semantics and Model Theories
• Ontology/KR languages aim to model (part of) world
• Terms in language correspond to entities in world
• Meaning given by, e.g.:

– Mapping to another formalism, such as FOL, with own well defined semantics
– or a bespoke Model Theory (MT)

• MT defines relationship between syntax and interpretations
– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., T ² A \sqsubseteq B iff in every model of T, ext(A) \subseteq ext(B)



Semantics and Model Theories
• Ontology/KR languages aim to model (part of) world
• Terms in language correspond to entities in world
• Meaning given by, e.g.:

– Mapping to another formalism, such as FOL, with own well defined semantics
– or a bespoke Model Theory (MT)

• MT defines relationship between syntax and interpretations
– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., T ² A \sqsubseteq B iff in every model of T, ext(A) \subseteq ext(B)



RDF/RDFS Semantics
• RDF has “Non-standard” semantics in order to deal with this
• Semantics given by RDF Model Theory (MT)
• In RDF MT, an interpretation I of a vocabulary V consists of: 

– IR, a non-empty set of resources
– IS, a mapping from V into IR
– IP, a distinguished subset of IR (the properties)

• A vocabulary element v ∈ V is a property iff IS(v) ∈ IP
– IEXT, a mapping from IP into the powerset of IR×IR

• I.e., a set of elements <x,y>, with x,y elements of IR
– IL, a mapping from typed literals into IR

• Class interpretation ICEXT simply induced by IEXT(IS(type))
• ICEXT(C) = {x | <x,C> ∈ IEXT(IS(type))}



Example RDF/RDFS Interpretation



RDFS Interpretations
• RDFS adds extra constraints on interpretations

– E.g., interpretationss of <C,subClassOf,D> constrained to 
those where ICEXT(IS(C)) ⊆ ICEXT(IS(D))

• Can deal with triples such as
– <Species,type,Class>                

<Lion,type,Species>                     
<Leo,type,Lion>

– <SelfInst,type,SelfInst>

• And even with triples such as
– <type,subPropertyOf,subClassOf>

• But not clear if meaning matches intuition (if there is one)



Problems with RDFS
• RDFS too weak to describe resources in sufficient detail

– No localised range and domain constraints
• Can’t say that the range of hasChild is person when 

applied to persons and elephant when applied to elephants
– No existence/cardinality constraints

• Can’t say that all instances of person have a mother that is 
also a person, or that persons have exactly 2 parents

– No transitive, inverse or symmetrical properties
• Can’t say that isPartOf is a transitive property, that hasPart

is the inverse of isPartOf or that touches is symmetrical
– …

• Difficult to provide reasoning support
– No “native” reasoners for non-standard semantics
– May be possible to reason via FO axiomatisation



Web Ontology Language Requirements

Desirable features identified for Web Ontology Language:

• Extends existing Web standards 
– Such as XML, RDF, RDFS

• Easy to understand and use
– Should be based on familiar KR idioms

• Formally specified 
• Of “adequate” expressive power
• Possible to provide automated reasoning support



From RDF to OWL
• Two languages developed to satisfy above requirements

– OIL: developed by group of (largely) European researchers (several 
from EU OntoKnowledge project)

– DAML-ONT: developed by group of (largely) US researchers (in 
DARPA DAML programme)

• Efforts merged to produce DAML+OIL
– Development was carried out by “Joint EU/US Committee on Agent 

Markup Languages”
– Extends (“DL subset” of) RDF

• DAML+OIL submitted to W3C as basis for standardisation
– Web-Ontology (WebOnt) Working Group formed
– WebOnt group developed OWL language based on DAML+OIL
– OWL language now a W3C Candidate Recommendation
– Will soon become Proposed Recommendation



OWL Language
• Three species of OWL

– OWL full is union of OWL syntax and RDF
– OWL DL restricted to FOL fragment (≈ DAML+OIL)
– OWL Lite is “easier to implement” subset of OWL DL 

• Semantic layering
– OWL DL ≈ OWL full within DL fragment
– DL semantics officially definitive

• OWL DL based on SHIQ Description Logic
– In fact it is equivalent to SHOIN(Dn)DL

• OWL DL Benefits from many years of DL research
– Well defined semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Implemented systems (highly optimised)



(In)famous “Layer Cake”

≈ Data Exchange

≈ Semantics+reasoning

≈ Relational Data
?

?

???

???

???

• Relationship between layers is not clear
• OWL DL extends “DL subset” of RDF



OWL Class Constructors

• XMLS datatypes as well as classes in ∀P.C and ∃P.C
– E.g., ∃hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors
– E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor



RDFS Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:toClass>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u ∀hasChild.Doctor t ∃hasChild.Doctor:



OWL Axioms

• Axioms (mostly) reducible to inclusion (v)
– C≡ D iff both C v D and D v C



XML Schema Datatypes in OWL

• OWL supports XML Schema primitive datatypes
– E.g., integer, real, string, … 

• Strict separation between “object” classes and datatypes
– Disjoint interpretation domain ∆D for datatypes

• For a datavalue d, dI ⊆ ∆D
• And ∆D ∩ ∆I = ∅

– Disjoint “object” and datatype properties
• For a datatype propterty P, PI ⊆ ∆I × ∆D
• For object property S and datatype property P,  SI ∩ PI = ∅

• Equivalent to the “(Dn)” in SHOIN(Dn)



Why Separate Classes and Datatypes?
• Philosophical reasons:

– Datatypes structured by built-in predicates
– Not appropriate to form new datatypes using ontology 

language
• Practical reasons:

– Ontology language remains simple and compact
– Semantic integrity of ontology language not compromised
– Implementability not compromised — can use hybrid reasoner

• Only need sound and complete decision procedure for: 
dI

1 ∩… ∩ dI
n,   where d is a (possibly negated) datatype



OWL DL Semantics
• Mapping OWL to equivalent DL (SHOIN(Dn)):

– Facilitates provision of reasoning services (using DL systems)
– Provides well defined semantics

• DL semantics defined by interpretations: I = (∆I, ·I), where
– ∆I is the domain (a non-empty set) 
– ·I is an interpretation function that maps:

• Concept (class) name A → subset AI of ∆I

• Role (property) name R → binary relation RI over ∆I

• Individual name i → iI element of ∆I



DL Semantics
• Interpretation function ·I extends to concept expressions in 

an obvious(ish) way, i.e.:



DL Knowledge Bases (Ontologies)
• An OWL ontology maps to a DL Knowledge Base K = hT , Ai

– T  (Tbox) is a set of axioms of the form:
• C v D (concept inclusion)
• C ≡ D (concept equivalence)
• R v S (role inclusion)
• R ≡ S (role equivalence)
• R+ v R (role transitivity)

– A  (Abox) is a set of axioms of the form 
• x ∈ D (concept instantiation)
• hx,yi ∈ R (role instantiation)

• Two sorts of Tbox axioms often distinguished
– “Definitions”

• C v D or C ≡ D where C is a concept name
– General Concept Inclusion axioms (GCIs)

• C v D where C in an arbitrary concept



Knowledge Base Semantics
• An interpretation I satisfies (models) an axiom A (I ² A):

– I ² C v D iff CI ⊆ DI

– I ² C ≡ D iff CI = DI

– I ² R v S iff RI ⊆ SI

– I ² R ≡ S iff RI = SI

– I ² R+ v R iff (RI)+ ⊆ RI

– I ² x ∈ D iff xI ∈ DI

– I ² hx,yi ∈ R iff (xI,yI) ∈ RI

• I satisfies a Tbox T (I ² T ) iff I satisfies every axiom A in T
• I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A
• I satisfies an KB K (I ² K) iff I satisfies both T  and A



Inference Tasks
• Knowledge is correct (captures intuitions)

– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended synonyms)
– C is equivallent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) ∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K
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Plan for today

1. “useful” reasoning services

2. relationship between DLs and other logics (briefly)

3. system demonstration

4. tableau algorithm for ALC and how to prove its correctness

5. how to extend this algorithm to DAML+OIL and OWL

University of
Manchester

2



Remember: Complexity of Ontology engineering

Remember ontology engineering tasks:

• design

• evolution

• inter-operation and Integration

• deployment

Further complications are due to

• sheer size of ontologies

• number of persons involved

• users not being knowledge experts

• natural laziness

• etc.

University of
Manchester
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Reasoning Services: what we might want in the Design Phase

• be warned when making meaningless statements

➠ test satisfiability of defined concepts

SAT(C,T ) iff there is a model I of T with CI 6= ∅

unsatisfiable, defined concepts are signs of faulty modelling

• see consequences of statements made

➠ test defined concepts for subsumption

SUBS(C,D,T ) iff CI ⊆ DI for all model I of T

unwanted or missing subsumptions are signs of imprecise/faulty modelling

• see redundancies

➠ test defined concepts for equivalence

SUBS(C,D,T ) iff CI = DI for all model I of T

knowing about “redundant” classes helps avoid misunderstandings

University of
Manchester
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Reasoning Services: what we might want when Modifying Ontologies

• the same system services as in the design phase, plus

• automatic generation of concept definitions from examples

➠ given individuals o1, . . . , on with assertions (“ABox”) for them, create

a (most specific) concept C such that each oi ∈ CI in each model I of T

“non-standard inferences”

• automatic generation of concept definitions for too many siblings

➠ given concepts C1, . . . , Cn, create

a (most specific) concept C such that SUBS(Ci, C,T )

“non-standard inferences”

• etc.

University of
Manchester
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Reasoning Services: what we might want when Integrating and Using Ontologies

For integration:

• the same system services as in the design phase, plus

• the possibility to abstract from concepts to patterns and compare patterns

➠ e.g., compute those concepts D defined in T2 such that

SUBS(Human u (∀child.(X u ∀child.Y )), D,T1 ∪ T2)

“non-standard inferences”

When using ontologies:

• the same system services as in the design phase and the integration phase, plus

• automatic classification of indidivuals

➠ given individual o with assertions, return all defined concepts D such that

o ∈ DI for all models I of T

University of
Manchester
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Reasoning Services: what we can do

(many) reasoning problems are inter-reducible:

EQUIV(C,D,T ) iff sub(C,D,T ) and sub(D,C,T )

SUBS(C,D,T ) iff not SAT(C u ¬D,T )

SAT(C,T ) iff not SUBS(C,A u ¬A,T )

SAT(C,T ) iff cons({o : C},T )

➠ In the following, we concentrate on SAT(C,T )

University of
Manchester
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Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is

SAT is semi-decidable iff co-SUBS is

➠ if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:

SAT(C,T )⇔ “satisfiable”, but might not terminate if not SAT(C,T )

there is a complete co-SUBS algorithm:

SUBS(C,T )⇔ “subsumption”, but might not terminate if SUBS(C,D,T ))

1. Do expressive ontology languages exist with decidable reasoning problems?

2. Is there a practical difference between ExpTime-hard and non-terminating?

University of
Manchester
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Do Reasoning Services need to be Decidable?

We know SAT is reducible to co-SUBS and vice versa

Hence SAT is undecidable iff SUBS is

SAT is semi-decidable iff co-SUBS is

➠ if SAT is undecidable but semi-decidable, then

there exists a complete SAT algorithm:

SAT(C,T )⇔ “satisfiable”, but might not terminate if not SAT(C,T )

there is a complete co-SUBS algorithm:

SUBS(C,T )⇔ “subsumption”, but might not terminate if SUBS(C,D,T ))

1. Do expressive ontology languages exist with decidable reasoning problems?

Yes: DAML+OIL and OWL

2. Is there a practical difference between ExpTime-hard and non-terminating?

let’s see

University of
Manchester
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Relationship with other Logics

(slide with translation)

• SHI is a fragment of first order logic

• SHIQ is a fragment of first order logic with counting quantifiers

equality

• SHI without transitivity is a fragment of first order with two variables

•ALC is a notational variant of the multi modal logic K

inverse roles are closely related to converse/past modalities

transitive roles are closely related to transitive frames/axiom 4

number restrictions are closely related to deterministic programs in PDL

University of
Manchester
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system demonstration
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Deciding Satisfiability of SHIQ

Remember: SHIQ is OWL-DL without datatypes and individuals

Next: tableau-based decision procedure for SAT (C,T )

we start with ALC (u,t,¬, ∃, ∀) instead of SHIQ and SAT(C, ∅)

Technical: all concepts are assumed to be in Negation Normal Form

transform C into equivalent NNF(C) by pushing negation inwards, using

¬(C uD) ≡ ¬C t ¬D ¬(C tD) ≡ ¬C u ¬D
¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)

The algorithm decides SAT(C, ∅) by trying to construct a model I for C

University of
Manchester
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A Tableau Algorithm for ALC

The algorithm works on a completion tree with

• nodes x corresponding to elements x ∈ ∆I

• node labels C ∈ L(x) meaning x ∈ CI

• edge labels (x,R, y) representing role successorships (x, y) ∈ RI

starts with root x with L(x) = {C}

applies rules that infer constraints on I

answers “C is satisfiable” if rules

• can be applied (non-deterministic rules!)

• exhaustively (until no more rules apply)

• without generating a clash (node label with {A,¬A} ⊆ L(x))

Rules: see slide Example: A u ∃R.A u ∀R.(¬A tB) see blackboard

University of
Manchester
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A Tableau Algorithm for ALC

Theorem The tableau algorithm decides satisfiability of ALC concepts

Lemma let C be an ALC concept in NNF.

(a) the t-algorithm terminates when started with C

(b) SAT(C)⇔ rules can be applied exhaustively without generating a clash

Proof: (a) the t-algorithm builds a completion tree

• in a monotonic way

• whose depth is bounded by |C|: if y is an R-successor of x, then

max{|D| | D ∈ L(y)} < max{|D| | D ∈ L(x)}

• whose breadth is bounded by |C|: at most one successor per ∃R.D ∈ sub(C)

University of
Manchester
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A Tableau Algorithm for ALC

Lemma let C be an ALC concept in NNF.

(a) the t-algorithm terminates when started with C

(b) SAT(C)⇔ rules can be applied exhaustively without generating a clash

Proof: (b)⇐ the clash-free, complete tree built for C corresponds

to a model I of C:

• set ∆I to the nodes

• set x ∈ AI iff A ∈ L(x)

• set (x, y) ∈ RI iff (x,R, y) in completion tree

• prove that, if D ∈ L(x), then x ∈ DI , by induction on structure of D

Details: see blackboard

(this finishes the proof since C ∈ L(x0))

University of
Manchester
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A Tableau Algorithm for ALC

Lemma let C be an ALC concept in NNF.

(a) the t-algorithm terminates when started with C

(b) SAT(C)⇔ rules can be applied exhaustively without generating a clash

Proof: (b)⇒ use a model I of C with a ∈ CI to steer rule application via mapping

π : nodes of completion tree into ∆I

built together with completion tree that satisfies

1. if C ∈ L(x), then π(x) ∈ CI

2. if (x,R, y), then (π(x), π(y)) ∈ RI

Existence of π implies clash-freeness of tree (1), termination is already proven

Construction of π: see blackboard with previous example
University of
Manchester
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A Tableau Algorithm for ALC with TBoxes

Remember:

• A GCI is of the form C v̇ D for C, D (complex) concepts

• A (general) TBox is a finite set of GCIs

• I satisfies C v̇ D iff CI ⊆ DI

• I is a model of TBox T iff I satisfies each GCI in T

• recall translation of GCIs into FOL

Extend ALC tableau algorithm to decide SAT(C,T ) for TBox

T = {Ci v̇ Di | 1 ≤ i ≤ n} :

Add a new rule

→GCI: If (¬Ci tDi) 6∈ L(x) for some 1 ≤ i ≤ n

Then L(x)→ L(x) ∪ {(¬Ci tDi)}

University of
Manchester
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A tableau algorithm for ALC with general TBoxes

Example: Consider TBox {C
.
= ∃R.C}. Is C satisfiable w.r.t. this TBox?

University of
Manchester
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A tableau algorithm for ALC with general TBoxes

Example: Consider TBox {C
.
= ∃R.C}. Is C satisfiable w.r.t. this TBox?

tableau algorithm no longer terminates!

Reason: the size of concepts no longer decreases along paths in a completion tree

Observation: most nodes in example completion tree are similar,

algorithm is repeating the same nodes

Solution: Regain termination with cycle-detection

if L(x) and L(y) are “very similar”, only extend L(x)

University of
Manchester
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A tableau algorithm for ALC with general TBoxes: Cycle-detection

Blocking:

• x is directly blocked if it has an ancestor y with L(x) ⊆ L(y)

• in this case (and if y is the “closest” such node to x), x is blocked by y

• A node is blocked if it is directly blocked or one of its ancestors is blocked

⊕ restrict the application of all rules to nodes which are not blocked

Ã Tableau algorithm for ALC w.r.t. TBoxes

Example: check previous example

Theorem The extended t-algorithm decides satisfiability of

ALC concepts w.r.t. TBoxes

University of
Manchester
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A tableau algorithm for ALC with general TBoxes: Cycle-detection

Lemma let C be an ALC concept and T a TBox in in NNF.

(a) the t-algorithm terminates when started with C and T
(b) SAT(C, T )⇔ rules can be applied exhaustively without generating a clash

Proof: (a) the t-algorithm builds a completion tree

• in a monotonic way

• whose depth is bounded by 2|C|:

on any longer path, blocking would occur and

paths with blocked nodes do not become longer

• whose breadth is bounded by |C|: at most one successor per ∃R.D ∈ sub(C)

University of
Manchester
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A tableau algorithm for ALC with general TBoxes: Cycle-detection

Lemma let C be an ALC concept and T a TBox in in NNF.

(a) the t-algorithm terminates when started with C and T
(b) SAT(C, T )⇔ rules can be applied exhaustively without generating a clash

Proof: (b)⇒ similar to previous

⇐ the clash-free, complete tree built for C corresponds

to a model I of C and T :

• set ∆I to the unblocked nodes

• set x ∈ AI iff A ∈ L(x)

• set (x, y) ∈ RI iff (x,R, y) or (x,R, y′) and y blocks y

• prove that, if D ∈ L(x), then x ∈ DI , by induction on structure of D

Details: see blackboard

(this finishes the proof since C ∈ L(x0) and ¬Ci tDi ∈ L(x), for all i, x)

University of
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A tableau algorithm for SHIQ: Transitive Roles

Remember: SHIQ allows to state transitivity of roles trans(R)

Problem: if ∀R.C ∈ L(x) for R transitiv and

(x,R, y) and (y,R, z) in completion tree, C must go to L(z)

Solution1: add edge (x,R, z) ➠ destroys handy tree structure

Solution2: new ∀ rule

→+
∀ : If ∀R.C ∈ L(x) and (x,R, y) with R transitive

and ∀R.C 6∈ L(y)

Then L(y)→ L(y) ∪ {∀R.C}

Proof of “the Lemma” is similar to previous case, but for model construction:

• if trans(R): RI = {(x, y) | (x,R, y) or (x,R, y′) and y′ blocks y}+

University of
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A tableau algorithm for SHIQ: Role Hierarchies

Remember: SHIQ allows to state role inclusions R v̇ S

Problem: if (x,R, y) and R v̇
+
S, then (x, y) ∈ SI

Solution: define y being an S-successor of x if (x,R, y) for some R v̇
∗
S

in rules, replace “(x,R, y)” with “y is R-successor of x”

Problem2: if ∀S.C ∈ L(x) and R transitive and R v̇ S and

(x,R, y) and (y,R, z) in completion tree, then C must go to L(z)

Solution: modify new ∀ rule

→+
∀ : If ∀S.C ∈ L(x), x has R-successor y for

R transitive and R v̇
∗
S and ∀R.C 6∈ L(y)

Then L(y)→ L(y) ∪ {∀R.C}

University of
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A tableau algorithm for SHIQ: Inverse Roles

Remember: SHIQ allows to use role names and inverse roles R−, e.g. ∀R−.C

Problem1: concepts need get pushed up the completion tree

Example: ∃R.(A u ∀R−.(B u ∃S−.(B u ∀S.¬A)))

Solution: treat role names and inverse roles symmetrically

define R-neighbours and replace “successor” with “neighbour” in rules

Problem2: algorithm not correct

Example: SAT(A u ∀R−.(A u ¬A), {A v̇ ∃R.C})

Solution: modify direct blocking condition: x blocks y if L(x) = L(y)

University of
Manchester
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A tableau algorithm for SHIQ: Number Restrictions

Remember: SHIQ allows to use number restrictions (>nR.C), (6nR.C)

Obvious: new rules that generate R-successors yi of x for (>nr.C) ∈ L(x)

new rules that identify surplus R-successors of x with (6nr.C) ∈ L(x)

Example: (>2R.A) u (>2R.(A uB)) u (63S.A)

Less obvious: new choose rule required

Example: (>3R.A) u (61R.A) u (61R.¬A)

Tricky: new blocking condition required

Proofs of Lemma become more demanding, i.e., model construction

uses enhanced “unravelling” to construct possibly infinite models. . .

University of
Manchester
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Models of SHIQ

For SHIQ without number restriction, we built finite models

ok since SHI has finite model property, i.e.,

SAT(C,T )⇒ C, T have a finite model

For full SHIQ, we built infinite tree models

ok since SHIQ has tree model property, i.e.,

SAT(C,T )⇒ C, T have a tree model

ok since SHIQ lacks finite model property, i.e.,

there are C and T with SAT(C,T ),
but each of their models is infinite

Example: for F v R and R transitive,

¬A u ∃F.A u ∀R.(A u ∃F.A u (≤ 1 F− >))

is satisfiable, but each model has an infinite F -chain (blackboard)

University of
Manchester
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Plan for today

1. a few interesting complexity results for DLs

2. why full DAML+OIL and OWL-DL are more complex

3. some interesting undecidability results

4. implementing and optimising tableau algorithm

University of
Manchester
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Remember Yesterday

Yesterday, we have seen a tableau-based algorithm that decides

satisfiability of SHIQ concepts w.r.t. SHIQ TBoxes

Still missing from SHIQ to OWL-DL:

• data types (integers, strings, with comparisons)

e.g., Human u ∃age.>18 extension of algorithm not too difficult

• nominals (or nominals) ➠ SHIQO

e.g., Human u ∃met.Pope extension of algorithm very difficult

Properties of SHIQO

• decidable — not yet proven (but there are good reasons)

• no tree model property: makes reasoning more difficult!

•more complex than SHIQ

University of
Manchester
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Complexity of DLs: Summary

Deciding satisfiability (or subsumption) of

without w.r.t.

concepts in Definition a TBox is a TBox is

ALC u, t, ¬, ∃R.C, ∀R.C, PSpace-c ExpTime-c

S ALC + transitive roles PSPace-c ExpTime-c

SI SI + inverse roles PSPace-c ExpTime-c

SH S + role hierarchies ExpTime-c ExpTime-c

SHIQ SHI + number restrictions ExpTime-c ExpTime-c

SHIQO SHI + nominals NExpTime-c NExpTime-c

SHIQ + SHIQ + “naive number restrictions” undecidable undecidable

SH + SH + “naive role hierarchies” undecidable undecidable

University of
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ALC is in PSpace

The NExpTime tableau algorithm for SAT(ALC, ∅)
can be modified easily to run in PSpace:

For an ALC-concept C0,

1. the c-tree can be built depth-first

2. branches are independent Ã keep only one branch in memory at any time

3. length of branch ≤ |C0|

4. for each node x, L(x) ⊆ sub(C0) and # sub(C0) is linear in |C0|

Ã non-deterministic PSpace decision procedure for CSAT(ALC)
and Savitch: PSpace = NPSpace

University of
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Adding TBoxes to ALC yields ExpTime-hardness

Why is reasoning w.r.t. TBoxes more complex, i.e., ExpTime-hard?

Intuitively: we can enforce paths of exponential length, i.e.,

there are C, T such that, in each model I of C and T , there is

a path x1, ...., xn with (xi, xi+1) ∈ RI and n ≥ 2(|C|+|T |)2

C and T represent binary incrementation using k bits

i-th bit is coded in concept name Xi (Xk is lowest bit, C ⇒ D short for ¬C tD)

A = ¬X1 u ¬X2 u . . . u ¬Xk

T = { A v̇ ∃R.A

A v̇ (Xk ⇒ ∀R.¬Xk) u (¬Xk ⇒ ∀R.Xk)

for i < k : u
j<i

Xj v̇ (Xi ⇒ ∀R.¬Xi) u (¬Xi ⇒ ∀R.Xi)

t
j<i
¬Xj v̇ (Xi ⇒ ∀R.Xi) u (¬Xi ⇒ ∀R.¬Xi)}

University of
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Adding TBoxes to ALC yields ExpTime-hardness

Why is reasoning w.r.t. TBoxes more complex, i.e., ExpTime-hard?

Lemma: Satisfiability of ALC w.r.t. TBoxes can be reduced to

the Halting Problem of

polynomial-space-bounded alternating Turing machines

We know: the HP-f-PSB-A-TM is ExpTime-hard

Proof of Lemma: beyond the scope of this tutorial, but not difficult

University of
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Complexity of SHIQ

SHIQ is ExpTime-hard because ALC with TBoxes is and SHIQ can

internalise TBoxes: polynomially reduce SAT(C,T ) to SAT(CT , ∅)

CT := C u u
Civ̇Di∈T

(Ci ⇒ Di) u ∀U. u
Civ̇Di∈T

(Ci ⇒ Di)

for U new role with trans(U), and

R v̇ U,R− v̇ U for all roles R in T or C

Lemma: C is satisfiable w.r.t. T iff CT is satisfiable

Why is SHIQ in ExpTime?

Tableau algorithms runs in worst-case non-deterministic double exponential space

using double exponential time....

University of
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SHIQ is in ExpTime

Translation of SHIQ into Büchi Automata on infinite trees

C, T Ã AC,T

such that

1. SAT(C,T ) iff L(AC,T ) 6= ∅

2. |AC,T | is exponential in |C|+ |T |

(states of C,T are sets of subconcepts of C and T )

This yields ExpTime decision procedure for SAT(C,T ) since

emptyness of L(A) can be decided in time polynomial in |A|

Problem AC,T needs (?) to be constructed before being tested: best-case ExpTime

University of
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SHIQO is NExpTime-hard

FaCT: for SHIQ and SHOQ, SAT(C,T ) are ExpTime-complete

SHOQ is SHIQ without inverse roles, with nominals

Lemma: their combination is NExpTime-hard

even for ALCQIO, SAT(C,T ) is NExpTime-hard

Proof: by reduction of a NExpTime version of the domino problem:

� � �� �

� � �

� � �
� �

� �

n2 n2

can we tile a

x square
using D?

types
dominoe
of
set
a fixed

� � �

� � �
� �

� �

D,
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NExpTime DLs: ALCQIO is NExpTime-hard

Definition: A domino system D = (D,H, V )

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D ×D and V ⊆ D ×D

A tiling of the IN× IN grid using D:

t : IN× IN→ D such that

〈t(m,n), t(m+ 1, n)〉 ∈ H and

〈t(m,n), t(m,n+ 1)〉 ∈ V

Domino problem standard: has D a tiling? undecidable

exponential: has D a tiling for a 2n × 2n square? NExpTime-c.

University of
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NExpTime DLs: ALCQIO is NExpTime-hard

Reducing the NExpTime domino problem to CSAT(ALCQIO) Ã four tasks:

① each object carries exactly one domino type Di

Ã use concept name Di for each domino type and

> v̇ t
1≤i≤d

(Di u u
j 6=i
¬Dj)

② each element x has exactly one H-successor

exactly one V -successor

whose domino types satisfy the horizontal/vertical matching conditions:

> v̇ u
1≤i≤n

(

Di ⇒ ((61V.>) u (∃V. t
(Di,Dj)∈V

Dj)) u

((61H.>) u (∃H. t
(Di,Dj)∈H

Dj))
)
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NExpTime DLs: ALCQIO is NExpTime-hard

③ the model must be large enough, i.e., have 2n × 2n elements

Ã encode the position (x, y) of each point using binary coding in

the concept names X1, . . . , Xn, Y1, . . . , Yn:

> v̇ ∃H.> u ∃V.>

> v̇ (Xk ⇒ ∀R.¬Xk) u (¬Xk ⇒ ∀R.Xk) u (same for Yi)

for i < k : u
j<i

Xj v̇ (Xi ⇒ ∀R.¬Xi) u (¬Xi ⇒ ∀R.Xi) u (same for Yi)

t
j<i
¬Xj v̇ (Xi ⇒ ∀R.Xi) u (¬Xi ⇒ ∀R.¬Xi) u (same for Yi)

E.g., if x ∈ (¬X1 uX2 uX3 u Y1 u ¬Y2 u Y3)
I , then

x represents (011, 101), and thus the point (3, 5)

University of
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NExpTime DLs: ALCQIO is NExpTime-hard

④ ensure that the V ◦H-successor of each node coincides with its H ◦ V -successor

Ã enforce that each object is the H-successor of at most one element

(and the same for V ):

>
.
= (61V −.>) u (61H−.>)

Ã enforce that there is ≤ 1 object in the upper right corner:

X1 u . . . uXn u Y1 u . . . u Yn v̇ N

for nominal N

Harvest:

¬X1 u . . . u ¬Xn u ¬Y1 u . . . u ¬Yn

is satisfiable w.r.t. to TD defined above iff D has a 2n × 2n-tiling
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An Undeciable Extension for SHIQ

In SHIQ, each role R in a number restriction (./ n R;C) must be simple,

i.e., not (+S) for any sub-role S of R

Without this restriction, SHIQ (better: SHQ) becomes undecidable

Proof by a reduction of the standard, unbounded domino problem
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An Undeciable Extension for SHIQ

Remember 4 tasks in the previous domino reduction:

① each object carries exactly one domino type Di

Ã use concept name Di for each domino type and

> v̇ t
1≤i≤d

(Di u u
j 6=i
¬Dj)

② each element x has exactly one H-successor

exactly one V -successor

whose domino types satisfy the horizontal/vertical matching conditions:

> v̇ u
1≤i≤n

(

Di ⇒ ((61V.>) u (∃V. t
(Di,Dj)∈V

Dj)) u

((61H.>) u (∃H. t
(Di,Dj)∈H

Dj))
)
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An Undeciable Extension for SHIQ

Remember 4 tasks in the previous domino reduction:

③ model must be large enough

> v̇ ∃V.> u ∃H.>

④ vertical-horizontal and horizontal-vertical succcessor coincide

• use additional roles V1, V2 v̇ V , V1, V2 v̇ V

with additional GCIs, e.g.,

> v̇ (∃V1.> u ∀V1.∀V1.⊥) t . . .

• transitive roles Di,j with Hi, Vj v̇ Di,j

• number restrictions

> v̇ u
i,j
(≤ 3 Di,j.>)

V1

V1

V2

V1

V1

V2

V2 V2

H2

H2

H2

H2

H2

H2

H2

H2

H1

H1

V1V1

H1

V1

H1

V1

H1

H1H1

H1

V2 V2

V2 V2

University of
Manchester

44



Implementing the SHIQ Tableau Algorithm

Naive implementation of SHIQ tableau algorithm is doomed to failure:

Construct a tree of exponential depth in a

non-deterministic way

Ã requires backtracking in a deterministic implementation

Optimisations are crucial

concern every aspect of the

help in “many” cases (which?)

In the following: a selection of some vital optimisations
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Optimising the SHIQ Tableau Algorithm

FaCT provides service “classify all concepts defined T ”, i.e.,

for all concept namesC,D defined in T , FaCT decides whetherC vT D andD vT C

Ã SAT(C u ¬D,T ) and SAT(D u ¬C,T )

Ã n2 satisfiability tests!

Goal: reduce number of satisfiability tests when classifying TBox

Idea: trickle new concept into hierarchy

computed so far

NO YES

SUBS(C, Di,T )? D2

>

D1

E1 E2

SUBS(C, Di,T )?
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Optimising the SHIQ Tableau Algorithm

FaCT provides service “classify all concepts defined T ”, i.e.,

for all concept namesC,D defined in T , FaCT decides whetherC vT D andD vT C

Ã SAT(C u ¬D,T ) and SAT(D u ¬C,T )

Ã n2 satisfiability tests!

Goal: reduce number of satisfiability tests when classifying TBox

Idea: trickle new concept into hierarchy

computed so far

NO YES

SUBS(C, Di,T )? D2

>

D1

E1

SUBS(C, Di,T )?

E2
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Optimising the SHIQ Tableau Algorithm

FaCT provides service “classify all concepts defined T ”, i.e.,

for all concept namesC,D defined in T , FaCT decides whetherC vT D andD vT C

Ã SAT(C u ¬D,T ) and SAT(D u ¬C,T )

Ã n2 satisfiability tests!

Goal: reduce number of satisfiability tests when classifying TBox

Idea: “trickle” new concept into hierarchy

computed so far

YESNO

SUBS(C, Di,T )? D2

>

D1

E1 E2

SUBS(C, Ei,T )?
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Optimising the SHIQ Tableau Algorithm

Remember: →GCI: If (¬Ci tDi) 6∈ L(x) for some 1 ≤ i ≤ n

Then L(x)→ L(x) ∪ {(¬Ci tDi)}

Problem: 1 disjunction per GCI Ã high degree of non-determinism

huge search space

Observation: many GCIs are of the form A u . . . v̇ C for concept name A

e.g., Human u . . . v̇ C versus Device u . . . v̇ C

Idea: restrict applicability of→GCI by translating

A uX v̇ C into equivalent A v̇ ¬X t C

e.g., Human u ∃owns.Pet v̇ C becomes Human v̇ ¬∃owns.Pet t C

this yields localisation of GCIs to As
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Optimising the SHIQ Tableau Algorithm

For SHIQ, the blocking condition is:

y is blocked by y′ if

for x the predecessor of y, x′ the predecessor of y′

1.L(x) = L(x′)

2.L(y) = L(y′)

3. (x,R, y) iff (x′, R, y′)

Ã blocking occurs late

Ã search space if huge
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Optimising the SHIQ Tableau Algorithm

For SHIQ, the blocking condition is:

y is blocked by y′ if

for x the predecessor of y, x′ the predecessor of y′

1.L(x) = L(x′)

2.L(y) = L(y′)

3. (x,R, y) iff (x′, R, y′)

Ã blocking occurs late

Ã search space if huge

1.L(x) ∩RC = L(x′) ∩RC

2.L(y) ∩RC = L(y′) ∩RC

3. (x,R, y) iff (x′, R, y′)

for “relevant concepts RC”

Ã blocking occurs earlier

Ã search space if smaller
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Optimising the SHIQ Tableau Algorithm

Remember If a clash (A,¬A ∈ L(x)) is encountered, algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example ∃R.(A uB) u (C1 tD1) u . . . u (C1 tD1) u ∀R.¬A ∈ L(x)

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

x

t

t t

t

tt
x

x

R

yL(y) = {(A u B), ¬A, A, B}

Clash

R

y L(y) = {(A u B), ¬A, A, B}

Clash Clash . . . Clash

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

L(x) ∪ {Cn}
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Optimising the SHIQ Tableau Algorithm

Remember If a clash (A,¬A ∈ L(x)) is encountered, algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example ∃R.(A uB) u (C1 tD1) u . . . u (C1 tD1) u ∀R.¬A ∈ L(x)

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

t

t t

t

tt
x

x

R

yL(y) = {(A u B), ¬A, A, B}

Clash
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Optimising the SHIQ Tableau Algorithm

Remember If a clash (A,¬A ∈ L(x)) is encountered, algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example ∃R.(A uB) u (C1 tD1) u . . . u (C1 tD1) u ∀R.¬A ∈ L(x)

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

t

t t

t

tt
x

x

R

yL(y) = {(A u B), ¬A, A, B}

Clash

R

y

Clash

L(y) = {(A u B), ¬A, A, B}
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Optimising the SHIQ Tableau Algorithm

Remember If a clash (A,¬A ∈ L(x)) is encountered, algorithm backtracks

i.e., returns to last non-deterministic choice and

tries other possibility

Example ∃R.(A uB) u (C1 tD1) u . . . u (C1 tD1) u ∀R.¬A ∈ L(x)

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

x

x x L(x) ∪ {¬Cn, Dn}

L(x) ∪ {Cn-1}

Clash . . . Clash

t

t t

t

tt
x

x

R

yL(y) = {(A u B), ¬A, A, B}

Clash

R

y

Clash

L(y) = {(A u B), ¬A, A, B}
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Optimising the SHIQ Tableau Algorithm

Finally: SHIQ extends propositional logic

Ã heuristics developed for SAT are relevant

Summing up: optimisations at each aspect of tableau algorithm

can dramatically enhance performance

Ã do they interact?

Ã how?

Ã which combination works best for which “cases”?

Ã is the optimised algorithm still correct?
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5. Future Challenges, Outlook, and Leftovers

Ian Horrock and Ulrike Sattler

University of Manchester

Manchester, UK

{horrocks|sattler}@cs.man.ac.uk
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Plan for today

1. ABoxes and instances

2. “non-standard” reasoning services

3. Nominals

4. Propagation

5. Concrete Domains

6. Keys

7. uuups - I get carried away
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ABoxes and Instances

Remember: when using ontologies, we would like to automatically classify individuals

described in an ABox

an ABox A is a finite set of assertions of the form

C(a) or R(a, b)

How to decide whether Inst(a,A,T )? I.e., whether a ∈ CI in all models I of T ?

Ã extend tableau algorithm to start with ABox C(a) ∈ A ⇒ C ∈ L(a)

R(a, b) ∈ A ⇒ (a,R,y)

work on forest (rather than on a single tree)

i.e., trees whose root nodes intertwine

theoretically not too complicated

many problems in implementation
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Non-Standard Reasoning Services

For Ontology Engineering, useful reasoning services can be based on SAT and SUBS

Are all useful reasoning services based on SAT and SUBS?

Remember: to support modifying ontologies, we wanted

• automatic generation of concept definitions from examples

➠ given ABox A and individuals ai create

a (most specific) concept C such that each ai ∈ CI in each model I of T

msc(a1, . . . , an),A,T )

• automatic generation of concept definitions for too many siblings

➠ given concepts C1, . . . , Cn, create

a (most specific) concept C such that SUBS(Ci, C,T )

lcs(C1, . . . , Cn),A,T )
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Non-Standard Reasoning Services: Most Specific Concept

Unlike SAT, SUBS, etc., msc is a computation problem (not decision problem)

Idea: msc(a1, . . . , an,A,T ) = lcs(msc(a1,A,T ), . . . ,msc(an,A,T ))

Known Results:

• lcs in DLs with v is useless

• msc(a1,A,T ) does not need to exist
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Resources
• Course material (including slides, tools and ontologies):

• http://www.cs.man.ac.uk/~horrocks/ESSLLI2003/

• Description Logic Handbook

• http://books.cambridge.org/0521781760.htm
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Tableau rules for ALC

→u: If C u D ∈ L(x) but {C,D} ∩ L(x) = ∅
Then L(x) → L(x) ∪ {C,D}

→t: If C t D ∈ L(x) but {C,D} 6⊆ L(x)
Then L(x) → L(x) ∪ {E} for E ∈ {C,D}

→∃: If ∃R.C ∈ L(x) but x has no R-successor y

with C ∈ L(y)
Then create new R-successor y of x with

L(y) = {C}

→∀: If ∀R.C ∈ L(x) and x has an R-successor y

with C 6∈ L(y)
Then L(y) → L(y) ∪ {C}



Tableau rules for ALC with GCIs

{Civ̇Di | 1 ≤ i ≤ n}

applicable only to nodes x that are not blocked:

y is blocked by an ancestor x if L(y) ⊆ L(x)

→u: If C u D ∈ L(x) but {C,D} ∩ L(x) = ∅
Then L(x) → L(x) ∪ {C,D}

→t: If C t D ∈ L(x) but {C,D} 6⊆ L(x)
Then L(x) → L(x) ∪ {E} for E ∈ {C,D}

→∃: If ∃R.C ∈ L(x) but x has no R-successor y

with C ∈ L(y)
Then create new R-successor y of x with

L(y) = {C}

→∀: If ∀R.C ∈ L(x) and x has an R-successor y

with C 6∈ L(y)
Then L(y) → L(y) ∪ {C}

→GCI: If (¬Ci t Di) 6∈ L(x)
for some 1 ≤ i ≤ n

Then L(x) → L(x) ∪ {¬Ci t Di}
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Tableau rules for ALCI with GCIs

{Civ̇Di | 1 ≤ i ≤ n}

applicable only to nodes x that are not blocked:

y is blocked by an ancestor x if L(x) = L(y)

→u: If C u D ∈ L(x) but {C,D} ∩ L(x) = ∅
Then L(x) → L(x) ∪ {C,D}

→t: If C t D ∈ L(x) but {C,D} 6⊆ L(x)
Then L(x) → L(x) ∪ {E} for E ∈ {C,D}

→∃: If ∃R.C ∈ L(x) but x has no R-neighbour y

with C ∈ L(y)
Then create new R-successor y of x with

L(y) = {C}

→∀: If ∀R.C ∈ L(x) and x has an R-neighbour y

with C 6∈ L(y)
Then L(y) → L(y) ∪ {C}

→GCI: If (¬Ci t Di) 6∈ L(x)
for some 1 ≤ i ≤ n

Then L(x) → L(x) ∪ {CT }
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Additional tableau rules for ALCQI with GCIs
applicable only to nodes x that are not blocked:

y is blocked by an ancestor y′ if there are x, x′ with

• y is succ. of x, y′ is succ. of x′,

• L(x) = L(y), L(x′) = L(y′), and

• L(〈x, y〉) = L(〈x′, y′〉).

→≥: If (>nR.C) ∈ L(x), x is not blocked, and x has
less than n R-neighbours yi with C ∈ L(yi)

Then create n new R-successor y1, . . . , yn of x with
L(yi) := {C} and yi 6

.
= yj for all i 6= j

→≤: If (6nR.C) ∈ L(x), x is not indirectly blocked,
x has n + 1 R-neighbours y0, . . . , yn with
C ∈ L(yi), and there are i, j with not yi 6

.
= yj

and yj is not an ancestor of yi

Then L(yi) → L(yi) ∪ L(yj),
make yj’s successors to successors of yi,
add yi 6

.
= z for each z with yj 6

.
= z,

remove yj from the tree

→choice: If (6nR.C) ∈ L(x), x is not indirectly blocked,
x has an R-neighbour y with
{C, ¬̇C} ∩ L(y) = ∅

Then L(y) → L(y) ∪ {D} for some D ∈ {C, ¬̇C}
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Translation of ALCQIO-concepts into C2

(The mapping ty is obtained by switching the roles
of x and y in tx)

tx(A) = A(x),

tx(¬C) = ¬tx(C)

tx(C u D) = tx(C) ∧ tx(D),

tx(C t D) = tx(C) ∨ tx(D),

tx(∃R.C) = ∃y.R(x, y) ∧ ty(C)

tx(∀R.C) = ∀y.¬R(x, y) ∨ ty(C)

tx(>nR.C) = ∃≥ny.R(x, y) ∧ ty(C),

tx(>nR−.C) = ∃≥ny.R(y, x) ∧ ty(C),

tx(6nR.C) = ∃≤ny.R(x, y) ∧ ty(C),

tx(6nR−.C) = ∃≤ny.R(y, x) ∧ ty(C)

t(T ) =
∧

Cv̇D∈T

∀x.tx(C) ⇒ tx(D)

t(R v̇ S) = ∀x, y.R(x, y) ⇒ S(x, y)

t(trans(R)) = ∀x, y, z.(R(x, y) ∧ R(y, z)) ⇒ R(x, z)

tx(o) = (x = ao), for nominal o and constant ao

Lemma:

1. sat(C,T ) iff tx(C) ∧ t(T ) is satisfiable

2. sat(C,D, T ) iff t(T ) ⇒ (∀x.tx(C) ⇒ tx(D)
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