Description Logic:
A Formal Foundation for
Ontology Languages and Tools

lan Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group

Oxford University Computing Laboratory

What Are Description Logics?

What Are Description Logics?

* Decidable fragments of First Order Logic

Thank you for listening

Any questions?

What Are Description Logics?

* A family of logic based Knowledge Representation formalisms

— Oiriginally descended from semantic networks and KL-ONE

— Describe domain in terms of concepts (aka classes), roles (aka
properties, relationships) and individuals

has-color @

Felix " Mat

sits-on

Animal

[Quillian, 1967]

What Are Description Logics?

* Modern DLs (after Baader et al) distinguished by:

— Fully fledged logics with formal semantics

« Decidable fragments of FOL (often contained in C,)

» Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
— Computational properties well understood (worst case complexity)
— Provision of inference services

» Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, query answering, etc)

* Implemented systems (highly optimised)

* The basis for widely used ontology languages

Web Ontology Language OWL (2)

* W3C recommendation(s)

* Motivated by Semantic Web activity

Add meaning to web content by annotating
it with terms defined in ontologies

——

° Supported by tools and infrastructure
— APIs (e.g., OWL API, Thea, OWLink) |

— Development environments
(e.g., Protégée, Swoop, TopBraid Composer, Neon)

— Reasoners & Information Systems
(e.g., Pellet, Racer, HermiT, Quonto, ...)

* Based on Description Logics (SHOIN /| SROIQ)

DL Syntax

* Signature
— Concept (aka class) names, e.g., Cat, Animal, Doctor
» Equivalent to FOL unary predicates
— Role (aka property) names, e.g., sits-on, hasParent, loves
« Equivalent to FOL binary predicates
— Individual names, e.g., Felix, John, Mary, Boston, Italy

» Equivalent to FOL constants

DL Syntax

* Qperators

— Many kinds available, e.g.,
» Standard FOL Boolean operators (M, U, —)
» Restricted form of quantifiers (3, V)
» Counting (>, <, =)

DL Syntax

* Concept expressions, e.g.,
— Doctor U Lawyer
— Rich M Happy
— Cat M dsits-on.Mat

* Equivalent to FOL formulae with one free variable
— Doctor(z) V Lawyer(z)
— Rich(z) A Happy(zx)
— Jy.(Cat(zx) A sits-on(z, y))

DL Syntax

* Special concepts
— T (aka top, Thing, most general concept)

— 1 (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
— (A U= A) for any concept A
— (AN = A) for any concept A

DL Syntax

* Role expressions, e.g.,
— loves

— hasParent o hasBrother

* Equivalent to FOL formulae with two free variables
— loves(y, x)

— Jz.(hasParent(z, z) A hasBrother(z, y))

DL Syntax

* “Schema” Axioms, e.qg.,

— Rich E —Poor (concept inclusion)
— Cat M Jsits-on.Mat C Happy (concept inclusion)
— BlackCat = Cat M dhasColour.Black (concept equivalence)
— sits-on C touches (role inclusion)
— Trans(part-of) (transitivity)
* Equivalent to (particular form of) FOL sentence, e.g.,
- V¥x.(Rich(x) = —Poor(x))

- Vx.(Cat(x) A dy.(sits-on(x,y) A Mat(y)) — Happy(x))

- Vx.(BlackCat(x) <> (Cat(x) A Jy.(hasColour(x,y) A Black(y)))
- Vx,y.(sits-on(X,y) — touches(x,y))

- Vx,y,z.((sits-on(x,y) A sits-on(y,z)) — sits-on(x,z))

DL Syntax

* “Data” Axioms (aka Assertions or Facts), e.g.,

— BlackCat(Felix) (concept assertion)
— Mat(Matl) (concept assertion)
— Sits-on(Felix,Mat1) (role assertion)

* Directly equivalent to FOL “ground facts”

— Formulae with no variables

DL Syntax

° A setof axioms is called a TBox, e.g.:

{Doctor C Person,

Parent = Person " dhasChild.Per
HappyParent = Parent M VhasChil

Note

Facts sometimes written

John:HappyParent,

{HappyParent(John), John hasChild Mary,
hasChild(John,Mary)} (J OhIl,M&I'Y) :hasChild

* A set of facts is called an AE

* A Knowledge Base (KB) is just a TBox plus an Abox
— Often written K = (7, A)

The DL Family

* Many different DLs, often with “strange” names
- E.g., &L, ALC, SHIQ
* Particular DL defined by:
— Concept operators (M1, U, =, 3, V, etc.)
— Role operators (-, o, etc.)
— Concept axioms (C, =, etc.)
— Role axioms (C, Trans, etc.)

The DL Family

° E.g., £Lis a well known “sub-Boolean™ DL
— Concept operators: 1, =, 3
— No role operators (only atomic roles)
— Concept axioms: C, =
— No role axioms

° E.q.

Parent = Person M JdhasChild.Person

The DL Family

- ALC is the smallest propositionally closed DL

— Concept operators: M, W, =, 3, V

— No role operators (only atomic roles)
— Concept axioms: C, =

— No role axioms

° E.g.

ProudParent = Person M VhasChild.(Doctor LI dhasChild.Doctor)

The DL Family

* S used for ALC extended with (role) transitivity axioms

* Additional letters indicate various extensions, e.g.:
— ‘H for role hierarchy (e.g., hasDaughter C hasChild)
- R for role box (e.g., hasParent o hasBrother C hasUncle)

— O for nominals/singleton classes (e.g., {ltaly})

— T forinverse roles (e.g., isChildOf = hasChild™)

- N for number restrictions (e.g., >2hasChild, <3hasChild)

- @ for qualified number restrictions (e.g., >2hasChild.Doctor)
- JF for functional number restrictions (e.g., <l1hasMother)

* E.g., SHZO = S + role hierarchy + inverse roles + QNRs

The DL Family

°* Numerous other extensions have been investigated
— Concrete domains (numbers, strings, etc)
— DL-safe rules (Datalog-like rules)
— Fixpoints
— Role value maps
— Additional role constructors (N, U, —, o, id, ...)
— Nary (i.e., predicates with arity >2)
— Temporal
— Fuzzy
— Probabilistic
— Non-monotonic
— Higher-order

DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation function Z Interpretation domain A?

Individuals iZ € AZ

Vehicle ~<_
Roles rZ C Al x A?
hasChild

owns

DL Semantics

* Interpretation function extends to concept expressions
In the obvious(ish) way, e.qg.:

(CcnDY =ctTnpDt

(cubD)Y =ctupt

(-C)r = at\c*

{z} = {1}

(BR.CYt = {z | Fy.(z,y) € Rt Ay € CF}
(VR.C)! = {z | Vy.(z,y) € Rt = y € C1}
(<nR)! = {z | #{y | (=,y) € RI} n}
(cnR)t = {z | #{y | (=,y) € R*} > n}

DL Semantics

* Given a model M =(D,-")

—CCD iff ¢c!CD!

—C=D iff ¢! =D!

= C(a) iff of € C!

— R(a,b) iff (a,d’) € R!

= (7, A) iff for every axiomax € TUA, M = ax

SN N

DL Semantics

e Satisfiability and entailment

— A KB K is satisfiable iff there exists a model M s.t. M E K

— A concept C is satisfiable w.r.t. a KB K iff there exists a model
M=(D,)st. MFKand C'= 0

— A KB K entails an axiom ax (written K F ax) iff for every model
Mof I, M E ax (i.e., M E K implies M F ax)

DL Semantics

E.g.,

NS S

7= {Doctor C Person, Parent = Person M JdhasChild.Person,
HappyParent = Parent ' VhasChild.(Doctor LU JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
Mary:—Doctor, Mary hasChild Peter, Mary:(< 1 hasChild)

— K E John:Person ?
JC E Peter:Doctor ?
— K F Mary:HappyParent ?

— What if we add “Mary hasChild Jane™ ?

JIC E Peter = Jane

— What if we add “HappyPerson = Person M dhasChild.Doctor” ?

KC E HappyPerson C Parent

DL and FOL

* Most DLs are subsets of C2

— But reduction to C2 may be (highly) non-trivial
« Trans(R) naively reduces to Vz, vy, z.R(z,y) A R(y, z) — R(z, z)

* Why use DL instead of C2?

— Syntax is succinct and convenient for KR applications

— Syntactic conformance guarantees being inside C2
» Even if reduction to C2 is non-obvious

— Different combinations of constructors can be selected
« To guarantee decidability
* To reduce complexity

— DL research has mapped out the decidability/complexity
landscape in great detail

» See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/

ST o —— ST

Complexity of reasoning in Description Logics
Note: the information here is (always) incomplete and updated often

Base description logic: _Ztributive Zanguage with Complements

ALC::= L | A| -C | CaD | CvD | 3R.C | YR.C

Concept constructors: Role constructors: (trans)(reg)

_ #- functionality?: (€1 R) & /- role inverses: R~
& - (unqualified) number restrictions: (=n R), (£n R)

2 N - role intersection®: RNS

U @~ qualified number restrictions: (2n R.C), (£n R.C)) U - role union: RUS
& O- nominals: {a} or {al,...,an} ("one-of" constructor)) = - role complement: I
- ' o - role chain (composition): RoS
' p - least fixpoint operator: uX.C o ox flexive-t it | 4, px
' RCS - role-value-maps - .d- re exuvc:-'drants.l |Yg;gsure :
_ f= g - agreement of functional role chains ("same-as") = foncep iaen |ty;1 © s
rorbid = complex roles® in number restrictions™

TBoOX is internalized in extensions of _2£(/0, see [76, Lemma 4.12], Role axioms (RBoXx): Sl ST
[54, p.3] # §- Role transitivity: Trans(R)

Empty TBox & F/- Role hierarchy: RC S

Acyclic TBox (A=C, A is a concept name; no cycles)

2 ®- Complex role inclusions: RoSC R, RoSC S
General TBox (CCD for arbitrary concepts C and D)

_ s- some additional features

You have selected the Description Logic: SHOINV

Complexity of reasoning |:0roI:iIemsZ

Reasoning problem Complexity§ Comments and references

e Hardness of even _4£(7/0is proved in [76, Corollary 4.13]. In that paper, the result is formulated for
ALCQ/O, but only number restrictions of the form (<1R) are used in the proof.

o A different proof of the NExpTime-hardness for _2£(%70is given in [54] (even with 1 nominal, and role
inverses not used in number restrictions).

o Upper bound for S#O/Qis proved in [77, Corollary 6.31] with numbers coded in unary (for binary
coding, the upper bound remains an open problem for all logics in between _ZLCA70 and SHO/Q).

e Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a
transitive subroles) are allowed; otherwise we gain undecidability even in SHA see [46].

e Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number

restrictions - and still have a decidable logic! So the above notion of a simple role could be substantially
extended.

Concept satisfiability |NExpTime-complete

ABox consistency NExpTime-complete |By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].

Complexity Measures

* Taxonomic complexity

Measured w.r.t. total size of “schema” axioms
* Data complexity

Measured w.r.t. total size of “data” facts
* Query complexity

Measured w.r.t. size of query

* Combined complexity

Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes
* LogSpace, PTime, NP, PSpace, ExpTime, etc

— worst case for a given problem w.r.t. a given parameter

— X-hard means at-least this hard (could be harder);
in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

* e.g.,, SROZQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

* Note that:

— this is for the worst case, not a typical case

— complexity of problem means we can never devise a more
efficient (in the worst case) algorithm

— complexity of algorithm may, however, be even higher
(in the worst case)

DLs and Ontology Languages

DLs and Ontology Languages

» W3C's OWL 2 (like OWL, DAML+OIL & OIL) based on DL

— OWL 2 based on SROZO, i.e., ALC extended with
transitive roles, a role box nominals, inverse roles and
qualified number restrictions

« OWL 2 EL basedon EL
e OWL 2 QL based on DL-Lite

« OWL 2 EL based on DLP
— OWL was based on SHOIN

« only simple role hierarchy, and
unqualified NRs

Class/Concept Constructors

OWL Constructor DL Syntax Example
intersectionOf Cim...nCy Human rn Male
unionOf Ciu...udcy Doctor U Lawyer
complementOf - —Male

oneOf {z1}U...U{zn} | {JOohn} L {mary}
allValuesFrom VP.C YhasChild.Doctor
someValuesFrom dP.C JhasChild.Lawyer
maxCardinality <nP <lhasChild
minCardinality >nP >2hasChild

e

Ontology Axioms

OWL Syntax DL Syntax | Example

subClassOf C1C Cr | Human C Animal N Biped
equivalentClass C1=C> | Man = Humanr Male
subPropertyOf P; C P, | hasDaughter C hasChild

equivalentProperty
transitiveProperty

Py = P> |cost=price
PTC P |ancestort C ancestor

OWL Syntax | DL Syntax | Example
type a:C John : Happy-Father
property (a,b) : R | (John,Mary) : has-child

* An Ontology is usually considered to be a TBox

— but an OWL ontology is a mixed set of TBox and ABox axioms

Other OWL Features

* XSD datatypes and (in OWL 2) facets, e.q.,

— integer, string and (in OWL 2) real, float, decimal, datetime, ...
— minExclusive, maxExclusive, length, ...
— PropertyAssertion(hasAge Meg "17"*xsd:integer)

— DatatypeRestriction(xsd:integer xsd:minlnclusive "5"*xsd:integer
xsd:maxExclusive "10"*xsd:integer)

These are equivalent to (a limited form of) DL concrete domains

* Keys
— E.g., HasKey(Vehicle Country LicensePlate)

» Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules

OWL RDF/XML Exchange Syntax

E.g., Person M YhasChild.(Doctor LI FhasChild.Doctor):

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

Complexity/Scalability

* From the complexity navigator we can see that:
— OWL (aka SHOZIN) is NExpTime-complete
— OWL Lite (aka SHZF) is ExpTime-complete (oops!)
— OWL 2 (aka SROZIQ) is 2NExpTime-complete
— OWL 2 EL (aka &L) is PTIME-complete (robustly scalable)
— OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)

« And implementable using rule based technologies
e.g., rule-extended DBs

— OWL 2 QL (aka DL-Lite) is in AC? w.r.t. size of data

« same as DB query answering -- nice!

Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics

Constructor DL Syntax Example FOL Syntax
intersectionOf CyM...NCy | Humanm Male Ci(z) A...ACy(zx)
unionOf CyU...uCy | DoctoruLawyer | Cy(z) V...V Cp(z)
complementOf -C -Male -C(x)

oneOf {ztU...U{zy} | {John}U{mary} |z=z1V...Vz=u,
allValuesFrom YP.C vhasChild.Doctor | Vy.P(z,y) — C(y)
someValuesFrom iP.C JhasChild.Lawyer | Jy.P(z,y) A C(y)
maxCardinality <nP <1lhasChild ISy P(z,y)
minCardinality >nP >2hasChild 37y, P(z,y)

Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics
— Formal properties well understood (complexity, decidability)

| can’t find an efficient algorithm, but neither can all these famous people.

[Garey & Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.]

Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics
— Formal properties well understood (complexity, decidability)

— Known reasoning algorithms

M-rule if 1. (C1 M C2) € L(v), v is not indirectly blocked, and
2. {C1.C2} & L(v)
then L(v) — L(v) U {Cy,Cs}.
Ll-rule if 1. (C, U Cy) € L(v), v is not indirectly blocked, and
2.{C1.Cot N L(v) =10
then L(v) — L(v) U{E} for some E € {C,C>}
J-rule if 1. Ir.C' € L(v1), v1 is not blocked, and
2. v1 has no safe r-neighbour v2 with C' € L(v1),
then create a new node v and an edge (v1, v2)
with £(v2) = {C'} and L({v1,v2)) = {r}.
V-rule if 1. ¥r.C' € L(vy), vy is not indirectly blocked, and
2. there is an r-neighbour vy of vy with C' & L(v2)
then L(vs) — L(ws) U {C}.
WV, -rule if 1. ¥r.C' € L(vy), vy is not indirectly blocked, and
2. there is some role " with Trans(r’) and ' & r
3. there is an r'-neighbour vy of vy with Vor'.C' ¢ L(v3)
then L(vs) — L(wy) U {¥r'.C}.
choose-rule if 1. <nr.C' € L£(v1), v1 is not indirectly blocked, and
2. there is an r-neighbour vy of vy with {C, -C'} N L(v2) =0
then L(v2) — L(v2) U {E} for some E € {C, ~C}.
=-rule if 1. Znr.C € L(v), v is not blocked, and
2. there are not n safe r-neighbours vy, ..., v, of v
withC' € L(v;)and v; # v forl <i<j<n

Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics
— Formal properties well understood (complexity, decidability)
— Known reasoning algorithms

— Scalability demonstrated by implemented systems

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

=loix
|

| I~ Sowinherted 7 show Changes |7 Edable

‘Concise Forme | 151 ¢
OWL-Class: space DistancaCateqors.

A FORR | Tt

oss.0M

[SomethingE xistin: cperty.ont
Fairecsim ond

frotecil_thing ol
bunercs.ont

Ontology Change Logging: ensbled (Press.
Lt dizsble)
Uncommitted

Intersaction ofs (A2d)

[TemporalThing
F 1 statingP oint —

; ’
@1 zpacethasDirection) (Dslste)

Jruman_sctites. ol
e il

/’/)
Individual] {2004-09-28 23:37148)
ndividual SEMOUE SUDER CLASS (space:.
\-W ol Jﬂl"‘—l—l—rl__] ouT] R P— oY
: 4= [o ey g roes - () (2004-09-28 21:58:16)
: —1 aull, s i | ropey Too| At | Subcdase ot () 150 bisaoint CASSES (unds
©) numerics:Varisble 2] (undo) (space:SizeCategory, space;
{©) phenomena:SeaFloor (¥zpace:hasAssociatedQuantity . property Distance) (Delste] Liatanalatzii
btancesel
- G e ——
i [—
File Log R(-« sMedicationFor Drug (© human_actkes Vson
File Log R : - [Prg————
D@‘ gl >— L —
= X v A EE T EAR T T ETEE I ETE Or””
£ < L
_ O s W B @ e @ ——
D, N L -
Phenomenon Lo e O Pt s ot ot
WE R AN e e —— PR, *7en
i ¢ e - =)
(© spaceitig o — * —
I (©) space:smal
5 (©) space:Spaiaticale
© saceesoscse
(©) sosce:symoptsese
KT} |
— Wrges Thgu T
S— " B——
< Symplom ¥ (ipaiy o
l Noromoce . —
[n
yne propet 1 quivalonts -
3 has-class _drives (ihas colo = Subclyss
Hakcnon
0 vt . I1s)
Mt‘”u LR L . 0 -
Semaon I L — ° L]
Wagnton > O .
Datatppe Prep. Ot e
= Associations
e Cwesse Suoencki P
/home/horrocks/ systems; OilEd/ ontologies/mad_cows.dami CEEAE © i v S
@

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

* Reasoners

¢ Hermit FaCT++4 OrRACLE

4

aﬁ' KAONZ CEL \qu“ﬁ%T v www.trowl.eu

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

® Re a S O n e rS File View Bookmarks Resource Holder Advanced About

4 > ~Address: hitp://www.mindswap.org/ontologies/tambis-full.owl S

| & Ontology List) Show Inherited || Changes/Annotations || Editable

Ontology Info. . Species Validation |

* Explanation, o s i

Annotations:
] . gn]
Ifl I n — Root/Derived Debugging Information:
144 unsatisfiable classes:
Add (€) Add [F) J(Add L J
root unsat. classes (3)
.] . (awecr) (mremove) ((Rename) 1a1)
and pinpointing s e w
[Gl.'hu | Property Tree List | nonmetal (140)
. owl:Thing n
» (© function derived unsat. classes (141) parent dependencies
» (C) mental o
» (C) modifier acetylation-site medification-site, protein-part,
» (© physical active-site macromolecule-part, protein, site, protein-part
» (©) process alkali-meta nonmetal, ?, metal, metalloid,
» (C) structure
» (© substance ipha-helix aratein-snure, ;
= alpha-helix -
© xsd:integer magcromolecylar-compound,
©) xsd:string amidation-site medification-site, protein-part,
R J owl:Nothing
@ methylation-site amino-acid
. complement-dna
@ phosphorylation-site aot-codon
@ geranyl-geranyl-attachment-site astatine
@ dna-binding-site s atom nonmatal, metal, o .

@ alkali-metal
A pconcnea * beta-sheet

(Lookup) 7] AN Ontologies?

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

JIAT.owl (http:/, .semanticweb.org/ontologies/2008/9/J1A1.owl) - [C:\Alig
o Reasoners Fle Edt Onfdlogies Reasoner Tools Refactor Tabs View Window Hep

<G | | D JA1.oW (hitp iwww semanticweb crglontologles2008/3/A1 ovd) v @]

Active Ortology | Ertties ~ Classes | ObjectProperties DataProperties Indvidusis | OWLVIZ | DL Guery CortertMap Mansger

* Explanation, s
justification e e

{AbgrementTools Ontology TestsAA_1 o ‘ A & YRB' (Uni ictions)
. . . Ontology URI2 | fle-/C iAlgrment Tools/OrtologyTestsilA_2 owt] [*As -5 (dsiont(A 5))
and pinpointin o] [
1 3
S [Oerevewlogempat | [Lhearact Tree

Suggestion Options

[fie:1C sasgrment Todts 10t dlogy TestsiOLA_da_mappings. owl

(® VWithout Dependency Tree (Mark as suppressibie ‘A & L' entaiments)

° Integration and B
modularisation e

Plan Extraction Options

for 04 Select Scope for Plan Extractor:
(] Asow changes over Ontology 1
Show E: Meppings
rd et [] Adow changes over Ortology 2
@ Extract Plans

4 PERFORM MERGING |

Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

Revision 1403 - (download) (annotate)
Fri Dec 18 17:14:37 2009 UTC (4 months, 2 weeks ago) by matthewhorridge

o Rea soners File size: 4711 byte(s)

1 |package org.coode.owlapi.examples;

2
. 3 |import org.semanticweb.owlapi.apibinding.OWLManager;
4 |import org.semanticweb.owlapi.model.*;
o EX p I a n atl O n y 2 i/x:xport org.semanticweb.owlapi.util. De:'EaultPrefixManager;
[L3 oL [Z
justification :
10
11

and pinpointing 12

14 | * This library is free software; you can redistribute it and/or
15 | * modify it under the terms of the GNU Lesser General Public
16 | * License as published by the Free Software Foundation; either

o Integ ration and ig * version 2.1 of the License, or (at your option) any later version.

19 | * This library is distributed in the hope that it will be useful,
20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of

mOdu Iarisation 21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

22 * Lesser General Public License for more details.
22

* APIs, in particular the OWL API

* Copyright (C) 2009, University of Manchester
*

* Modifications to the initial code base are copyright of their
respective authors, or their employers as appropriate. Authorship
of the modifications may be determined from the ChangeLog placed at
the end of this file.

* % % %

OWL 2 Profiles and Reasoning
OWL 2 “DL” (full language)

e Standard technique is refutation via model construction:
OFEQ@)iff OU{-Qz)} L
— Try to refute by constructing model of O U {—Q(x)}

— Model construction very similar to DB CHASE techniques

° E.g., HermiT, FaCT++, Pellet, ...

* Scalability issues for query answering (number and size
of models)

— but many optimisations are possible

OWL 2 Profiles and Reasoning

OWL 2 EL

° A (near maximal) fragment of OWL 2 such that
— Satisfiability checking is in PTime (PTime-Complete)
— Data complexity of query answering also PTime-Complete

* Based on £L family of description logics

* Can exploit “saturation” reasoning techniques

— Deductive inference rules used to materialise all relevant
schema axioms (e.g., atomic subsumption axioms)

° E.g., CB, CEL, Snorocket, ...

OWL 2 Profiles and Reasoning
OWL 2 QL

° A (near maximal) fragment of OWL 2 such that

— Data complexity of conjunctive query answering in AC?

* Based on DL-Lite family of description logics

* Can exploit query rewriting based reasoning technique

— Ontology axioms treated as backward chaining rules and
used to expand query

— Data storage and query evaluation can be delegated to
standard RDBMS

° E.g., QuOnto, Oracle

OWL 2 Profiles and Reasoning
OWL 2 RL

* A (near maximal) fragment of OWL 2 such that
— Reasoning can be implemented via forward chaining rule engines
* Can exploit materialisation based reasoning technique

— Ontology plus standard set of forward chaining inference rules
used to materialise all relevant facts (data)

— Can be implemented on top of standard RDBMS with
rule engine

* E.g., Jena, Sesame, Owlim, Oracle

OWL 2 Profiles and Reasoning

Oracle Database Semantic Technologies

* Scalable, secure, and standard-compliant platform for
storage, inference, and querying of semantic data

— RDF/RDFS/OWL/SKOS/SPARQL
— OWL RL and EL (SNOMED support)

— semantic document indexing framework that works with 3rd
party entity extraction engines

— set of easy to use Java programming APIs (Jena Adapter/
Sesame Adapter)

Motivating Applications

* OWL playing key role in increasing number & range of applications

— eScience

3D Analysis of Patterns of Gene Expression

14 somite Ceantral Nervous S

Motivating Applications

* OWL playing key role in increasing number & range of applications

— eScience, geography

Motivating Applications

* OWL playing key role in increasing number & range of applications

— eScience, geography, engineering,

elevons rudder

remote-control arm

special launch manoeuvring engine

main engines
Iivinﬁ quarters body flap

and flight deck
tanks

star tracker
wing
engines

forward control
thrusters

orbital cargo-bay door
rendez-vous light

www.infovisual.nfo

Motivating Applications

* OWL playing key role in increasing number & range of applications

— eScience, geography, engineering, defence, ...

F-35A F-35B F-35C
Length (ft.) 50.5 50.5 50.8
Wingspan (ft.) 35 35 43
Weight (Ib.) 26,500 30,697 30,618

Motivating Applications: HCLS

OBO foundry includes more than 100 biological and
biomedical ontologies

J

Siemens “actively building OWL based clinical solutions’

OWL tools used to find and repair critical errors in
ontology used at Columbia Presbyterian

SNOMED-CT (Clinical Terms) ontology

— used in healthcare systems of more than 15 countries, including
Australia, Canada, Denmark, Spain, Sweden and the UK

— also used by major US providers, e.g., Kaiser Permanente
— ontology provides common vocabulary for recording clinical data

Motivating Applications: BBC

Textonly | Melp

SPORT RUTEIIIRIRIR[bt o, 20 i
| SPORT FOOTBALL

WORLD CUP 2010 GROUPS & TEAMS FIXTURES & RESULTS VIDEO BBC COVERAGE

Latest matches -+ England

D England 1-1 United States Match report A B g8 D E F 6
Saturday, 12 une Group C Teams Wi NDE SIS S
D England 0-0 Algeria Match report B usa 11 2| 0} 3
Fnday, 18 June == England 1 2 0 1
D Highlights & report D Slovenia 0-1 England Match report s Slcvenia $i 1] 9 0
Wednesday, 23 June 8 Agera ()] 1 2 -2
URL 1-1 GHA n Germany 4-1 England Match report
Sunday, 27 June Features
German lessons
Latest stories Jurgen Kinsmann on how to
revolutionise England
D3 Highlights & report Gerrard commits R Pressure got to "
& future to England NEW " Wl Rooney - Ferguson » A German view on English football
ARG 0-4 GER » Redknapp backs England to shine
L? » England sponsorshep hkely to » FA unfit for purpose says Cabomn » BAC pundits on England
end » Roy Hodgson QBA
» Capelio to remain England » England’s fear of crossing ; = e
. manager borders World Cup goals analysis
D Highlights & repent
» Muelar blamas England » England duo bypass London
imbalance event
PARO-1ESP Around the web
» Capello recaives Gartsude » Barwick baffled by dismal
backng England » B8C Searche country page

» England Ffa Profile

Motivating Applications: BBC

CONCEPT
EXTRACTION
ontology driven

REST API
(java)

Dynamic
Rendering
[php]

HmnﬁoF ts

News Proxy
Static
[apache]

Request Te yer/Group Page
rdf]

[h

BBC

7))
-
O
=
©
9
o
Q.
<
O)
-
=
©
P
i
O
=

Ontology -v- Database

Obvious Database Analogy

* Ontology axioms analogous to DB schema

— Schema describes structure of and constraints on data

* Ontology facts analogous to DB data
— Instantiates schema

— Consistent with schema constraints

* But there are also important differences...

Obvious Database Analogy

Database: Ontology:
* Closed world assumption (CWA) * Open world assumption (OWA)
— Missing information treated — Missing information treated
as false as unknown
* Unique name assumption (UNA) * No UNA
— Each individual has a single, — Individuals may have more
unique name than one name
° Schema behaves as constraints * Ontology axioms behave like
on structure of data implications (inference rules)

— Define legal database states — Entail implicit information

Database -v- Ontology

E.g., given the following ontology/schema:

HogwartsStudent = Student M 3 attendsSchool. Hogwarts

HogwartsStudent C VhasPet.(Owl or Cat or Toad)

hasPet = isPetOf - (i.e., hasPet inverse of isPetOf)
JhasPet. T E Human (i.e., domain of hasPet is Human)
Phoenix C VisPetOf.Wizard (i.e., only Wizards have Phoenix pets)
Muggle C -Wizard (i.e., Muggles and Wizards are disjoint)

Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
— DB: No
— Ontology: Don’t Know
OWA (didn’t say Draco was not Harry’s friend)

Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)

Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

= RonWeasley = HermioneGranger

Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: at least 2

OWA (Harry may have more friends we didn’t mention yet)

Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

RonWeasley = HermioneGranger
=» HarryPotter: VhasFriend.{RonWeasley} LI {HermioneGranger}
Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: 2!

Database -v- Ontology

Inserting new facts/data: JhasPet. T = Human
Dumbledore: Wizard Phoenix C VisPetOf. Wizard

Fawkes: Phoenix
Fawkes 1sPetOf Dumbledore

What is the response from DBMS?
— Update rejected: constraint violation
Domain of hasPet is Human; Dumbledore is not Human (CWA)
What is the response from Ontology reasoner?
— Infer that Dumbledore is Human (domain restriction)

— Also infer that Dumbledore is a Wizard (only a Wizard can
have a pheonix as a pet)

DB Query Answering

* Schema plays no role
— Data must explicitly satisfy schema constraints
° Query answering amounts to model checking

— l.e., a “look-up” against the data

* Can be very efficiently implemented

— Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering

* Ontology axioms play a powerful and crucial role

— Answer may include implicitly derived facts
— Can answer conceptual as well as extensional queries
« E.g., Can a Muggle have a Phoenix for a pet?
° Query answering amounts to theorem proving

— l.e., logical entailment

* May have very high worst case complexity

— E.g., for OWL, NP-hard w.r.t. size of data
(upper bound is an open problem)

— Implementations may still behave well in typical cases
— Fragments/profiles may have much better complexity

ST o —— ST

Ontology Based Information Systems

* Analogous to relational database management systems
— Ontology =~ schema; instances =~ data
* Some important (dis)advantages
+ (Relatively) easy to maintain and update schema
« Schema plus data are integrated in a logical theory
+ Query answers reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
— Semantics can seem counter-intuitive, particularly w.r.t. data
» Open -v- closed world; axioms -v- constraints
— Query answering (logical entailment) may be much more difficult
« Can lead to scalability problems with expressive logics

° Analogous to relational d4
— Ontology =~ schepy;

ghagement systems

° Some importan

+ (Relatively)
» Schemg

+ Query ans

+ Can deal
+ Able to an ries
— Semantics ¢ W.r.t. data

* Open -v-
— Query answering uch more difficult
« Can lead to scalaly sive logics

Ongoing Research

Query answering

— [Kontchakov et al], [Konev et al], [Baader et al]
Diagnosis and repair

— [Horridge et al], [Penaloza et al]

Extensions
— [Motik et al], [Artale et al]

Optimisation/Profiles

— [Kazakov], [Glimm et al], [Faddoul et al], [Savo et al]

Ongoing Standardisation Efforts

e Standardised query language

— SPARQL standard for RDF

— Currently being extended for OWL, see
http.//www.w3.0rq/TR/sparql11-entailment/

* RDF

— Revision currently being considered, see
http.//www.w3.0rq/2009/12/rdf-ws/

Thank you for listening

Thank you for listening

EXACTLY. | DONT | | WHAT ARE You IN 'gz SEMANTICS.
LIKE TOMATOES, | | FOR THIS TIME? @

EATHER.)

A
{
|
X

n

WHAT 15 THE
DIFFERENCE?

IF | HAYE 12
TOMATOES AND
TAKE AWAY TWO

/

/% %

m
N
3
N
3
K
D
(
™

3

o~)
i r""'<7»
\‘\5‘- o
Y
/)

Sl
&

©2005 Jef Mallett/Distributed by United Feature Syndicate, Inc.

www.comics.com jefmalleti@yahoo.com

"y MALLETT

FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

Any questions?

