
Description Logic:
A Formal Foundation for
Ontology Languages and Tools

Ian Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group
Oxford University Computing Laboratory

What Are Description Logics?

What Are Description Logics?
•  Decidable fragments of First Order Logic

Any questions?

Thank you for listening

What Are Description Logics?
•  A family of logic based Knowledge Representation formalisms

–  Originally descended from semantic networks and KL-ONE

–  Describe domain in terms of concepts (aka classes), roles (aka
properties, relationships) and individuals

Cat

Animal
IS-A

has-color Black

Felix

IS-A

Mat

IS-A

sits-on

[Quillian, 1967]

What Are Description Logics?
•  Modern DLs (after Baader et al) distinguished by:

–  Fully fledged logics with formal semantics
•  Decidable fragments of FOL (often contained in C2)

•  Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment

–  Computational properties well understood (worst case complexity)

–  Provision of inference services
•  Practical decision procedures (algorithms) for key problems

(satisfiability, subsumption, query answering, etc)

•  Implemented systems (highly optimised)

•  The basis for widely used ontology languages

•  recommendation(s)
•  Motivated by Semantic Web activity

 Add meaning to web content by annotating
it with terms defined in ontologies

•  Supported by tools and infrastructure
–  APIs (e.g., OWL API, Thea, OWLink)
–  Development environments

(e.g., Protégé, Swoop, TopBraid Composer, Neon)

–  Reasoners & Information Systems
(e.g., Pellet, Racer, HermiT, Quonto, …)

•  Based on Description Logics (SHOIN / SROIQ)

Web Ontology Language OWL (2)

•  Signature
–  Concept (aka class) names, e.g., Cat, Animal, Doctor

•  Equivalent to FOL unary predicates

–  Role (aka property) names, e.g., sits-on, hasParent, loves
•  Equivalent to FOL binary predicates

–  Individual names, e.g., Felix, John, Mary, Boston, Italy
•  Equivalent to FOL constants

DL Syntax

•  Operators
–  Many kinds available, e.g.,

•  Standard FOL Boolean operators (u, t, ¬)

•  Restricted form of quantifiers (9, 8)

•  Counting (¸, ·, =)

•  …

DL Syntax

•  Concept expressions, e.g.,
–  Doctor t Lawyer
–  Rich u Happy

–  Cat u 9sits-on.Mat

•  Equivalent to FOL formulae with one free variable
– 
– 

– 

DL Syntax

•  Special concepts
–  > (aka top, Thing, most general concept)
–  ? (aka bottom, Nothing, inconsistent concept)

 used as abbreviations for
–  (A t ¬ A) for any concept A

–  (A u ¬ A) for any concept A

DL Syntax

•  Role expressions, e.g.,
– 

–  hasParent ± hasBrother

•  Equivalent to FOL formulae with two free variables
– 

– 

DL Syntax

•  “Schema” Axioms, e.g.,
–  Rich v ¬Poor (concept inclusion)
–  Cat u 9sits-on.Mat v Happy (concept inclusion)
–  BlackCat ´ Cat u 9hasColour.Black (concept equivalence)
–  sits-on v touches (role inclusion)
–  Trans(part-of) (transitivity)

•  Equivalent to (particular form of) FOL sentence, e.g.,
‒  8x.(Rich(x) ! ¬Poor(x))
‒  8x.(Cat(x) ^Æ 9y.(sits-on(x,y) ^Æ Mat(y)) ! Happy(x))
‒  8x.(BlackCat(x) $ (Cat(x) ^Æ 9y.(hasColour(x,y) ^Æ Black(y)))
‒  8x,y.(sits-on(x,y) ! touches(x,y))
‒  8x,y,z.((sits-on(x,y) ^Æ sits-on(y,z)) ! sits-on(x,z))

DL Syntax

•  “Data” Axioms (aka Assertions or Facts), e.g.,
–  BlackCat(Felix) (concept assertion)
–  Mat(Mat1) (concept assertion)

–  Sits-on(Felix,Mat1) (role assertion)

•  Directly equivalent to FOL “ground facts”
–  Formulae with no variables

DL Syntax

DL Syntax
•  A set of axioms is called a TBox, e.g.:

{Doctor v Person,
 Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

•  A set of facts is called an ABox, e.g.:

{HappyParent(John),

 hasChild(John,Mary)}

•  A Knowledge Base (KB) is just a TBox plus an Abox
–  Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
hJohn,Maryi:hasChild

The DL Family
•  Many different DLs, often with “strange” names

–  E.g., EL, ALC, SHIQ

•  Particular DL defined by:
–  Concept operators (u, t, ¬, 9, 8, etc.)

–  Role operators (-, ±, etc.)

–  Concept axioms (v, ´, etc.)
–  Role axioms (v, Trans, etc.)

The DL Family
•  E.g., EL is a well known “sub-Boolean” DL

–  Concept operators: u, ¬, 9
–  No role operators (only atomic roles)
–  Concept axioms: v, ´

–  No role axioms
•  E.g.:

 Parent ´ Person u 9hasChild.Person

The DL Family
•  ALC is the smallest propositionally closed DL

–  Concept operators: u, t, ¬, 9, 8
–  No role operators (only atomic roles)
–  Concept axioms: v, ´

–  No role axioms

•  E.g.:

 ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family
•  S used for ALC extended with (role) transitivity axioms
•  Additional letters indicate various extensions, e.g.:
‒  H for role hierarchy (e.g., hasDaughter v hasChild)
‒  R for role box (e.g., hasParent ± hasBrother v hasUncle)
‒  O for nominals/singleton classes (e.g., {Italy})
‒  I for inverse roles (e.g., isChildOf ´ hasChild–)
‒  N for number restrictions (e.g., >2hasChild, 63hasChild)
‒  Q for qualified number restrictions (e.g., >2hasChild.Doctor)
‒  F for functional number restrictions (e.g., 61hasMother)

•  E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

The DL Family
•  Numerous other extensions have been investigated

–  Concrete domains (numbers, strings, etc)
–  DL-safe rules (Datalog-like rules)
–  Fixpoints
–  Role value maps
–  Additional role constructors (\Å, [, ¬, ±, id, …)
–  Nary (i.e., predicates with arity >2)
–  Temporal
–  Fuzzy
–  Probabilistic
–  Non-monotonic
–  Higher-order
–  …

DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation domain ΔI Interpretation function I

Individuals iI 2 ΔI
 John

 Mary

Concepts CI µ ΔI

 Lawyer

 Doctor

 Vehicle

Roles rI µ ΔI £ ΔI
 hasChild

 owns

DL Semantics
•  Interpretation function extends to concept expressions

in the obvious(ish) way, e.g.:

DL Semantics
•  Given a model M =

– 
– 

– 
– 

– 

DL Semantics
•  Satisfiability and entailment

–  A KB K is satisfiable iff there exists a model M s.t. M ² K

–  A concept C is satisfiable w.r.t. a KB K iff there exists a model
M = hD, ·Ii s.t. M ² K and CI ≠ ;

–  A KB K entails an axiom ax (written K ² ax) iff for every model
M of K, M ² ax (i.e., M ² K implies M ² ax)

DL Semantics
 E.g.,

‒  K ² John:Person ?
‒  K ² Peter:Doctor ?
‒  K ² Mary:HappyParent ?
–  What if we add “Mary hasChild Jane” ?

 K ² Peter = Jane

–  What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ?
 K ² HappyPerson v Parent

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
 Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)

DL and FOL
•  Most DLs are subsets of C2

–  But reduction to C2 may be (highly) non-trivial
•  Trans(R) naively reduces to

•  Why use DL instead of C2?
–  Syntax is succinct and convenient for KR applications
–  Syntactic conformance guarantees being inside C2

•  Even if reduction to C2 is non-obvious
–  Different combinations of constructors can be selected

•  To guarantee decidability
•  To reduce complexity

–  DL research has mapped out the decidability/complexity
landscape in great detail

•  See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/

Complexity Measures
•  Taxonomic complexity

 Measured w.r.t. total size of “schema” axioms

•  Data complexity
 Measured w.r.t. total size of “data” facts

•  Query complexity
 Measured w.r.t. size of query

•  Combined complexity
 Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes
•  LogSpace, PTime, NP, PSpace, ExpTime, etc

–  worst case for a given problem w.r.t. a given parameter
–  X-hard means at-least this hard (could be harder);

in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

•  e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

•  Note that:
–  this is for the worst case, not a typical case
–  complexity of problem means we can never devise a more

efficient (in the worst case) algorithm
–  complexity of algorithm may, however, be even higher

(in the worst case)

DLs and Ontology Languages

•  ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL

–  OWL 2 based on SROIQ, i.e., ALC extended with
transitive roles, a role box nominals, inverse roles and
qualified number restrictions

•  OWL 2 EL based on EL
•  OWL 2 QL based on DL-Lite

•  OWL 2 EL based on DLP

–  OWL was based on SHOIN

•  only simple role hierarchy, and
unqualified NRs

DLs and Ontology Languages

Class/Concept Constructors

Ontology Axioms

•  An Ontology is usually considered to be a TBox
–  but an OWL ontology is a mixed set of TBox and ABox axioms

•  XSD datatypes and (in OWL 2) facets, e.g.,
–  integer, string and (in OWL 2) real, float, decimal, datetime, …

–  minExclusive, maxExclusive, length, …

–  PropertyAssertion(hasAge Meg "17"^^xsd:integer)

–  DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer
xsd:maxExclusive "10"^^xsd:integer)

 These are equivalent to (a limited form of) DL concrete domains

•  Keys
–  E.g., HasKey(Vehicle Country LicensePlate)

•  Country + License Plate is a unique identifier for vehicles

 This is equivalent to (a limited form of) DL safe rules

Other OWL Features

OWL RDF/XML Exchange Syntax

<owl:Class>
 <owl:intersectionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Person"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:allValuesFrom>
 <owl:unionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Doctor"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:someValuesFrom rdf:resource="#Doctor"/>
 </owl:Restriction>
 </owl:unionOf>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor):

•  From the complexity navigator we can see that:
–  OWL (aka SHOIN) is NExpTime-complete
–  OWL Lite (aka SHIF) is ExpTime-complete (oops!)

–  OWL 2 (aka SROIQ) is 2NExpTime-complete
–  OWL 2 EL (aka EL) is PTIME-complete (robustly scalable)

–  OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)
•  And implementable using rule based technologies

e.g., rule-extended DBs

–  OWL 2 QL (aka DL-Lite) is in AC0 w.r.t. size of data
•  same as DB query answering -- nice!

Complexity/Scalability

Why (Description) Logic?
•  OWL exploits results of 20+ years of DL research

–  Well defined (model theoretic) semantics

Why (Description) Logic?
•  OWL exploits results of 20+ years of DL research

–  Well defined (model theoretic) semantics
–  Formal properties well understood (complexity, decidability)

[Garey & Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.]

I can’t find an efficient algorithm, but neither can all these famous people.

Why (Description) Logic?
•  OWL exploits results of 20+ years of DL research

–  Well defined (model theoretic) semantics
–  Formal properties well understood (complexity, decidability)

–  Known reasoning algorithms

Why (Description) Logic?
•  OWL exploits results of 20+ years of DL research

–  Well defined (model theoretic) semantics
–  Formal properties well understood (complexity, decidability)

–  Known reasoning algorithms
–  Scalability demonstrated by implemented systems

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
•  Editors/development environments

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
•  Editors/development environments

•  Reasoners

KAON2

Hermit

CEL

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
•  Editors/development environments

•  Reasoners

•  Explanation,
justification
and pinpointing

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
•  Editors/development environments

•  Reasoners

•  Explanation,
justification
and pinpointing

•  Integration and
modularisation

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
•  Editors/development environments

•  Reasoners

•  Explanation,
justification
and pinpointing

•  Integration and
modularisation

•  APIs, in particular the OWL API

OWL 2 Profiles and Reasoning
OWL 2 “DL” (full language)

•  Standard technique is refutation via model construction:

–  Try to refute by constructing model of

–  Model construction very similar to DB CHASE techniques

•  E.g., HermiT, FaCT++, Pellet, ...

•  Scalability issues for query answering (number and size
of models)
–  but many optimisations are possible

OWL 2 Profiles and Reasoning
OWL 2 EL

•  A (near maximal) fragment of OWL 2 such that
–  Satisfiability checking is in PTime (PTime-Complete)
–  Data complexity of query answering also PTime-Complete

•  Based on EL family of description logics

•  Can exploit “saturation” reasoning techniques
–  Deductive inference rules used to materialise all relevant

schema axioms (e.g., atomic subsumption axioms)

•  E.g., CB, CEL, Snorocket, ...

OWL 2 Profiles and Reasoning
OWL 2 QL

•  A (near maximal) fragment of OWL 2 such that
–  Data complexity of conjunctive query answering in AC0

•  Based on DL-Lite family of description logics

•  Can exploit query rewriting based reasoning technique
–  Ontology axioms treated as backward chaining rules and

used to expand query

–  Data storage and query evaluation can be delegated to
standard RDBMS

•  E.g., QuOnto, Oracle

OWL 2 Profiles and Reasoning
OWL 2 RL

•  A (near maximal) fragment of OWL 2 such that
–  Reasoning can be implemented via forward chaining rule engines

•  Can exploit materialisation based reasoning technique
–  Ontology plus standard set of forward chaining inference rules

used to materialise all relevant facts (data)
–  Can be implemented on top of standard RDBMS with

rule engine

•  E.g., Jena, Sesame, Owlim, Oracle

OWL 2 Profiles and Reasoning
Oracle Database Semantic Technologies

•  Scalable, secure, and standard-compliant platform for
storage, inference, and querying of semantic data
–  RDF/RDFS/OWL/SKOS/SPARQL
–  OWL RL and EL (SNOMED support)

–  semantic document indexing framework that works with 3rd
party entity extraction engines

–  set of easy to use Java programming APIs (Jena Adapter/
Sesame Adapter)

•  OWL playing key role in increasing number & range of applications
–  eScience, medicine, biology, agriculture, geography, space, manufacturing,

defence, …

–  E.g., OWL tools used to identify and repair errors in a medical ontology:
 “would have led to missed test results if not corrected”

Experience of OWL in use has identified restrictions:
–  on expressivity
–  on scalability

 These restrictions are problematic in some applications

Research has now shown how some restrictions can be overcome
–  W3C OWL WG is updating OWL accordingly

Motivating Applications

•  OWL playing key role in increasing number & range of applications
–  eScience, geography, medicine, biology, agriculture, geography, space,

manufacturing, defence, …

–  E.g., OWL tools used to identify and repair errors in a medical ontology:
 “would have led to missed test results if not corrected”

Experience of OWL in use has identified restrictions:
–  on expressivity
–  on scalability

 These restrictions are problematic in some applications

Research has now shown how some restrictions can be overcome
–  W3C OWL WG is updating OWL accordingly

Motivating Applications

•  OWL playing key role in increasing number & range of applications
–  eScience, geography, engineering, , medicine, biology, agriculture, geography,

space, manufacturing, defence, …

–  E.g., OWL tools used to identify and repair errors in a medical ontology:
 “would have led to missed test results if not corrected”

Experience of OWL in use has identified restrictions:
–  on expressivity
–  on scalability

 These restrictions are problematic in some applications

Research has now shown how some restrictions can be overcome
–  W3C OWL WG is updating OWL accordingly

Motivating Applications

•  OWL playing key role in increasing number & range of applications
–  eScience, geography, engineering, defence, …e, biology, agriculture,

geography, space, manufacturing, defence, …

–  E.g., OWL tools used to identify and repair errors in a medical ontology:
 “would have led to missed test results if not corrected”

Experience of OWL in use has identified restrictions:
–  on expressivity
–  on scalability

 These restrictions are problematic in some applications

Research has now shown how some restrictions can be overcome
–  W3C OWL WG is updating OWL accordingly

Motivating Applications

Motivating Applications: HCLS
•  OBO foundry includes more than 100 biological and

biomedical ontologies
•  Siemens “actively building OWL based clinical solutions”

•  OWL tools used to find and repair critical errors in
ontology used at Columbia Presbyterian

•  SNOMED-CT (Clinical Terms) ontology
–  used in healthcare systems of more than 15 countries, including

Australia, Canada, Denmark, Spain, Sweden and the UK

–  also used by major US providers, e.g., Kaiser Permanente
–  ontology provides common vocabulary for recording clinical data

Motivating Applications: BBC

Motivating Applications: BBC

Motivating Applications: BBC

Ontology -v- Database

Obvious Database Analogy
•  Ontology axioms analogous to DB schema

–  Schema describes structure of and constraints on data

•  Ontology facts analogous to DB data
–  Instantiates schema

–  Consistent with schema constraints

•  But there are also important differences…

Obvious Database Analogy
Database:
•  Closed world assumption (CWA)

–  Missing information treated
as false

•  Unique name assumption (UNA)
–  Each individual has a single,

unique name

•  Schema behaves as constraints
on structure of data

–  Define legal database states

Ontology:
•  Open world assumption (OWA)

–  Missing information treated
as unknown

•  No UNA
–  Individuals may have more

than one name

•  Ontology axioms behave like
implications (inference rules)

–  Entail implicit information

Database -v- Ontology
E.g., given the following ontology/schema:

 HogwartsStudent ´ Student u 9 attendsSchool.Hogwarts
 HogwartsStudent v 8hasPet.(Owl or Cat or Toad)
 hasPet ´ isPetOf - (i.e., hasPet inverse of isPetOf)
 9hasPet.> v Human (i.e., domain of hasPet is Human)
 Phoenix v 8isPetOf.Wizard (i.e., only Wizards have Phoenix pets)
 Muggle v ¬Wizard (i.e., Muggles and Wizards are disjoint)

Database -v- Ontology
And the following facts/data:

 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
–  DB: No

–  Ontology: Don’t Know
 OWA (didn’t say Draco was not Harry’s friend)

Database -v- Ontology
And the following facts/data:

 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
–  DB: 2

–  Ontology: at least 1
 No UNA (Ron and Hermione may be 2 names for same person)

Database -v- Ontology
And the following facts/data:

 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
 RonWeasley ≠ HermioneGranger

Query: How many friends does Harry Potter have?
–  DB: 2
–  Ontology: at least 2

 OWA (Harry may have more friends we didn’t mention yet)



Database -v- Ontology
And the following facts/data:

 HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
 RonWeasley ≠ HermioneGranger
 HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger}

Query: How many friends does Harry Potter have?
–  DB: 2
–  Ontology: 2!



Database -v- Ontology
Inserting new facts/data:

 Dumbledore: Wizard
Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?
–  Update rejected: constraint violation

 Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?
–  Infer that Dumbledore is Human (domain restriction)

–  Also infer that Dumbledore is a Wizard (only a Wizard can
have a pheonix as a pet)

9hasPet.> v Human
Phoenix v 8isPetOf.Wizard

DB Query Answering
•  Schema plays no role

–  Data must explicitly satisfy schema constraints

•  Query answering amounts to model checking
–  I.e., a “look-up” against the data

•  Can be very efficiently implemented
–  Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering
•  Ontology axioms play a powerful and crucial role

–  Answer may include implicitly derived facts
–  Can answer conceptual as well as extensional queries

•  E.g., Can a Muggle have a Phoenix for a pet?

•  Query answering amounts to theorem proving
–  I.e., logical entailment

•  May have very high worst case complexity
–  E.g., for OWL, NP-hard w.r.t. size of data

(upper bound is an open problem)

–  Implementations may still behave well in typical cases
–  Fragments/profiles may have much better complexity

Ontology Based Information Systems
•  Analogous to relational database management systems

–  Ontology ¼ schema; instances ¼ data

•  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

•  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
–  Semantics can seem counter-intuitive, particularly w.r.t. data

•  Open -v- closed world; axioms -v- constraints

–  Query answering (logical entailment) may be much more difficult
•  Can lead to scalability problems with expressive logics

Ontology Based Information Systems
•  Analogous to relational database management systems

–  Ontology ¼ schema; instances ¼ data

•  Some important (dis)advantages
+  (Relatively) easy to maintain and update schema

•  Schema plus data are integrated in a logical theory

+  Query answers reflect both schema and data
+  Can deal with incomplete information
+  Able to answer both intensional and extensional queries
–  Semantics can seem counter-intuitive, particularly w.r.t. data

•  Open -v- closed world; axioms -v- constraints

–  Query answering (logical entailment) may be much more difficult
•  Can lead to scalability problems with expressive logics

?

Ongoing Research
•  Query answering

–  [Kontchakov et al], [Konev et al], [Baader et al]

•  Diagnosis and repair
–  [Horridge et al], [Peñaloza et al]

•  Extensions
–  [Motik et al], [Artale et al]

•  Optimisation/Profiles
–  [Kazakov], [Glimm et al], [Faddoul et al], [Savo et al]

•  ...

•  Standardised query language
–  SPARQL standard for RDF
–  Currently being extended for OWL, see

http://www.w3.org/TR/sparql11-entailment/

•  RDF
–  Revision currently being considered, see

http://www.w3.org/2009/12/rdf-ws/

Ongoing Standardisation Efforts

Thank you for listening

Thank you for listening

Any questions?
FRAZZ: © Jeff Mallett/Dist. by United Feature Syndicate, Inc.

