
LTL model checking of Interval Markov Chains

Michael Benedikt, Rastislav Lenhardt, and James Worrell

Department of Computer Science, University of Oxford, United Kingdom

Abstract. Interval Markov chains (IMCs) generalize ordinary Markov
chains by having interval-valued transition probabilities. They are use-
ful for modeling systems in which some transition probabilities depend
on an unknown environment, are only approximately known, or are pa-
rameters that can be controlled. We consider the problem of computing
values for the unknown probabilities in an IMC that maximize the prob-
ability of satisfying an ω-regular specification. We give new upper and
lower bounds on the complexity of this problem. We then describe an
approach based on an expectation maximization algorithm. We provide
some analytical guarantees on the algorithm, and show how it can be
combined with translation of logic to automata. We give experiments
showing that the resulting system gives a practical approach to model
checking IMCs.

1 Introduction

Interval Markov chains (IMCs) generalize ordinary Markov chains by allowing
undetermined transition probabilities that are constrained to intervals [14]. IMCs
arise naturally in the modelling and verification of probabilistic systems. For
example, some transition probabilities may depend on an unknown environment,
may only be approximately known, or may be parameters that can be optimized.

Interval Markov chains can be seen as a type of Markov decision process.
Valuations of their undetermined transition probabilities can correspondingly
be seen as history-free stochastic schedulers. This enforced history-independence
makes the theory of IMCs different from that of MDPs. In this paper we consider
the problem of computing the optimal (either maximum or minimum) probabil-
ity that an IMC can satisfy some target specification, where the latter is given
as an automaton or as a Linear Temporal Logic (LTL) formula. In previous work
on verifying IMCs, Chatterjee et al. [7] focus on branching-time properties and
Delahaye et al. [10] consider refinement. While [7] obtain a 2EXPTIME bound
for LTL as a consequence of their results, algorithms and complexity bounds for
basic linear-time problems on IMCs have, to the best of our knowledge, not been
studied in their own right.

We begin with a study of the complexity of optimizing IMCs with respect to
linear-time specifications. We give new upper bounds on the reachability prob-
lem and the model checking problem for deterministic automata, unambiguous
automata, and LTL. We also show that the 2EXPTIME upper-bound from [7] for
LTL can be improved to EXPSPACE in general and to PSPACE when the num-
ber of parameters is fixed. We complement this with new lower-bounds, showing

that solving the optimization problem for unambiguous automata within the
polynomial hierarchy would have significant consequences for the complexity of
fundamental problems in symbolic computation

We then turn to practical algorithms for LTL model-checking of IMCs. We use
the expectation-maximization procedure, which is ubiquitous in machine learn-
ing. Indeed, our algorithm can be seen as a variant of the classical Baum-Welch
procedure, which finds the optimal probability that an IMC generates a fixed
set of sample data. The Baum-Welch procedure progressively re-estimates val-
ues of the parameters, giving relatively greater weight to transitions that occur
frequently on computations that satisfy a desired property. Analogously with
Baum-Welch, we show that our algorithm converges, but not necessarily to the
value of the optimal parameters. Our solution to LTL model checking of IMCs
couples the expectation-maximization algorithm with a translation of LTL to
unambiguous automata. We show that the approach works well in practice, and
allows one to take-advantage of the use of unambiguous automata as an inter-
mediate representation.

In summary, our contributions are: (i) Improved upper bounds for model-
checking of IMCs with respect to linear-time problems; (ii) New lower bounds,
which give new insight into the expressiveness of IMCs; (iii) A novel algorithmic
approach to solving the model checking problem in practice; (iv) Experimental
results comparing both our LTL translation methods and our end-to-end solution
to other techniques. For space reasons, some proofs are omitted.

2 Definitions

Logic and Automata. We specify ω-regular properties using Linear Temporal
Logic LTL and Büchi automata. The formulas of LTL are built from atomic
propositions using Boolean connectives and the temporal operators (next), U
(until) and R (release). Formally, LTL is defined by the following grammar:

ϕ ::= pi | ϕ ∧ ϕ | ¬ϕ | ϕ U ϕ | ϕ R ϕ | ϕ ,

where p0, p1, . . . are propositional variables. We abbreviate true U ϕ as ϕ and
write ϕ for ¬¬ϕ. We refer the reader to [17] for the semantics of LTL.

A generalized Büchi automaton A is a tuple (Σ,Q,Q0, ∆,F) with alphabet
Σ, set of states Q, set of initial states Q0 ⊆ Q, transition relation ∆ ⊆ Q×Σ×Q,
and a collection of accepting sets F = {F1, . . . , Fk}, where Fi ⊆ Q. An infinite
run of A is accepting if each set F ∈ F is visited infinitely often in the run. We
say that A is unambiguous if each word has at most one accepting run.

Interval Markov Chains. A Markov chain is a tuple M = (S, π0,M),
where S is a finite set of states, π0 is the initial-state distribution on S, and
M : S×S → [0, 1] is a stochastic transition matrix, i.e.,

∑
t∈S M(s, t) = 1 for all

s ∈ S.M induces a Borel probability measure PrM on Sω in the standard way.
An interval Markov chain is a tupleM = (S, π0,Ml,Mu) in which the transition
matrix of a Markov chain is replaced with two matrices Mu,Ml : S × S → [0, 1]
with Ml ≤ Mu. Intuitively Ml and Mu give respective lower and upper bounds

on the transition probabilities. An incomplete Markov chain is a special case of
an interval Markov chain in which for each pair of states s, t, either Ml(s, t) =
Mu(s, t) or Ml(s, t) = 0 and Mu(s, t) = 1, that is, a probability is either precisely
given or completely unspecified. An interval Markov chainM = (S, π0,Ml,Mu)
is refined by a Markov chain M′ = (S, π0,M) if Ml(s, t) ≤ M(s, t) ≤ Mu(s, t)
for all pairs of states s, t ∈ S. Note thatM′ has the same set of states and initial
distribution as M.

Given an interval Markov chainM with set of states S and a labelling func-
tion V : S → Σ, we want to compute a Markov chain refiningM that optimizes
the probability of satisfying a given ω-regular property L ⊆ Σω. We call this
the IMC model checking problem. We will focus in this paper on the case of
maximizing the probability of L, but it is easy to modify the techniques to get
minimisation. When investigating the complexity of this problem, we will deal
with the corresponding decision problem: whether the optimal probability is
above a given rational threshold. Let us also note immediately that the problem
can be simplified, without loss of generality, by assuming that Σ = S and that V
is the identity function, i.e., that L is an ω-regular set of trajectories of the IMC.
We can do this because ω-regular languages are closed under inverse images of
alphabet renamings. We will also use the term qualitative model checking prob-
lem to refer to the question of whether the probability to satisfy the property L
can be made 1.

Product Construction. Next we recall the product construction for Markov
chains with unambiguous Büchi automata, which has been noted in several prior
works (see, e.g., [8]). An advantage of working with unambiguous automata
rather than deterministic automata is that there is a singly exponential trans-
lation of LTL to unambiguous automata, whereas the translation of LTL to
deterministic automata is doubly exponential.

Let M = (S, π0,M) be a Markov chain and A = (S,Q,Q0, ∆, F) an un-
ambiguous Büchi automaton whose input alphabet is the set S of states of M.
Define the product graph GM⊗A = (V,E) to have set of vertices V = S ×Q and
set of edges E = {((s, q), (s′, q′)) : M(s, s′)〉0 and (q, s′, q′) ∈ ∆}.

A strongly connected subset C of GM⊗A is said to be accepting if: (i) for
each vertex (s, q) ∈ C, s lies in a bottom strongly connected component of
M; (ii) for each vertex (s, q) ∈ C and edge (s, s′) in M there exists an edge
(q, s′, q′) in A with (s′, q′) ∈ C; (iii) for each accepting set F ∈ F there exists
a vertex (s, q) ∈ C such that q ∈ F . By extension, a vertex of GM⊗A is said to
be accepting if it lies in an accepting set. A vertex is said to be dead if it has
no path to an accepting vertex. Write Vyes for the set of accepting vertices, Vno

for the set of dead vertices, and V? for the remaining vertices. Finally, we say
that an infinite path in V ω is accepting if it has a tail consisting exclusively of
accepting vertices.

We can define probabilistic transitions on the product graph, with a transi-
tion from (s, q) to (s′, q′) being given the value:

M ′((s, q), (s′, q′)) =
{
M(s, s′) ((s, q), (s′, q′)) ∈ E and (s′, q′) ∈ Vyes ∪ V?

0 otherwise

We also define an initial probability vector π′0 ∈ RV by

π′(s, q) =
{
π0(s) (p, s, q) ∈ ∆ for some p ∈ Q0

0 otherwise

Since A is non-deterministic, M ′ need not correspond to a stochastic matrix
and π′ need not be a probability distribution. Nevertheless M ′ and π′ induce
a Borel sub-probability measure PrM⊗A on V ω by defining

PrM⊗A(C(v1 . . . vn)) = π′(v1) ·M ′(v1, v2) ·M ′(v2, v3) · · ·M ′(vn−1, vn)

where C(v1 . . . vn) is the cylinder set of words in V ω with prefix v1 . . . vn.
Write 3Vyes ⊆ V ω for the set of infinite paths that contain an accepting

vertex. The following result allows us to reduce the model checking problem for
M and A to calculating the probability of reaching an accepting vertex in the
product graph, which can be done using linear algebra. We can then verify that:
PrM⊗A(3Vyes) = PrM(L(A)).

3 Complexity of Verification Problems

Reachability for IMCs is more involved than for MDPs since the interval con-
straints preclude restricting to deterministic schedulers. As with MDPs we can
reduce reachability to linear programming. The resulting linear program is ex-
ponential in the size of the IMC, but it has a polynomial-time separation oracle
and can therefore be solved in polynomial time using the ellipsoid method.

Proposition 1. Reachability in interval Markov chains is P-complete.

Proof. The lower bound is via reduction from the monotone circuit value prob-
lem, with the argument identical to P -hardness of computing optimal strategies
for reachability in MDPs [16]. The lower bound holds even for incomplete Markov
chains.

For the upper bound, we reason as follows. Let M = (S, π0,Ml,Mu) be
an IMC. We can identify the set of refinements of M with the convex set
[[M]] ⊆ RS×S of stochastic transition matrices M such that Ml(s, t) ≤M(s, t) ≤
Mu(s, t) for all s, t ∈ S. Observe that M is a vertex of [[M]] if and only if for
each state s at most one of the outgoing transition probabilities M(s, t) is strictly
between its lower bound Ml(s, t) and its upper bound Mu(s, t).

Consider the following linear program with variables x = {xs : s ∈ S}.

minimise
∑

s∈S xs

subject to
x ≥Mx for each vertex M of [[M]]
x ≥ χF

where χF is the characteristic vector of the set F .
By convexity we observe that x ≥ χF is feasible for the above program if and

only if x ≥ Mx for all transition matrices M ∈ [[M]]. Thus x is feasible if and

only if xs is an upper bound for the probability to reach F from state s for all
refinements of M. We conclude that the optimal solution of the linear program
gives the maximum probability to reach F over all refinements.

Although the number of constraints in this linear program is exponential in
the number of states ofM, we do not need their explicit representation. We can
use the Ellipsoid algorithm [13] to find the optimal values of xs in polynomial
time. The Ellipsoid algorithm needs an oracle to determine whether given values
of xs are feasible, and, if not, output a separating hyperplane, i.e., the inequality
that does not hold. In fact, given a family of values xs it suffices to consider
a single “dominating” constraint in the above program, namely the transition
matrix M that simultaneously maximises each entry of Mx. This matrix is easy
to compute: Let s1, s2, . . . be an enumeration of S such that xs1 ≥ xs2 ≥
Now for each state s ∈ S, choose M(s, s1) as high as possible (compatible with
all other edges achieving their lower bounds); if M(s, s1) is at its upper bound,
we set M(s, s2) as high as possible, etc. ut

We now turn to verification of properties given as unambiguous Büchi au-
tomata. Note that we can not apply a product construction to reduce to the
reachability problem for IMCs; the natural product would have the same variable
repeated many times in the product chain, introducing correlation. We introduce
a practical technique for addressing this problem in the following section. Still,
we can get a polynomial space upper bound by reduction to the decision problem
for the existential theory of the reals [6].

Theorem 1. The model-checking problem for unambiguous Büchi automata on
IMCs is in PSPACE.

A matching PSPACE lower bound in Theorem 1 would imply PSPACE-
hardness of the decision problem for the existential theory of the reals, which
is open. However we can precisely characterise the complexity of the model
checking problem for IMCs against unambiguous Büchi automata in terms of
the Blum-Shub-Smale (BSS) model of computation over the real field with order
(R,≤) [4]. In this model each tape cell of a Turing machine can hold a single real
number and a decision problem is a language L ⊆ R∗. Arithmetic operations
and sign tests have unit cost regardless of the operands, otherwise the classes of
polynomial-time problems, denoted PR, and non-deterministic polynomial-time
problems, denoted NPR, are defined analogously with the classical case. Note
that in the definition of NPR the “certificate” is a polynomial-length string of
real numbers. We now show:

Theorem 2. The model checking problem for interval Markov chains with re-
spect to unambiguous automata is NPR-complete.

Proof. The upper bound is easy given that NPR allows the guessing of real
numbers, which is precisely what is needed in the model checking problem. The
lower bound is via reduction from the problem (0, 1)-Pos, whose input consists
of a real polynomial f and threshold θ ∈ (0, 1), the output being yes iff there

exist values for the variables of f lying in the open interval (0, 1) such that f ≥ θ.
We assume that f is presented as a sum of products of constants α ∈ (0, 1) and
literals x, 1−x, where x is a variable. (0, 1)-Pos can be shown hard for NPR via
reduction from the known hard problem of determining whether a polynomial of
degree at most 4 has a real root. We first give a brief overview of the reduction
from (0, 1)-Pos to IMC model checking.

Given an instance f, θ of (0, 1)-Pos, we build an IMC M with nodes cor-
responding to constants and variables of f , along with nodes that designate
whether a variable x is to be complemented (transformed into 1 − x). We also
build a regular expression E so that the probability E can take over M as a
function of the variables ofM corresponds exactly to f . Then the problem f ≥ θ
translates to the problem of model checking E on M.

Let f ≥ θ be an instance of (0, 1)-Pos, where f mentions real constants
α1, . . . , αm and variables x1, . . . , xn. We derive an incomplete Markov chain
M = (S, π0,M) from f as follows. The set of states is S = {c1, . . . , cn+m}∪{h, t},
with initial distribution π0 the uniform distribution on {c1, . . . , cm+n}. We think
of each state ci as a biased coin that represents either a constant or a variable.
States c1, . . . , cm represent the constants, and accordingly we define fixed tran-
sition probabilities M(ci, h) = αi and M(ci, t) = 1 − αi for 1 ≤ i ≤ m. States
cm+1, . . . , cm+n represent the variables, and we leave the transition probabilities
M(ci, h) and M(ci, t) undefined. We define M(h, ci) = M(t, ci) = 1/(n+m) for
all 1 ≤ i ≤ n+m. All other transition probabilities are zero.

We define a mapping ϕ from the constants and literals occurring in f to
edges of M by ϕ(αi) = cih, ϕ(xi) = ci+mh, and ϕ(1 − xi) = ci+mt. Write
f =

∑k
i=1

∏l
j=1 fi,j , where each fi,j is a constant or literal. (We can assume

that each product has the same number of terms l by suitable padding.) Then
we define a regular expression E =

∑k
i=1

∏l
j=1 ϕ(fi,j) over alphabet S, the set

of states of M. We can further identify a Markov chain M′ refining M with a
valuation of the variables occurring in f , where variable xi gets the transition
probability pi to go from ci to h. Under this identification it is easy to see that

PrM′(ESω) =
f(p1, . . . , pn)
(n+m)l+1

.

This equation straightforwardly allows us to reduce a positivity query on f to
a model checking query on M. Note that the requirement in (0, 1)-Pos that
variables only take values in (0, 1) can be enforced by modifying the specifica-
tion language to contain only strings with infinitely many occurrences of cih
for every i. Finally, it is straightforward to represent the specification language
as a deterministic automaton of polynomial size. This completes the proof of
Theorem 2. ut

The classes PR and NPR can be compared to classical Boolean complexity
classes by considering their Boolean parts. The Boolean part of a complexity
class C in the BSS model is defined to be BP(C) = {L ∩ {0, 1}∗ : L ∈ C}. It is
well known that NP is contained in BP(NPR) [4] and that PosSLP is contained in

BP(PR) [2]. (Recall that PosSLP is the problem of determining whether an arith-
metic circuit with integer inputs evaluates to a positive number [2]) It follows
from Theorem 2 that the model checking problem for IMCs against unambigu-
ous Büchi automata is both NP-hard and PosSLP-hard. The NP lower bound is
already known in the form of NP-hardness of the maximum-likelihood problem
for hidden Markov chains [1].

Finally, we turn to LTL model-checking. Formerly, the only known upper
bound for LTL model-checking of IMCs was 2EXPTIME [7], the same as for
general MDPs. Below we note that a better bound of EXPSPACE can be ob-
tained. More interestingly, if the number of parameters is fixed, the complexity
reduces to PSPACE.

Theorem 3. The LTL model checking problem for IMCs is in EXPSPACE,
and is PSPACE-hard. For fixed parameters, the problem is PSPACE-complete.
The qualitative model-checking problem is PSPACE-complete.

Proof. We consider interval Markov chains with a fixed number k of unde-
termined transition probabilities. We represent these probabilities by variables
x1, . . . , xk and work with the field of rational functions F = Q(x1, . . . , xk).

Let M be an interval Markov chain and ϕ an LTL formula with respective
sizes ||M|| and ||ϕ||. Using polynomial space in ||M|| and ||ϕ|| one can translate
ϕ into an equivalent unambiguous Büchi automaton A, build the product graph
GM⊗A, and derive a corresponding system of linear equations with coefficients
in F whose solution is an element of F that represents PM(L(A)) as a function
of x1, . . . , xk. This system of equations has size exponential in ||M|| and ||ϕ||.

Now systems of linear equations with coefficients in F can be solved in poly-
logarithmic space [5]. Thus, using polynomial space in ||M|| and ||ϕ|| overall, we
can compute a rational function f(x1, . . . , xk) ∈ F that represents the probabil-
ity PM(L(A)). Again, the expression representing f has size exponential in ||M||
and ||ϕ||. Finally we use the polylogarithmic-space procedure of Ben-Or, Kozen
and Reif [3] for deciding satisfiability of quantifier-free formulas in the first-order
theory of real-closed fields over the fixed set of variables x1, . . . , xk. With this
procedure we can test the existence of transition probabilities x1, . . . , xk such
that PM(L(A)) is greater than a given threshold using overall space that is
polynomial in ||M|| and ||ϕ||. ut

4 Expectation Maximization Algorithm

In this section we describe an expectation maximization algorithm that, given
an initial refinement M0 of an IMC M, produces a sequence of refinements
having successively higher probabilities of satisfying a given ω-regular property,
presented as an unambiguous Büchi automaton A. We assume initially that M
is an incomplete Markov chain and discuss the more general case of interval
Markov chains later. We also defer until later a discussion of how the initial
refinement is chosen.

Overview. Figure 1 gives an outline of the algorithm. The input includes
a parameter n governing the number of iterations of the update procedure. The
intuitive idea of the update procedure is to assign relatively greater weight to
transitions that are most likely to be taken in computations of the current re-
finement Mi that are accepted by A.

Algorithm EM
Input: Incomplete Markov chain M = (S, π0,Ml,Mu), Initial refinement M0

Unambiguous Büchi automaton A = (S,Q,Q0,∆,F), Iteration parameter n

Begin
For i = 0 to n− 1 do
Mi+1 := update(Mi)

End

Fig. 1. EM Algorithm

The Update Procedure. We now explain in more detail the operation of
the update procedure. Assume that we are given a refinement Mi of M with
associated product graph GMi⊗A = (V,E). Write Mi for the transition matrix
of Mi and write π′0 and M ′i for the lifting of the initial state distribution and
transition matrix of Mi to the product GMi⊗A, as defined in Section 2. Given
an infinite path v1v2v3 . . . ∈ V ω, say that v1 . . . vn is a minimum accepting prefix
if vi ∈ V? for 1 ≤ i ≤ n − 1 and vn ∈ Vyes , i.e., vn is the first accepting vertex
on the path.

Write U ⊆ S×S for the set of pairs (s, t) of states of the incomplete Markov
chainM whose transition probability is undetermined. For each pair of Markov-
chain states (s, t) ∈ U we define a random variable Zs,t : V ω → N that takes
value 0 on any non-accepting path in GMi⊗A and otherwise equals the number
of occurrences of edge (s, t) in the projection ontoM of the minimum accepting
prefix of the path. The update procedure is based on computing E[Zs,t].

For each pair (s, t) ∈ U we compute E[Zs,t] using a variant of the classical
forward-backward algorithm for hidden Markov models. Given a vertex (s, q) ∈
V?, define α(s, q) to be the expected value of the random variable that maps
each non-accepting path of GMi⊗A to 0 and maps each accepting path to the
number of occurrences of (s, q) in a minimum accepting prefix of the path. We
can compute α(s, q) as the solution to the following system of linear equations:

α(s, q) =

π′0(s, q) +
∑

(t,p)∈V

(α(t, p) + 1)M ′i((t, p), (s, q)) (s, q) ∈ V?

0 (s, q) 6∈ V?

We further define β(s, q) to be the probability to reach an accepting state
in GMi⊗A starting at state (s, q). We can compute β(s, q) as the solution to the

following system of linear equations:

β(s, q) =

∑

(t,p)M
′
i((s, q), (t, p))β(t, p) (s, q) ∈ V?

1 (s, q) ∈ Vyes

0 (s, q) ∈ Vno

Finally for each pair (s, t) ∈ U we define

E[Zs,t] =
∑
p∈Q

∑
q∈Q

α(s, p)M ′i((s, p), (t, q))β(t, q) .

Furthermore, for a given state s ∈ S, define µs =
∑
{Mi(s, t) : (s, t) 6∈ U}

to be the total mass of all fixed transition probabilities at state s. The update
procedure assigns to (s, t) ∈ U the transition probability

(1− µs) · E[Zs,t]∑
u:(s,u)∈U E[Zs,u]

(1)

if (s, q) 6∈ Vno for some q ∈ Q. If (s, q) ∈ Vno for all q ∈ Q then the weight
of each edge (s, t) ∈ U is left unchanged. Thus the new transition probability
is determined by the proportion of times that an accepting trajectory of the
Markov chain takes the edge (s, t) among all visits to state s before reaching an
accepting state of the product.

The following result is proven in the full version.

Theorem 4. The sequence PrMi(L(A)) is monotonically increasing.

The choice of initial refinement M0 can have a significant effect on the be-
haviour of the EM algorithm. In particular, the choice of which transition values
in M0 are positive governs the initial classification of vertices of the product
graph as either accepting or dead. Note that successive iterations of the up-
date procedure do not alter the set of dead vertices. Of course, the connectivity
properties of M0 may be independent of the undefined transition values in an
incomplete Markov chain. Furthermore, the choice of positive transitions inM0

may be suggested by the problem instance. For example, in a repair problem we
start with a Markov chain M and see if it can be made to satisfy a given prop-
erty by optimizing its transition values within certain intervals. In this case it is
natural to take M itself as the initial refinement. In general, to gain confidence
that we have reached the global optimum, we can employ standard heuristics,
such as random restart.

We have described the algorithm for incomplete Markov chains, and in the
full version we prove that it progressively improves the expectation and converges
to a local maximum. For IMCs an update may violate the restricted ranges for
intervals. In this case we consider the output of the update algorithm for every
refinement of the IMC formed by fixing some parameters to be at the boundary.
At least one of these must be feasible (e.g. those where all parameters are fixed),
and we choose the refinement that gives the optimal probability.

LTL to Unambiguous Büchi Automata. To apply the expectation max-
imization algorithm to LTL formulas, we use a translation from LTL to un-
ambiguous generalized Büchi automata. Our approach is a modification of the
build-by-need construction of Gerth et al. [12] in which we adjust the translation
rules from Section 3.2 of [12] to remove potential ambiguity. For example, one
step of the [12] procedure involves splitting an automaton state labelled with the
subformula ϕ∨ψ into two copies, one labelled ϕ and the other labelled ψ. In our
approach such a state is instead split into a copy labelled ϕ and a copy labelled
¬ϕ ∧ ψ. The mutual exclusivity of the logical formulas leads to the production
of an unambiguous automaton. The operators U and R are treated in similar
fashion (see below).

Formula [12] splits to Tulip splits to
ϕ ∨ ψ ϕ ψ ϕ ¬ϕ ∧ ψ
ϕ U ψ ψ ϕ ∧(ϕ U ψ) ψ ¬ψ ∧ ϕ ∧(ϕ U ψ)
ϕ R ψ ϕ ∧ ψ ψ ∧(ϕ R ψ) ϕ ∧ ψ ¬ϕ ∧ ψ ∧(ϕ R ψ)

Example 1. Consider the incomplete Markov chainM with undefined transition
probabilities, represented by variables x and y, shown in Figure 2. We optimise
M with respect to the LTL formula ϕ

def= a ∧b. The automaton A repre-
senting this formula and the product graph GM⊗A (with accepting vertices and
transition probabilities) are also shown in Figure 2.

Considering GM⊗A, the expected number of times for a run starting in vertex
v1 to visit vertices v4 and v5 is given by

α(v4) =
∞∑

i=1

(x
10

)i

=
x

10− x
and α(v5) =

∞∑
i=1

(
4y
5

)i

=
4y

5− 4y

Furthermore, let β(v) be the probability to reach an accepting vertex from v.
Then we have β(v2) = y

10−x and β(v3) = 4x
5−4y .

From (4) the expected number of times to take the x-labelled edge in M
along a run that satisfies a ∧b is

f(x) def= α(v1) · x · β(v2) + α(v4) · x · β(v2) + α(v5) · x · β(v6)

=
xy

10− x
+

x2y

(10− x)2
+

4yx
5− 4y

.

Likewise, the expected number of times to take the y-labelled edge in M along
a run that satisfies a ∧b is

g(x) def= α(v1) · y · β(v3) + α(v5) · y · β(v3) + α(v4) · y · β(v6)

=
4xy

5− 4y
+

16xy2

(5− 4y)2
+

xy

10− x
.

Now the sequence of transition values (xn) defined by xn+1 = f(xn)
f(xn)+g(xn)

converges to a limit (' 0.32) that maximizes the probability of satisfying 3a∧3b.

a b

Interval Markov chain M

start

Automaton A for a ∧b

v1

v2 v3

v4 v5

v6

v7

Product graph GM⊗A

x
y

0.9

0.2

0.1
0.8

1

a
b

b
a

¬b ¬a

x

y

0.1
0.8

y

x

x
y

0.9

0.2

1

1

Fig. 2. Example

5 Implementation and Experiments

Our tool Tulip can be accessed at http://tulip.lenhardt.co.uk along with several
examples. The tool inputs a labelled interval Markov chain along with properties
specified either by LTL formulas or directly by unambiguous Büchi automata.
It performs a specified number of iterations of the EM algorithm and outputs
an approximation to the maximum probability with which the IMC satisfies the
property, together with the values within the intervals for which the maximum
is achieved.

LTL-to-Automaton Translation. We begin by comparing the performance
of our translation component with other methods of generating automata from
LTL. Our translation begins by pre-processing the formula using the simpli-
fier of LTL2dstar [15], allowing us, for example, to notice that LTL formula
¬(p1 ↔ p1) is equivalent to false. The table below compares the unam-
biguous automata we construct with the experimental results of constructing
non-deterministic automata reported in [12]. We took formulas from [12] cover-
ing a range of useful properties, such as fairness. We compare with [12] because
the non-deterministic automata generated by [12] are already extremely small,
as shown below. Our experiments suggest that the extra cost of producing unam-
biguous automata is usually very small, and so using Tulip we get nearly optimal
unambiguous automata. This is encouraging given that unambiguous automata
can be used directly for probabilistic model checking without determinization.

Moreover, assuming reasonable computational resources (1 GB of RAM and few
seconds of CPU time), we were able to use Tulip to construct automata with up
to 10, 000 nodes.

[12] Tulip
Formula Nodes Edges Nodes Edges
p1 U p2 3 4 3 5
p1 U (p2 U p3) 4 6 4 9
¬(p1 U (p2 U p3)) 7 15 5 12
p1 → p2 9 15 8 18
p1 U p2 8 15 6 16
(p1 U p2) 5 6 4 10
¬(p1 ↔p1) 22 41 1 1

In general, non-deterministic automata can be exponentially more succinct
than unambiguous automata. There are also cases, such as e.g. LTL formula
(a∧ka), when Tulip translates the formula into an automaton with number
of states exponential in k. However, as our comparison with PRISM illustrates
below, even in this case Tulip can still produce much smaller automata by avoid-
ing the need to determinize.

Optimizations on Product Chains. Here we describe some of the op-
timizations that we use to reduce the state space of automata and the cross-
product of automata and IMCs. We apply probabilistic bisimulation to the cross
product, extending the usual notion to handle parameters. In a step of an iter-
ative refinement algorithm for (standard) probabilistic bisimulation, one has to
match the total mass of transitioning from a state u to some equivalence class E
with the mass passing from a state v to E. In the case of our cross product ma-
chine, our transitions are labeled with parameters from the IMC, and our notion
of matching is as a formal sum. We have found that the time spent performing
bisimulation was more than compensated for by allowing faster iterations and
reduced memory consumption of the EM algorithm,

Another opportunity to reduce the state space is to collapse vertices. First
note that when we form a cross product between an IMC and an unambigu-
ous automaton we can determine nodes that are “almost surely accepting” (i.e.
starting at this vertex we will accept with probability one), just by checking
the underlying structure of the graph. More generally, vertices can be grouped
together if almost every accepting path that goes through one must go through
another. For example, vertices in a bottom SCC can be collapsed into a sin-
gle vertex, and linear subgraphs that do not contain accepting vertices can be
collapsed.

Benchmarks. To test the effect of our automata translation techniques
on the performance of LTL model checking, we consider a simple Probabilistic
Broadcast Protocol (PBP) [11] by which nodes in a network propagate informa-
tion. In this protocol when a node receives a message, it broadcasts the message
to its neighbours with a certain probability and otherwise ignores the message.
In either case the node then goes to sleep. We model a synchronous variant with

message collision: all sending and receiving is in rounds, and if a node is sent
a message simultaneously from two neighbours it only receives noise. Tulip im-
ports an existing Markov-chain model of the protocol from PRISM. There are no
interval transitions in this model.

We model check the LTL property (a ∧ ka) for various values of the
parameter k, where a denotes the sending of a message to a given node in the
network. The table below gives the outcome, showing how Tulip outperforms
PRISM on this example. We attribute the latter to Tulip’s use of unambiguous
automata, whereas PRISM relies on a complex determinization construction. The
Markov chain in this example is relatively small, so PRISM’s symbolic model
checking capability is not exploited.

k 2 3 4 5 6 7 8 9 10
Tulip 0.017 0.026 0.065 0.072 0.140 0.292 0.471 0.859 1.412

PRISM 0.015 0.023 0.040 0.111 0.369 0.864 1.820 6.465 30.101

Now we turn to the case of Interval Markov Chains, considering all stages
of our algorithm. We evaluate the performance of Tulip using a single core of
1.7 Ghz Intel Core i5 CPU. The first column contains results for the interval
Markov chain from Example 1. The second column contains results for model
checking the Bounded Retransmission Protocol (BRP) [9]. The BRP splits a
given file into N chunks and tries to send each of them at most MAX times,
using two lossy channels for transmissions and acknowledgements. In contrast
to prior modeling of this protocol (e.g. in PRISM), we do not model message
losses by a fixed probability but by intervals representing a range estimate on
their reliability. We set N = 32, MAX = 3 and model check the property that
the sender does not report a successful transmission.

Interval Markov chain Example 1 BRP
LTL property (a ∧8b) a

Nodes Time(s) Nodes Time(s)
Initial automaton 1026 0.142 5 0.000
Automaton after bisimulation 513 0.035 3 0.002
Naive cross product 2052 0.004 5301 0.142
Product with reachable states only 122 1767
Product after collapse 74 0.008 610 23.944
Product after bisimulation 72 0.009 544 2.139
One iteration of EM algorithm 0.003 0.934

Each iteration of our algorithm runs in cubic time, so the above techniques
reducing the size of the product chain are worthwhile. For example, in our bench-
marks it could be seen that an iteration on an example with over 500 nodes took
less than a second. In the examples above and below, at most tens of iterations
are sufficient to attain a precision up to five decimal places. For example, our
algorithm stabilized to this level of accuracy in four iterations for the model from
Figure 2 (a solution found to be the correct global maximum by hand analysis);
we needed only one iteration for the BRP model.

Below we show the impact of our optimizations on additional examples which
are described on our website. They cover a range of scenarios, including finding
mixed strategies in some economic games and evaluating properties specifying
competing goals.

Examples: Rendezvous in the Park (R), Competing Goals (G), Modifying
Dice (D), Predicting Football (F), Probabilistic Broadcast Protocol (P).

R G D F P
Size of interval Markov chain 5 4 7 22 79
Initial automaton size 6 10 10 82 162
Automaton after bisimulation 6 4 9 29 129
Naive cross product 30 20 63 638 10191
Product with reachable states only 20 11 21 171 599
Product after collapse 7 9 12 41 83
Product after bisimulation 6 8 6 15 18
Iterations for 5-decimal-digit precision 14 6 1 12 1
Start to end running time (in seconds) 0.013 0.007 0.010 0.024 0.140

The results support our observations above concerning the size of automata
generated, the speed of a particular iteration, and the number of iterations re-
quired.

6 Conclusions

In this work we show that the IMC model has advantages in complexity of
evaluation over general MDPs. This is reflected in our worst-case bounds, and
also at the pragmatic level. We are able to avoid translation to deterministic
automata, which is essential to MDP solving for LTL specifications, making do
instead with unambiguous automata. We are also able to make use of methods
for parameter training from other areas. In this paper we have focused on EM,
but in future work we will look at adaptations of other training methods, such
as gradient descent.

For specifications given by automata, our NPR-completeness result shows
that the complexity of IMC model-checking lies in PSPACE. Note that a PSPACE-
hardness result would imply that satisfiability for the existential theory of the
reals is PSPACE-hard, while the complexity of this theory has been open for
quite some time. For LTL specifications, our results only isolate the complexity
between PSPACE and EXPSPACE. We will look for tighter bounds in future
work.

References

1. Naoki Abe and Manfred K. Warmuth. On the computational complexity of ap-
proximating distributions by probabilistic automata. Machine Learning, 9:205–260,
1992.

2. Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Mil-
tersen. On the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–
2006, 2009.

3. Michael Ben-Or, Dexter Kozen, and John H. Reif. The complexity of elementary
algebra and geometry. JCSS, 32(2):251–264, 1986.

4. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real
computation. Springer-Verlag, 1997.

5. Allan Borodin, Stephen A. Cook, and Nicholas Pippenger. Parallel computation
for well-endowed rings and space-bounded probabilistic machines. Information and
Control, 58(1-3):113–136, 1983.

6. John F. Canny. Some algebraic and geometric computations in pspace. In STOC,
1988.

7. Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger. Model-checking
omega-regular properties of interval markov chains. In FoSSaCS, 2008.

8. J.-M. Couvreur, N. Saheb, and G. Sutre. An optimal automata approach to LTL
model checking of probabilistic systems. In LPAR, 2003.

9. Pedro D’Argenio, Bertrand Jeannet, Henrik Jensen, and Kim Larsen. Reachability
analysis of probabilistic systems by successive refinements. In PAPM/PROBMIV,
2001.

10. Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wasowski. Decision problems for interval markov chains. In LATA, 2011.

11. A. Fehnker and P. Gao. Formal verification and simulation for performance analysis
for probabilistic broadcast protocols. In ADHOC-NOW, 2006.

12. Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Protocol Specification Testing
and Verification, 1995.

13. Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization, volume 2. Springer, 1993.

14. Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of prob-
abilistic processes. In LICS, 1991.

15. Joachim Klein and Christel Baier. Experiments with deterministic ω-automata for
formulas of linear temporal logic. Theor. Comput. Sci., 363(2):182–195, 2006.

16. Christos Papadimitriou and John N. Tsitsiklis. The complexity of markov decision
processes. Math. Oper. Res., 12(3):441–450, 1987.

17. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. In-
formation and Computation, 115:1–37, 1994.

