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Abstract. Metric Temporal Logic (MTL) is a widely-studied real-time
extension of Linear Temporal Logic. In this paper we survey results
about the complexity of the satisfiability and model checking problems
for fragments of MTL with respect to different semantic models. We show
that these fragments have widely differing complexities: from polynomial
space to non-primitive recursive and even undecidable. However we show
that the most commonly occurring real-time properties, such as invari-
ance and bounded response, can be expressed in fragments of MTL for
which model checking, if not satisfiability, can be decided in polynomial
or exponential space.

1 Introduction

Linear temporal logic (LTL) is a popular formalism for the specification and
verification of concurrent and reactive systems [28]. Most approaches that use
LTL adopt a discrete model of time, where a run of a system produces a sequence
of observations. Such a model is inadequate for real-time systems, where a run
of a system is modelled either as a sequence of events that are time-stamped
with reals or as a trajectory with domain the set R+ of non-negative reals.

In fact, interpretations of LTL on the reals were considered long before tem-
poral logic became popular in verification. For example, the celebrated result
of Kamp [20] that LTL with the “until” and “since” modalities is expressively
complete for the first-order monadic logic over (N, <) also holds for the struc-
ture (R+, <). A more recent development has been the extension of LTL to allow
specifying quantitative or metric properties over the reals [21,23]. For example,
when specifying the behaviour of a real-time system one may want to stipulate
deadlines between environment events and corresponding system responses: ev-
ery alarm is followed by a shutdown event in 10 time units unless all clear is
sounded first.

The most widely known such extension is Metric Temporal Logic (MTL) in
which the modalities of LTL are augmented with timing constraints [21]. For
example, the informally stated property above might be rendered

�(alarm → (�(0,10)allclear ∨ �{10}shutdown))

in MTL. Here �(0,10) means sometime in the next 10 time units, while �{10}
means in exactly 10 time units.
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An alternative approach to extending LTL is embodied in Timed Propositional
Temporal Logic (TPTL) [6]. TPTL is a version of first-order temporal logic in
which first-order variables range over the time domain and there is a restricted
form of quantification, called freeze quantification, in which every variable is
bound to the time of a particular state. In TPTL the above property could be
written

�x.(alarm → (�y.(allclear ∧ y − x < 10) ∨ �z.(shutdown ∧ z − x = 10)) .

Here x is bound to the time of the alarm event, y is bound to the time of the
allclear event, and z is bound to the time of the shutdown event.

The relative expressiveness of MTL and TPTL is investigated in [8]. In par-
ticular it was shown there that MTL corresponds to a proper subset of the
two-variable fragment of TPTL. In general it seems that the extra expressive-
ness of TPTL compared to MTL makes it harder to identify interesting decidable
fragments of the former.

Yet another approach to reasoning about metric properties of computations is
to work within the framework of monadic predicate logic [5,17,18,31]. For exam-
ple, Hirshfeld and Rabinovich [17] introduce the Quantitative Monadic Logic of
Order (QMLO), a fragment of first-order monadic logic over (R+, <, +1). QMLO
carefully restricts the use of the +1 function to a type of bounded quantification.
For example, given a QMLO formula ϕ with one free variable,

(∃t)<t0+1
>t0 ϕ ≡ ∃t(t0 < t < t0 + 1 ∧ ϕ(t))

denotes a formula with free variable t0. It turns out that QMLO has the same
expressiveness as a well-known decidable subset of MTL [17].

In this paper we concentrate on Metric Temporal Logic, although naturally
many of the ideas we develop apply more widely. We survey a wide variety
of complexity and decidability results for fragments MTL and show that these
fragments have widely differing complexities: from Pspace to non-primitive re-
cursive and even undecidable. Reinforcing the message of [15], our objective is
to illustrate that great care must be exercised in extending LTL to handle metric
properties if one is to avoid a blow-up in the complexity of verification.

2 Metric Temporal Logic

Given a set P of atomic propositions, the formulas of MTL are built from P using
Boolean connectives, and time-constrained versions of the until operator U as
follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ ,

where I ⊆ (0, ∞) is an interval of reals with endpoints in N∪{∞}. We sometimes
abbreviate U(0,∞) to U , calling this the unconstrained until operator.

Further connectives can be defined following standard conventions. In ad-
dition to propositions 
 (true) and ⊥ (false), and to disjunction ∨, we have
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the constrained eventually operator �Iϕ ≡ 
 UI ϕ, the constrained always op-
erator �Iϕ ≡ ¬�I¬ϕ, and the constrained dual until operator ϕ1 ˜UI ϕ2 ≡
¬((¬ϕ1) UI (¬ϕ2)). Admitting only ˜UI as an extra connective one can transform
any MTL formula into an equivalent negation normal form, in which negation is
only applied to propositional variables.

Sometimes MTL is presented with past connectives (e.g., constrained versions
of the “since” connective from LTL) as well future connectives [5]. However we
do not consider past connectives in this paper.

Next we describe two commonly adopted semantics for MTL.

Continuous Semantics. Denote by R+ the set of nonnegative real numbers. Given
a set of propositions P , a signal is a function f : R+ → 2P mapping t ∈ R+ to
the set f(t) of propositions holding at time t. We say that f has finite variability
if its set of discontinuities has no accumulation points. Given an MTL formula ϕ
over the set of propositional variables P , the satisfaction relation f |= ϕ is
defined inductively, with the classical rules for atomic propositions and Boolean
operators, and with the following rule for the “until” modality, where f t denotes
the signal f t(s) = f(t + s):

f |= ϕ1 UI ϕ2 iff for some t ∈ I, f t |= ϕ2 and fu |= ϕ1 for all u ∈ (0, t).

Pointwise Semantics. In the pointwise semantics MTL formulas are interpreted
over timed words. Given an alphabet of events Σ, a timed word ρ is a finite or
infinite sequence (σ0, τ0)(σ1, τ1) . . . where σi ∈ Σ and τi ∈ R+, such that the
sequence (τi) is strictly increasing and non-Zeno (i.e., it is either finite or it
diverges to infinity). The requirement of non-Zenoness is closely related to the
condition of finite variability in the continuous semantics. It reflects the intuition
that a system has only finitely many state changes in bounded time interval.

Given a (finite or infinite) timed word ρ = (σ, τ) over alphabet 2P and an
MTL formula ϕ, the satisfaction relation ρ, i |= ϕ (read ρ satisfies ϕ at position
i) is defined inductively, with the classical rules for Boolean operators, and with
the following rule for the “until” modality:

ρ, i |= ϕ1 UI ϕ2 iff there exists j such that i < j < |ρ|, ρ, j |= ϕ2, τj − τi ∈ I,
and ρ, k |= ϕ1 for all k with i < k < j.

The pointwise semantics is less natural if one thinks of temporal logics as
encoding fragments of monadic logic over the reals. On the other hand it seems
more suitable when considering MTL formulas as specifications on timed au-
tomata. In this vein, when adopting the pointwise semantics it is natural to
think of atomic propositions in MTL as referring to events (corresponding to
state changes) rather than to states themselves.

For example, consider the specification of a traffic light. In the continuous
semantics one might introduce propositions such as green and red to denote the
state of the light. Then one could write a formula �(green → (green U(0,5) red))
to say that whenever the light is green it stays green until turning red in at most
five time units. By contrast, in the pointwise semantics one would introduce
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propositions referring to events. For example, suppose the propositions green
and red hold of events that respectively turn the traffic light green and red.
Then the specification �(green → (¬red U{5} red)) says that after the traffic
light turns green it next becomes red after exactly 5 time units.

Decision Problems. This paper focuses on the following two fundamental decision
problems:

– The satisfiability problem, asking whether a given MTL formula ϕ is satisfi-
able by some signal (or timed word).

– The model-checking problem, asking whether a given timed automaton A
satisfies a given MTL formula ϕ, i.e., whether all signals (or timed words)
accepted by A satisfy ϕ (see [3] for details).

We consider satisfiability and model checking for various fragments of MTL,
relative to the continuous semantics and both the finite-word and infinite-word
variants of the pointwise semantics.

3 Alternating Timed Automata

In this section we review the notion of alternating timed automata. This class of
automata is closely related to MTL and plays a key role in decision procedures
for the latter over the pointwise semantics. (By contrast, over the continuous
semantics it generally seems possible to avoid the use of automata in decision
procedures [17].)

Following [22,27] we define an alternating timed automaton to be an alter-
nating automaton augmented with a single clock variable1, which is denoted
x. Given a finite set S of locations we define a set of formulas Φ(S, x) by the
grammar:

ϕ ::= ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | s | x ∼ c | x.ϕ ,

where c ∈ N, ∼ ∈ {<, ≤, ≥, >}, and s ∈ S. A term of the form x ∼ c should
be thought of as a clock constraint, whereas the expression x.ϕ is a binding
construct corresponding to the operation of resetting the clock x to 0.

In an alternating timed automaton the transition function maps each location
s ∈ S and event a ∈ Σ to an expression in Φ(S, x). Thus alternating automata
allow two modes of branching: existential branching, represented by disjunction,
and universal branching, represented by conjunction.

Formally an alternating timed automaton is a tuple A = (Σ, S, s0, F, δ), where

– Σ is a finite alphabet
– S is a finite set of locations
– s0 ∈ S is the initial location
– F ⊆ S is a set of accepting locations
– δ : S × Σ → Φ(S, x) is the transition function.

1 Virtually all decision problems, and in particular language emptiness, are undecid-
able for alternating automata with more than one clock.
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Before stating the formal definition of a run of an alternating timed automaton,
we give an example of how an MTL formula can be translated into an equivalent
automaton.

Example 1. The MTL formula �(a → �{1}b) (‘for every a-event there is a b-
event exactly one time unit later’) can be expressed by the following automaton
A. Let A have two locations {s, t} with s the initial and only accepting location,
and transition function δ given by the following table:

a b
s s ∧ x.t s
t t (x = 1) ∨ t

Location s represents an invariant. When an a-event occurs, the conjunction in
the definition of δ(s, a) results in the creation of a new thread of computation,
starting in location t. Since this location is not accepting, the automaton must
eventually leave it. This is only possible if a b-event happens exactly one time
unit after the new thread was spawned.

We now proceed to formally define a run of an alternating timed automaton A.
A state of A is a pair (s, v), where s ∈ S is a location and v ∈ R+ is a clock
value. Write Q = S × R+ for the set of all states of A and define a configuration
to be a finite subset of Q. A configuration M ⊆ Q and a clock value v ∈ R+
defines a Boolean valuation on Φ(S, x) as follows:

– M |=v ϕ1 ∧ ϕ2 if M |=v ϕ1 and M |=v ϕ2
– M |=v ϕ1 ∨ ϕ2 if M |=v ϕ1 or M |=v ϕ2
– M |=v s if (s, v) ∈ M
– M |=v x ∼ c if v ∼ c
– M |=v x.ϕ if M |=0 ϕ.

A tree is a non-empty prefix closed set of nodes T ⊆ N
∗. A run of an alter-

nating timed automaton A on a timed word ρ = (σ, τ) consists of a tree T and a
labelling l : T → Q of the nodes of T by states of A such that: (i) l(ε) = (s0, 0)
(the root is labelled by the initial state); and (ii) for each node t ∈ T with
l(t) = (s, v), we have that M |=v′ δ(s, σn), where n = |t| is the depth of t,
v′ = v + (τn − τn−1) and M = {l(t · n) : t · n ∈ T, n ∈ N} is the set of labels
of the children of t. Finally, an infinite run is accepting if every infinite branch
contains infinitely many accepting locations, while a run on a finite word ρ is
accepting if every node at depth |ρ| is accepting.

Example 1 can be generalised to show that for each MTL formula ϕ there is
an alternating timed automaton Aϕ such that {ρ : ρ |= ϕ} is the set of timed
words accepted by A. We refer the reader to [27] for details.

Well-quasi-order on Configurations. Recall that a quasi-order (W, �) consists
of a set W together with a reflexive, transitive relation �. An infinite sequence
w1, w2, w3, . . . in (W, �) is said to be saturating if there exist indices i < j such
that wi � wj . (W, �) is said to be a well-quasi-order (wqo) if every infinite
sequence is saturating.
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Recall that the set of states of a classical (non-deterministic) timed automaton
admits a finite quotient: the so called clock regions construction [1,2]. In the
case of alternating timed automata this generalises to a well-quasi-order on the
set of configurations as we shortly explain. This well-quasi-order is important
in establishing the termination of several decision procedures for MTL, e.g.,
in [26,27].

Given an alternating timed automaton A, let cmax be the maximum clock
constant in the description of A. Given configurations C and D, define C � D if
there is an injection f : C → D such that: (i) f(s, u) = (t, v) implies s = t and
either �u� = �v� or �u�, �v� > cmax ; (ii) if f(s, u) = (s, u′) and f(s, v) = (t, v′),
then frac(u) ≤ frac(v) iff frac(u′) ≤ frac(v′). This quasi-order can be shown to
be a well-quasi-order using Higman’s Lemma [19,27].

4 Decidable Sublogics: Continuous Semantics

It is well known that both model checking and satisfiability for MTL in the con-
tinuous semantics are highly undecidable (Σ1

1 -complete) [3]. In this section we
explain how this undecidability arises, we discuss some of the syntactic restric-
tions that have been imposed to recover decidability, and we state the complexity
of model checking and satisfiability for the resulting fragments of MTL.

4.1 Punctuality

From one point of view, the source of undecidability in MTL is the excessive
precision of the timing constraints. In particular, MTL allows so-called punctual
formulas, such as �{1}p, in which the constraint is a singleton interval. Using such
punctual formulas, given an arbitrary Turing machine M with input X , one can
construct an MTL formula ϕM,X such that the signals satisfying ϕM,X encode
accepting computations of M on X . Thus one reduces the halting problem to
the MTL satisfiability problem.

Assume that the set of atomic propositions P includes a proposition for each
tape symbol and control state of M . A configuration of M is then encoded by a
sequence of propositions holding in a unit-length time interval in a given signal.
The formula ϕM,X includes a component ϕINIT to ensure that the first config-
uration agrees with X and a component ϕTRAN that ensures that successive
configurations respect the transition function of M . For example, the punctual
formula p ↔ �{1}p is used in ϕTRAN to indicate that a given tape cell is un-
changed from one configuration to the next. Since there is no a priori bound on
the length of M ’s computations ϕTRAN appears in ϕM,X under the scope of the
“always” operator �.

Researchers were thus led to propose syntactic subsets of MTL in which punc-
tual formulas are not expressible. For example, the sub-logic MTL0,∞ [3,15] arises
by requiring that the constraining interval I in any temporal modality either has
left endpoint 0 or right endpoint ∞. This logic allows one to speak about the
earliest or latest times that a formula becomes true; for example �(p → �(0,5)q)
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is an MTL0,∞ formula saying that every p-state is followed by a q-state within
5 time units. Satisfiability and model checking for MTL0,∞ are both Pspace-
complete. Thus the addition of upper- and lower-bound timing constraints to
LTL incurs no complexity blow-up.

A more general fragment of MTL that prohibits punctual specifications is
Metric Interval Temporal Logic (MITL). This is the subset of MTL in which
the constraining interval I in any temporal modality is required to be non-
singular. Alur, Feder and Henzinger [3] describe an exponential translation of
MITL formulas into equivalent non-deterministic timed automata, leading to an
Expspace decision procedure for both model checking and satisfiability. It was
shown in [18] that over the continuous semantics MTL0,∞ and MITL are equally
expressive, although the latter is exponentially more succinct. Over the pointwise
semantics, however, MITL is strictly more expressive than MTL0,∞ [15].

A version of MITL called Quantitative Temporal Logic (QTL) has been intro-
duced by Hirshfeld and Rabinovich [17]. This logic simply augments LTL with
the modality �(0,1) (and the correspond past modality). They show that QTL
has the same expressiveness as the version of MITL with both “until” and “since”
and give a Pspace decision procedure for the satisfiability problem. In contrast
to the approach of [3] this procedure does not involve automata, but rather goes
via a satisfiability preserving translation of QTL into LTL. For each QTL formula
ϕ using set of atomic propositions P one can define an LTL formula ϕ̃, over an
augmented set of propositions P ∪Q, such that a signal f : R+ → 2P∪Q satisfies
ϕ̃ iff there exists a piecewise-linear monotone bijection g : R+ → R+ such that
f ◦ g satisfies ϕ. Intuitively, sets of signals that are definable in QTL (or MITL)
are also definable in LTL up to some stretching.

4.2 Boundedness

A complementary route to obtaining decidable subsets of MTL has recently been
propounded in [9,10]. The idea is that rather than ban constraining intervals
that are too small, one bans constraining intervals that are too big. (Note in this
regard that the undecidability proof for MTL described above involved both the
punctual “eventually” connective �{1} and the unbounded “always” connective
�.) Thus [10] defines BMTL to be the subset of MTL in which all constraining
intervals have finite length. For example, ϕ ≡ �(0,10)(p ↔ �{1}q) is a BMTL
formula.

As with MITL, the satisfiability and model checking problems for BMTL are
Expspace-complete. However, unlike MITL, it is not the case that BMTL for-
mulas can be translated into equivalent timed automata. Indeed a variation on a
well-known result tells us that the set of signals satisfying the example formula
ϕ above cannot be the language of a timed automaton [2,7].

Note that the above-defined encoding of Turing machines in MTL does not,
when restricted to BMTL, yield Expspace-hardness. Since we encode Turing-
machine configurations in unit-length intervals, a BMTL version of the
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formula ϕM,X , described above, that has size polynomial in |X | can only encode
computations for which the number of steps is exponential in |X |. To achieve
Expspace-hardness requires a slightly different idea, although still crucially us-
ing punctuality.

Given a 2n-space-bounded Turing machine M with input X , we construct
in logarithmic space a BMTL formula ϕM,X that is satisfiable if and only if M

accepts X . The definition of ϕM,X involves a set of atomic propositions P ∪ Ṗ ,
where P is as in the undecidability proof for MTL and Ṗ = {ṗ : p ∈ P}. The
dot is used as a pointer to aid in simulating M . The idea is to encode the entire
computation of M in a single time unit, rather than encoding one configuration
per time unit. In any signal satisfying ϕM,X the sequence of propositions holding
in the time interval [0, 1) is meant to encode the computation history of M on
input X . In this time interval we assume that the dot superscript decorates the
first tape cell of each configuration of the computation.

The definition of ϕM,X involves a formula

ϕCOPY =
∧

p∈P

�[0,2|X|](p → �{1}(p ∨ ṗ))

∧
∧

p,q∈P

�[0,2|X|]((ṗ U(0,1) q) ↔ �{1}(p U(0,1) q̇)) ,

that copies the sequence of propositions holding in each unit-duration time in-
terval into the subsequent time interval, at the same time moving the dot super-
script ‘one place to the right’. Thus the sequence of propositions holding in each
subsequent time interval [k, k + 1), k = 1, . . . , 2|X| − 1, should also represent
the computation history of M on X . The only difference is that in the interval
[k, k + 1) the dot decorates exactly those propositions encoding the contents of
the k-th tape cell in each configuration in the computation history.

In addition to ϕCOPY , ϕM,X has another component ϕCHECK . For a given
unit-length time interval [k, k + 1), ϕCHECK uses the dots as pointers to check
the correctness of the k-th tape cell in each configuration. Thus, in 2|X| time
units the whole computation is checked.

4.3 Flatness

MITL and BMTL represent two different approaches to obtaining decidable met-
ric temporal logics, and they have incomparable expressive power. In particular,
BMTL is not capable of expressing invariance—one of the most basic safety
specifications. To repair this deficiency [10] consider the syntactic property of
flatness as a generalisation of boundedness. The term flatness here is motivated
by by similarities with logics introduced in [12,13]. Intuitively an MTL formula
is flat if no punctual subformula appears within the scope of a connective that
involves unbounded universal quantification over the time domain. In fact the
most natural way to state the results of [10] is in terms of the dual notion to
flatness, called coflatness.

The condition of coflatness applies to formulas in negation normal form. Recall
that such formulas feature the constrained dual until operator ˜UI in addition to
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the constrained until operator. Formally we say an MTL formula in negation
normal form is coflat if (i) in any subformula of the form ϕ1 UI ϕ2, either I is
bounded or ϕ2 is in MITL, and (ii) in any subformula of the form ϕ1 ˜UI ϕ2,
either I is bounded or ϕ1 is in MITL. If we write CFMTL for the sublogic of coflat
formulas then CFMTL includes both BMTL and MITL, is closed under �I for
arbitrary I (invariance), and is closed under UI for bounded I (bounded liveness).
Thus, for specifications, coflatness is a very natural and mild restriction.

The formula �(req → �(0,1)(acq ∧ �{1}rel )) says that every time a lock is
requested, it is acquired within one time unit, and released after exactly one
further time unit. This formula is in CFMTL, but is not in BMTL (due to the
unconstrained �) nor is it in MITL (due to the punctual �{1}).

The main result of [10] is that the model-checking problem for CFMTL is
Expspace-complete; moreover this result holds irrespective of whether the con-
stants in the timing constraints are encoded in unary or binary. In the case that
constants are encoded in unary, the proof of Expspace-hardness follows the
same idea as the Expspace-hardness proof for BMTL satisfiability. The match-
ing upper bound is via a translation to LTL that incurs an exponential blow-up.
Thus for the most commonly occurring specification patterns, such as invariance
and bounded response, punctuality can be accommodated while model checking
remains in Expspace.

We emphasise that the above refers to model checking and not satisfiability.
In fact the satisfiability problem for CFMTL is undecidable for the simple reason
that all the formulas used in the proof of undecidability of satisfiability for MTL
are coflat. (Note that CFMTL is not closed under negation.)

5 Decidable Sublogics: Pointwise Semantics

From another point of view, the source of undecidability in MTL is the richness
of the semantic model. A natural restriction on the semantics is to interpret
the logic on timed words in which all timestamps are integers. Indeed it is of-
ten argued that integer time suffices for most applications [16]. With respect
to integer-valued timed words, satisfiability and model checking for MTL are
easily seen to be Expspace-complete, matching the complexity of MITL over
the continuous semantics. The exponential blow-up over LTL arises from the
possibility to write timing constraints succinctly in binary. We note that such
succinct timing constraints are also the cause of the exponential blow-up in the
complexity of MITL over MTL: if timing constraints are written in unary then
model checking and satisfiability for MITL in the continuous semantics are both
Pspace-complete.

Keeping with timed words, but now allowing timestamps to be arbitrary real
numbers, the situation becomes more delicate. Over finite timed words both
model checking and satisfiability for MTL are decidable but not primitive re-
cursive [27]. Over infinite timed words both problems are undecidable. Thus in
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the pointwise semantics the situation between decidability and undecidability is
finely balanced.

The decidability of satisfiability and model checking for MTL over finite timed
words was proved in [27] by giving a procedure for deciding language emptiness
for alternating timed automata over finite words. That procedure used forward
reachability analysis to search for an accepting computation tree on a given
automaton. The well-quasi-order on configurations identified in Section 3 was
used to prove the termination of such a search.

At this point it is instructive to see why the undecidability proof for MTL over
the continuous semantics fails over the pointwise semantics. Consider the formula
�(a ↔ �{1}a). For a timed word to satisfy this formula every a-event should
be followed by another a-event after exactly one time unit. However the formula
does not force every a-event to be preceded by an a-event one time unit earlier
(for the reason that the former might not be preceded by any event exactly one
time unit earlier). Thus if we try to encode computations of a Turing machine
as timed words in MTL, we find that we can only encode the computations of a
machine with insertion errors.

In fact, when considering such erroneous computation devices it is more con-
venient to talk about a class of computing devices called insertion channel ma-
chines with emptiness-testing, or ICMET [25]. Such devices consist of a finite
control together with a fixed number of unbounded channels (or queues). Tran-
sitions between control states can write messages to the tail of a channel, read
messages from the head of a channel, or perform an emptiness test on a channel.2

There is a formal duality between such ICMETs and lossy channel machines [30].
The control-state reachability problem for ICMETs asks whether a given

ICMET has a finite computation starting from the initial state and ending in an
accepting control state. The recurrent-state problem for ICMETs asks whether a
given ICMET has an infinite computation that visits an accepting state infinitely
often. The control-state reachability problem is decidable, but not primitive re-
cursive, while the recurrent-state problem is undecidable [25,27,30].

As suggested above, one can encode finite computations of ICMETs using
MTL formulas over finite timed words; thus one shows that satisfiability and
model-checking for MTL over finite timed words are not primitive recursive.
Similarly one can reduce the recurrent-state problem for ICMETs to the satisfi-
ability and model checking problems for MTL over infinite words, showing that
the latter two problems are undecidable. In particular the formula ��p is used
to encode the fact that a computation visits an accepting state infinitely often.

5.1 Safety

The last remark above suggests that one might recover decidability over infi-
nite timed words by restricting to safety properties. This approach was taken

2 In contrast to models of asynchronous communication, we assume that the same
finite control automaton writes to and reads from the channels.
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in [26,27] which defined a syntactic fragment of MTL called Safety MTL (SMTL).
An MTL formula in negation normal form is said to be in SMTL if in any subfor-
mula of the form ϕ1 UI ϕ2 the interval I is bounded. No restrictions are placed
on the dual until connective ˜U . For example, if ϕ ∈ SMTL then �ϕ and �(0,5)ϕ
are both in SMTL. Informally the requirement for a formula to be in SMTL is
that all eventualities be bounded.

Following the classical semantic definition of safety property in the untimed
setting, a set Π of infinite timed words is said to be a safety property if any
timed word ρ �∈ Π has a finite prefix ρ′, such that no extension of ρ′ lies in
Π . Due to the assumption that timed words are non-Zeno, Henzinger [14] calls
such properties ‘safety relative to the divergence of time’. (In a dense-time model
a bounded-response property, such as �(0,5)p, can only be considered a safety
property thanks to the assumption of non-Zenoness.) All SMTL formulas define
semantic safety properties.

Continuing the thread of ideas from above, the undecidability proof for MTL
over infinite timed words does not apply to SMTL, since the latter cannot en-
code a recurrent computation of an ICMET. One can reduce the termination
problem for ICMETs [11] to the satisfiability problem for SMTL, but the former
is decidable though non-elementary. In fact one can again use alternating timed
automata and the well-quasi-order from Section 3 to show that both satisfiability
and model checking for SMTL are decidable [26,27].

Similarly to CFMTL, SMTL is suitable for defining invariance and time-bounded
response properties. Comparing the two logics, we note that SMTL is more permis-
sive in its use of ˜U , but less permissive in its use of U (cf. Section 4). Notwithstand-
ing this superficial similarity, there is a chasm between the respective complexities
of the model checking problem. Model checking for SMTL is non-primitive recur-
sive [27] while it is Expspace-complete for CFMTL.

6 Summary

We summarise the relationships between the various logics introduced in Sections
4 and 5 in the following diagram (where ↪→ indicates a syntactic inclusion):

LTL MTL0,∞ MITL

BMTL SMTL

CFMTL MTL

We also summarise complexity results for model-checking and satisfiability
for different fragments of MTL in Table 1. In this table results that refer to the
pointwise semantics are shaded in grey; all other results refer to the continuous
semantics. The legend ‘MTL (fin.)’ in the last row stands for MTL over finite
timed words.
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Table 1. Complexity of fragments of MTL

Model Checking Satisfiability
LTL Pspace-c. Pspace-c.

MTL0,∞ Pspace-c. Pspace-c.
MITL Expspace-c. Expspace-c.
BMTL Expspace-c. Expspace-c.
SMTL Non-Prim.-Rec. Non-Elem.

CFMTL Expspace-c. Undec.
MTL Undec. Undec.

MTL (fin.) Non-Prim.-Rec Non-Prim.-Rec
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