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Abstract. Probabilistic bisimilarity is a fundamental notion of equiva-
lence on labelled Markov chains. It has a natural generalisation to a prob-
abilistic bisimilarity pseudometric, whose definition involves the Kan-
torovich metric on probability distributions. The probabilistic bisimilar-
ity pseudometric has discounted and undiscounted variants, according
to whether one discounts the future in observing discrepancies between
states.
This paper is concerned with the complexity of computing probabilistic
bisimilarity and the probabilistic bisimilarity pseudometric on labelled
Markov chains. We show that the problem of computing probabilistic
bisimilarity is P-hard by reduction from the monotone circuit value prob-
lem. We also show that the discounted probabilistic bisimilarity pseudo-
metric is rational and can be computed exactly in polynomial time using
the network simplex algorithm and the continued fraction algorithm. In
the undiscounted case we show that the probabilistic bisimilarity pseu-
dometric is again rational and can be computed exactly in polynomial
time using the ellipsoid algorithm.

1 Introduction

Probabilistic bisimilarity is a notion of equivalence for probabilistic labelled tran-
sition systems, introduced by Larsen and Skou [19]. It is based on Park and
Milner’s classical notion of bisimilarity for (non-deterministic) labelled transi-
tion systems [22]. A very similar and widely used concept on Markov chains,
called lumpability, can be found as far back as the classical text of Kemeny and
Snell [18]. A system and its probabilistic bisimilarity quotient can be considered
indistinguishable, and quotienting by probabilistic bisimilarity is a widely used
compression technique in verification and performance analysis [15, 17, 20].

The first part of this paper concerns the complexity of computing prob-
abilistic bisimilarity. It is known that this can be done in polynomial time,
e.g., by partition refinement [2, 10, 30]. Our first result shows that probabilistic
bisimilarity is P-hard, and therefore P-complete. As a consequence probabilistic
bisimilarity is not in NC unless P = NC. (Recall that NC is a subclass of P
comprising problems that can be solved in polylogarithmic time using PRAMs
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of polynomial size [13]. Informally such problems are considered to be efficiently
parallelisable.) By contrast, language equivalence of probabilistic automata is in
NC [29], as are related equivalence problems such as tree isomorphism [13].

For (non-deterministic) labelled transition systems it is known that comput-
ing bisimilarity is P-complete [3, 24]. However the proof in the probabilistic case
requires a different construction than in op. cit.

For probabilistic systems it is natural to generalise from bivalent notions
of equivalence, such as probabilistic bisimilarity or language equivalence [28],
to quantitative measures of similarity. As well as being more informative, such
measures are more meaningful in the presence of rounding errors in computation
and modelling.

In the second part of this paper we consider a probabilistic bisimilarity pseu-
dometric on labelled Markov chains. This generalises the notion of probabilistic
bisimilarity by assigning a similarity distance to pairs of states of a labelled
Markov chain. The smaller the distance, the more alike the states, with states
at zero distance if and only if they are probabilistic bisimilar. This pseudomet-
ric was first introduced in [11] and, together with closely related notions, has
subsequently been studied in the context of systems biology [26], games [8],
planning [9] and security [7], among others. The definition of the pseudometric
is based on the classical Kantorovich metric on probability distributions. The
pseudometric has discounted versions, which discount the future in observing
discrepancies between states, and an undiscounted version, which does not dis-
count the future.

We show that for labelled Markov chains with rational transition probabil-
ities the discounted probabilistic bisimilarity pseudometric is rational and can
be computed exactly by a polynomial-time algorithm. In particular, we show
that the distances can be approximated by using the network simplex algorithm
repeatedly and the exact distances can be obtained from the approximated ones
by means of the continued fraction algorithm. In the undiscounted case we also
obtain a polynomial-time algorithm to exactly compute the pseudometric, this
time using the heavier machinery of the ellipsoid algorithm. These results go
beyond previous work which only showed how to approximate the pseudometric
up to some desired level of precision [6]. In the undiscounted case it was only
known how to approximate the pseudometric using polynomial space [5].

In combination with our lower bound on computing probabilistic bisimilar-
ity we conclude that computing the probabilistic bisimilarity pseudometric is
P-complete. By contrast, a generalisation of the probabilistic bisimilarity pseu-
dometric from labelled Markov chains to stochastic games has been shown to be
as hard as the sum-of-square-roots problem [8], a problem not known even to be
in NP.
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2 Probabilistic Bisimilarity

In this section we introduce labelled Markov chains and probabilistic bisimilarity.
The main result of this section is that computing probabilistic bisimilarity is P-
hard.

A labelled Markov chain is a tuple M = (S,Σ, π, `) consisting of a finite
set of states S, a finite set of labels Σ, a rational transition matrix π such that∑
t∈S πs,t = 1 for all s ∈ S, and a labelling function ` : S → Σ.
A probabilistic bisimulation onM is an equivalence relation R ⊆ S ×S such

that if s R t then `(s) = `(t) and∑
u∈E

πs,u =
∑
u∈E

πt,u

for each R-equivalence class E, i.e., related states have the same label and the
same probability to transition into any given equivalence class. It is a stan-
dard result that there is a largest probabilistic bisimulation onM and that this
relation is an equivalence relation (see, e.g., [23, Section 7.6]). The maximum
probabilistic bisimulation is called probabilistic bisimilarity and is denoted ∼.
From now on, we mostly refer to probabilistic bisimilarity as simply bisimilarity.

We are interested in the problem of computing bisimilarity ∼ on M. The
decision version of the problem asks whether s ∼ t for two designated states
s, t ∈ S.

The above formulation of the bisimilarity problem is convenient for our hard-
ness proof, however variations, such as replacing state labels with labels on tran-
sitions, can easily be accommodated. It is also not difficult to reduce the problem
above to the restricted case in which the set of labels has two elements.

For a state s, let Succ(s) = {u : πs,u > 0}. We say that a transition matrix π
is uniform if for all s ∈ S and u, v ∈ Succ(s), πs,u = πs,v. That is, the transition
probability out of each state is a uniform distribution over its support.

Lemma 1 (Matching Lemma). Assume that π is uniform. Suppose that s, t ∈
S are such that |Succ(s)| = |Succ(t)|. Then s ∼ t if and only if `(s) = `(t) and
there exists a bijection f : Succ(s)→ Succ(t) with u ∼ f(u) for each u ∈ Succ(s).

Proof. Suppose that s ∼ t. Since ∼ is a bisimulation, `(s) = `(t) and for each
∼-equivalence class E, ∑

x∈E
πs,x =

∑
x∈E

πt,x. (1)

Since π is uniform, |E ∩ Succ(s)| = |E ∩ Succ(t)| for each ∼-equivalence class
E. Hence there exists a bijection f : Succ(s) → Succ(t) with u ∼ f(u) for all
u ∈ Succ(s).

Conversely, assume that `(s) = `(t) and suppose that f is a bijection as
above. To conclude that s ∼ t we prove that the smallest equivalence relation
containing ∼ ∪{(s, t)}, which we denote by R, is a bisimulation.
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Since ∼ is a bisimulation and `(s) = `(t), R only relates states with the
same label. Moreover, since every R-equivalence class is a union of ∼-equivalence
classes, it suffices to show (1) for ∼-equivalences classes only.

Assume uRv. We distinguish three cases. First, let u = s and v = t. Because
of the existence of the bijection f , we have that |E ∩ Succ(s)| = |E ∩ Succ(t)|
for each ∼-equivalence class E. Because π is uniform, (1) holds for each ∼-
equivalence class E. Second, let u ∼ s and v ∼ t. Recall that ∼ is a bisimulation.
Hence for each ∼-equivalence class E,∑

x∈E
πu,x =

∑
x∈E

πs,x [u ∼ s]

=
∑
x∈E

πt,x [by the previous case]

=
∑
x∈E

πv,x [v ∼ t]

The third and final case, u ∼ v, follows immediately from the fact that ∼ is a
bisimulation. ut

Theorem 2. Deciding probabilistic bisimilarity is P-hard.

Proof. We reduce from the Monotone Circuit Value problem which is P-
hard [13, Theorem 6.2.2]. Recall that a monotone circuit is a finite directed
acyclic graph in which nodes have in-degree either two or zero. Nodes with in-
degree two are labelled ∧ or ∨; nodes with in-degree zero, called input nodes, are
labelled either true (1) or false (0). There is a distinguished output node with
out-degree zero. The Monotone Circuit Value problem is to compute the
output of a given monotone circuit.

Given a circuit C, we define a Markov chain M(C) with a uniform transi-
tion matrix. For each node ni of C and its incoming edges, we include a gadget
consisting of states and their outgoing transitions inM(C). Note that the transi-
tions of the Markov chain go in the opposite direction of the edges of the circuit.
Each gadget contains states ui and vi. We will prove that ui ∼ vi if and only if
ni evaluates to true. We define the labelling function ` such that states have the
same label if and only if they belong to the same gadget and the gadget does
not represent an input node that is labelled false. In the diagrams below, states
have the same label if and only if they have the same index and the same colour.

We describe M(C) by giving gadgets for each input node, and -gate and
or -gate of C.

The gadget for input node labelled true is shown below.

1
ni

uiui vivi

The gadget for input node labelled false is shown below.
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0
ni

uiui vivi

Note that ui and vi have the same label if and only if ni is labelled true and
therefore ui ∼ vi if and only if ni is labelled true.

The gadget for an and -gate is shown below.

∧
ni

nj nk

uiui vivi

uj vj uk vk

Note that uj , vj and uk, vk are states of the gadgets corresponding to the
nodes nj and nk. The correctness of this gadget amounts to showing that ui ∼ vi
if and only if both uj ∼ vj and uk ∼ vk. This follows immediately from the
Matching Lemma and the fact that the definition of ` precludes uj ∼ vk and
vj ∼ uk in case nj and nk are different nodes. If nj and nk are one and the same
node, the and -gate can be removed from the circuit.

The gadget for an or -gate is shown below.

∨
ni

nj nk

ui vi

wi xi yi zi

ui vi

wi xi yi zi

uj vj uk vk

The correctness of this gadget amounts to showing that ui ∼ vi if and only if
uj ∼ vj or uk ∼ vk.

ui ∼ vi iff (wi ∼ yi ∧ xi ∼ zi) ∨ (wi ∼ zi ∧ xi ∼ yi) [Matching Lemma]
ff uj ∼ vj ∨ uk ∼ vk [Matching Lemma]

In the last step we use again the fact that the definition of ` precludes uj ∼ vk
and vj ∼ uk in case nj and nk are different nodes. If nj and nk are one and the
same node, the or -gate can be removed from the circuit.

This completes the description of the gadgets. The Markov chain M(C) is
obtained by composing the gadgets for each node of C. The transduction of a
circuit to a Markov chain is done gate by gate. To produce the output gadget



6 Di Chen, Franck van Breugel, James Worrell

corresponding to each circuit gate one only needs to store the indices of the gate
and its two inputs, and the states of the output gadget. Thus the reduction can
be done in deterministic logarithmic space. ut

The proofs of P-hardness of ordinary bisimilarity for labelled transition sys-
tems by Balcázar, Gabarró and Sántha [3] and Sawa and Jančar [24] are also
by reduction from Monotone Circuit Value. However in the probabilistic
case disjunction cannot be translated directly as in the non-deterministic case.
Interestingly a formally identical gadget to the above disjunction gadget appears
in Toran’s proof of DET-hardness of graph isomorphism [27]. However DET is
a subclass of P and the graph isomorphism problem is not known to be P-hard.

3 The Bisimilarity Pseudometric

In this section we recall the definition of a bisimilarity pseudometric on la-
belled Markov chains. We first give a logical characterisation, due to Deshar-
nais, Gupta, Jagadeesan and Panangaden [11], based on a real-valued semantics
for Larsen and Skou’s probabilistic modal logic [19]. This characterisation illus-
trates the sense in which states that are close in the pseudometric satisfy similar
behavioural properties. In the next section we give a more abstract fixed-point
characterisation of the pseudometric, which will be used in our algorithms.

The logic L is defined by the grammar

ϕ ::= σ | ϕ ∨ ϕ | ¬ϕ | ϕ	 q | 3ϕ (2)

where σ ∈ Σ and q ∈ [0, 1] is rational.
We consider a real-valued semantics of L, which is parameterised by a dis-

count factor c ∈ (0, 1]. The smaller the value of c, the more the future is dis-
counted, with c = 1 being the undiscounted case. Given a labelled Markov chain
M = (S,Σ, π, `), the interpretation of a formula ϕ is a function [[ϕ]] : S → [0, 1]
defined by the following clauses:

[[σ]](s) =
{

1 if `(s) = σ
0 otherwise

[[ϕ ∨ ψ]](s) = max([[ϕ]](s), [[ψ]](s))
[[¬ϕ]](s) = 1− [[ϕ]](s)

[[ϕ	 q]](s) = max([[ϕ]](s)− q, 0)

[[3ϕ]](s) = c ·
∑
t∈S

πs,t · [[ϕ]](t)

A pseudometric is a relaxation of the notion of an ordinary metric in which
different states can have distance zero. Formally a (1-bounded) pseudometric on
a set S is a map d : S × S → [0, 1] such that for all s, t, u ∈ S:

1. d(s, s) = 0
2. d(s, t) = d(t, s)
3. d(s, u) ≤ d(s, t) + d(t, u).
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Given a discount factor c ∈ (0, 1] the function dc : S × S → [0, 1] assigns
a distance to every pair of states of a labelled Markov chain according to the
following definition:

dc(s, t) = sup
ϕ∈L
|[[ϕ]](s)− [[ϕ]](t)| . (3)

It is straightforward that, with this definition, dc is a pseudometric. The following
theorem justifies our description of dc as a bisimilarity pseudometric.

Theorem 3. [23, Section 8.2] dc(s, t) = 0 if and only if s ∼ t.
In [8], Chatterjee, de Alfaro, Majumdar and Raman enriched the logic L

by the addition of fixed-point operators, yielding a quantitative µ-calculus Lµ
which can express reachability and ω-regular specifications. For example, the
Lµ-formula µx.(σ ∨ 3x) represents the probability to reach a σ-labelled state,
while νy.µx.((σ ∧ y) ∨ 3x) represents the probability to infinitely often visit a
σ-labelled state. It is shown in [8] that dc(s, t) = supϕ∈Lµ |[[ϕ]](s) − [[ϕ]](t)| for
any pair of states s, t ∈ S; thus dc can equivalently be defined in terms of the
more powerful logic Lµ.

In the appendix we show that our bisimilarity pseudometric is an upperbound
for the variational distance between trace distributions. This can be seen as a
quantitative version of the folklore that bisimilar states satisfy the same linear-
time properties. Whereas the variational distance between trace distributions is
NP-hard to compute as shown by Lyngsø and Pedersen in [21], we will show
that our bisimilarity pseudometric can be computed in polynomial time.

4 Matchings and the Kantorovich Metric

The characterisation of bisimilarity in Section 2 only admits equivalence relations
as bisimulations. The following more general account of bisimilarity is useful both
in the technical development below and to motivate the Kantorovich metric.

Say that a probability distribution ω on S × S is a matching of probability
distributions µ, ν on S if∑

v∈S ω(u, v) = µ(u) for all u ∈ S∑
u∈S ω(u, v) = ν(v) for all v ∈ S .

In other words, ω is a joint probability distribution whose marginals are µ and ν.

Proposition 4. [16, Theorem 4.6] Let M = (S,Σ, π, `) be a labelled Markov
chain. Then s ∼ t if and only if there exists a relation R ⊆ S × S containing
(s, t) such that (i) `(u) = `(v) for all (u, v) ∈ R; (ii) for each (u, v) ∈ R there
exists a probability distribution ω on S × S that is a matching of πu,− and πv,−
and whose support is contained in R.

Suppose that (S, d) is a finite metric space. The Kantorovich metric dK on
the set of probability distributions on S is defined by

dK(µ, ν) = min
ω∈Ωµ,ν

∑
u,v∈S

d(u, v) · ω(u, v) ,
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where Ωµ,ν is the set of matchings of µ and ν.
Informally we can characterise the bisimilarity pseudometric dc(s, t) as the

distance between the distributions πs,− and πt,− in the Kantorovich metric over
(S, dc). This characterisation is recursive, and accordingly we will show that dc
is a fixed point of a functional ∆c based on the Kantorovich metric.

Define ∆c : [0, 1]S×S → [0, 1]S×S as follows. If `(s) 6= `(t) then ∆c(d)(s, t) = 1
and if `(s) = `(t) then

∆c(d)(s, t) = c · min
ω∈Ωs,t

∑
u,v∈S

d(u, v) · ω(u, v) , (4)

where Ωs,t is the set of matchings of πs,− and πt,−.
The set [0, 1]S×S is a complete lattice in the pointwise order. It is shown

in [4, Proposition 38] that ∆c is a monotone selfmap on [0, 1]S×S and thus, by
Tarski’s fixed point theorem, has a least fixed point. This turns out to be the
pseudometric dc.

Theorem 5. [5, Theorem 4.6] dc is the least fixed point of ∆c.

Remark 6. In the relational setting it is traditional to view bisimilarity as a
greatest fixed point. Intuitively the situation is opposite in the pseudometric
setting because the bottom element of [0, 1] represents relatedness.

Theorem 7. If c < 1 then dc is the unique fixed point of ∆c.

Proof sketch. We can show that ∆c is c-Lipschitz. From Banach’s fixed point
theorem we can conclude that the fixed point is unique. ut

However, ∆1 need not have a unique fixed point. For example, consider the
labelled Markov chain with a single state. Then ∆1 is the identity mapping.

Example 8. Consider the Markov chain below, where `(s) = `(t) 6= `(u):

s t u

1 c 1

1−c

For c < 1, dc(s, t) = c−c2
1−c2 . The pseudometric 0 assigns to every pair of states

distance zero. For all n ∈ N, ∆n
c (0)(s, t) ≤ c−c2n+1

1+c . This shows that the fixed
point may not simply be reached by a finite number of iterations of ∆c.

5 Algorithms for Bisimilarity Pseudometrics

5.1 The Discounted Case

Let c < 1 be a fixed rational discount factor. Given a labelled Markov chainM,
we show that dc is rational and can be computed exactly in time polynomial in
size(M) and size(c). 3

3 We denote by size(X) the size of the representation of an object X. We represent
rational numbers as quotients of integers written in binary. For example, the size of
a rational number is the sum of the bit lengths of its numerator and denominator
and the size of a matrix is the sum of the sizes of its entries.
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In Theorem 5 we have characterised dc as the least fixed point of ∆c. While
the stipulation that dc be the least fixed point is essential in the undiscounted
case, it is redundant in the discounted case. In the latter case, ∆c has a unique
fixed point (see Theorem 7). As a consequence, dc is also the greatest fixed point
of ∆c for c < 1. Thus, by Tarski’s fixed point theorem, we have

dc =
⊔
{ d ∈ RS×S : d ≤ ∆c(d) ∧ 0 ≤ d ≤ 1 } . (5)

This simple change in perspective is fruitful because the characterisation (5)
directly yields a translation of the problem of computing dc to the following
linear program:

maximise
∑
s,t∈S ds,t

such that ds,t ≤ c ·
∑
u,v∈S du,v · ωu,v ω ∈ Ωs,t, `(s) 6= `(t)

ds,t = 1 `(s) = `(t)
0 ≤ ds,t ≤ 1

(6)

As we will see, the linear program (6) can be solved in polynomial time
using the ellipsoid algorithm. We pursue this option in the undiscounted setting
below. However, here we do not require such powerful techniques. Instead we
just use the linear programming formulation to observe that the fixed point of
∆c is rational and bounded in size by a polynomial in size(M) and size(c). We
then approximate the fixed point by repeating the network simplex algorithm,
obtaining the exact solution by rounding by means of the continued fraction
algorithm.

Recall that the set of matchings Ωs,t is a polytope in RS×S defined by the
following constraints: ∑

v∈S ωu,v = πs,u∑
u∈S ωu,v = πt,v

ωu,v ≥ 0
(7)

In general, Ωs,t is infinite and therefore the set of constraints in (6) is infinite
also. However, for each fixed d the linear function mapping a matching ω to
c ·
∑
u,v d(u, v) · ω(u, v) achieves its minimum on Ωs,t at some vertex. Thus,

writing V (Ωs,t) for the (finite) set of vertices of Ωs,t, we can reformulate (6) as
the following linear program, which has the same feasible region:

maximise
∑
s,t∈S ds,t

such that ds,t ≤ c ·
∑
u,v∈S du,v · ωu,v ω ∈ V (Ωs,t), `(s) 6= `(t)

ds,t = 1 `(s) = `(t)
0 ≤ ds,t ≤ 1

(8)

We denote the polytope defined by the set of constraints of (8) by D. To prove
that the distances are rational, we first observe the following.

Proposition 9. Each ω ∈ V (Ωs,t) is rational of size polynomial in size(M).
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Proof sketch. Since a vertex of Ωs,t is by definition an intersection of hyperplanes
given by the (in)equalities defining Ωs,t and the coefficients of the (in)equalities
are rationals bounded in size by size(M), we can conclude that each ω ∈ V (Ωs,t)
is rational of size polynomial in size(M). ut

Proposition 10. dc is rational of size polynomial in size(M) and size(c).

Proof sketch. Along a similar line of reasoning as used in the proof of Propo-
sition 9, we can conclude that the vertices of polytope D are rational of size
polynomial in size(M) and size(c).

Since the function mapping any d of the polytope D to
∑
s,t∈S d(s, t) is linear,

it attains its maximum, dc, at some vertex of D, which, as we have just shown,
is rational of size polynomial in size(M) and size(c). ut

Note that the proofs of Proposition 9 and 10 are also valid for c = 1 and,
hence, d1 is rational as well. Having established that dc is rational, we now give a
simple iterative algorithm to approximate dc starting from the pseudometric 0.

Proposition 11. For all n ∈ N, ∆n
c (0) is rational of size polynomial in size(M)

and size(c) and can be computed in time polynomial in size(M) and size(c).

Proof sketch. We prove this property by induction on n. Obviously, the property
holds for n = 0. Let n > 0. Obviously, the property holds when `(s) 6= `(t).
Otherwise,

∆n
c (0)(s, t) = c · min

ω∈Ωs,t

∑
u,v∈S

∆n−1
c (0)(u, v) · ω(u, v).

The above minimum is attained at a vertex of Ωs,t. As we have seen in Proposi-
tion 9, these vertices are rationals of size polynomial in size(M). Furthermore, by
induction, ∆n−1

c (0) is rational of size polynomial in size(M) and size(c). Hence,
∆n
c (0)(s, t) is a rational of size polynomial in size(M) and size(c). Computing

∆c(d)(s, t) is a minimum-cost flow problem for which there are versions of the
network simplex algorithm that are strongly polynomial time [1]. ut

To get ε-close to dc, we need to iterate dlogc(ε)e times.

Proposition 12. For all ε > 0, ||∆dlogc(ε)ec (0)− dc|| ≤ ε.

Proof. It suffices to show that for all n ∈ N, ||∆n
c (0)− dc|| ≤ cn by induction on

n. Obviously, the property holds for n = 0. Let n > 0. Then

||∆n
c (0)− dc|| = ||∆c(∆n−1

c (0))−∆c(dc)|| [Theorem 7]
≤ c · ||∆n−1

c (0)− dc|| [∆c is c-Lipschitz]
≤ c · cn−1 [induction hypothesis]

ut
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¿From Proposition 11 and 12 we can conclude that we can approximate
dc in time polynomial in size(M), size(c) and log2( 1

ε ). Once we have iterated
close enough to dc, we can use the continued fraction algorithm (see, e.g. [14,
Section 5.1]) to obtain dc.

Theorem 13. The pseudometric dc can be computed in time polynomial in
size(M) and size(c).

Proof sketch. This follows now immediately from the observation made by Etes-
sami and Yannakakis [12, page 2540] that for problems whose solutions are ra-
tional, of size polynomial in the input size, if we can solve the approximation
problem in polynomial time, then we can also solve the exact computation prob-
lem in polynomial time by using the continued fraction algorithm. ut

5.2 The Undiscounted Case

Throughout this section we refer to the undiscounted bisimilarity pseudometric
as d, rather than d1 and likewise use ∆ instead of ∆1.

In the previous section we gave a reduction of the problem of computing dc
to linear programming by characterising dc as the greatest fixed point of ∆c for
c < 1. However, recall from Section 4 that d is not in general the greatest fixed
point of ∆. Nevertheless we can recover a greatest-fixed-point characterisation
of d by separately handling the set of bisimilar states, i.e. the states at distance
zero. This will allow us to use linear programming to compute d.

As a first step we define ∆′ : [0, 1]S×S → [0, 1]S×S by

∆′(d)(s, t) =
{
∆(d)(s, t) if s 6∼ t
0 if s ∼ t.

Proposition 14. ∆′ has a unique fixed point.

Proof. Since ∆ is monotone, we can easily deduce that ∆′ is monotone as well.
According to Tarski’s fixed point theorem, ∆′ has a least and a greatest fixed
point. Hence, it is sufficient to prove that if d ≤ d′ are both fixed points of ∆′

then d = d′.
To this end, let

m = max{ d′(s, t)− d(s, t) : s, t ∈ S },

and let
R = { (s, t) ∈ S × S : d′(s, t)− d(s, t) = m }

be the set of pairs which maximise the discrepancy between d′ and d. We will
show that m = 0, which implies that d = d′. We distinguish two cases.

Assume that (s, t) ∈ R such that `(s) 6= `(t). Then

d′(s, t)− d(s, t) = ∆′(d′)(s, t)−∆′(d)(s, t) = 1− 1 = 0

and, hence, m = 0.
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Otherwise, for all (s, t) ∈ R we have that `(s) = `(t). In this case, we claim
that R ⊆ ∼. From this claim it follows that for all (s, t) ∈ R,

d′(s, t)− d(s, t) = ∆′(d′)(s, t)−∆′(d)(s, t) = 0− 0 = 0

and, hence, m = 0. It just remains to prove the claim.
According to Proposition 4, it suffices to show that if (s, t) ∈ R then there

exists ω ∈ Ωs,t such that ω(u, v) > 0 implies (u, v) ∈ R, that is, d′(u, v) −
d(u, v) = m.

Suppose ∆′(d)(s, t) =
∑
u,v∈S d(u, v) · ω(u, v), where ω ∈ Ωs,t. Then

m = d′(s, t)− d(s, t)
= ∆′(d′)(s, t)−∆′(d)(s, t)

=

 min
ω′∈Ωs,t

∑
u,v∈S

d′(u, v) · ω′(u, v)

− ∑
u,v∈S

d(u, v) · ω(u, v)

≤
∑
u,v∈S

d′(u, v) · ω(u, v)−
∑
u,v∈S

d(u, v) · ω(u, v)

=
∑
u,v∈S

(d′(u, v)− d(u, v)) · ω(u, v).

Since d′(u, v) − d(u, v) ≤ m and
∑
u,v∈S ω(u, v) = 1, we can conclude from∑

u,v∈S(d′(u, v)−d(u, v))·ω(u, v) ≥ m that ω(u, v) > 0 implies d′(u, v)−d(u, v) =
m. ut

Corollary 15. d is the unique fixed point of ∆′.

Proof. It is enough to prove that d is a fixed point of ∆′. On the one hand,
suppose that s ∼ t. Then d(s, t) = 0 = ∆′(d)(s, t) by Theorem 3. On the other
hand, suppose that s 6∼ t. Then d(s, t) = ∆(d)(s, t) = ∆′(d)(s, t). ut

Corollary 15 implies that d is the greatest fixed point of ∆′. Thus, following
the development in Section 5.1, we can compute d as the solution to the following
linear program:

maximise
∑
s,t∈S ds,t

such that ds,t = 0 s ∼ t
ds,t = 1 `(s) 6= `(t)
ds,t ≤

∑
u,v∈S du,v · ωu,v ω ∈ V (Ωs,t), s 6∼ t, `(s) = `(t)

(9)

Unfortunately we cannot solve (9) using the iterative method adopted in the
discounted case. The reason is that it may require exponentially many iterations
of ∆′ to achieve a sufficiently close approximation to d.

Example 16. Consider the Markov chain below, where `(s) = `(t) 6= `(u):
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s t u

1 1−2−m 1

2−m

Then d(s, t) = 1 and (∆′)n(0)(s, t) ≤ n · 2−m for all n ∈ N. This shows that it
may require exponentially many iterations in size(M) to approximate the fixed
point of ∆′.

Instead we use the ellipsoid algorithm (see, e.g. [25, Chapter 14]) to solve
the linear program (9). According to Proposition 9 (which also holds for c = 1),
the coefficients of the constraints of the linear program (9) are rational of size
polynomial in size(M). By, e.g. [25, Corollary 14.1a], to conclude that the linear
program (9) can be solved in time polynomial in size(M), it suffices to show
that there exists a polynomial time separation algorithm. In our setting, given a
d ∈ RS×S rational of size polynomial in size(M), the separation algorithm has
to decide whether d satisfies the constraints of (9) or not, and, in the latter case,
find in time polynomial in size(M) a separating hyperplane, i.e., an α ∈ QS×S

such that ∑
u,v∈S

d(u, v) · α(u, v) <
∑
u,v∈S

d′(u, v) · α(u, v) (10)

for all d′ ∈ RS×S that satisfy the constraints of (9).
Let d ∈ RS×S be rational of size polynomial in size(M). For each pair of

states s, t ∈ S, we consider the following linear program:

minimise
∑
u,v∈S du,v · ωu,v

such that
∑
v∈S ωu,v = πs,u∑
u∈S ωu,v = πt,v

ωu,v ≥ 0

(11)

This linear program is a minimum-cost flow problem for which there are ver-
sions of the network simplex algorithm that can compute an (ωu,v)u,v∈S , which
satisfies the constraints of (11) and minimizes the objective function, and that
are strongly polynomial time [1].

Note that d satisfies the constraints of (11) if and only if d(s, t) is smaller than
or equal to the optimal value of (11) for each pair of states s, t ∈ S. Otherwise,
there exists a pair of states s, t ∈ S such that d(s, t) is greater than the optimal
value of (11). Let ω ∈ V (Ωs,t) be a vertex that realizes the optimal value of (11).
As we have seen in Proposition 9, ω is rational of size polynomial in size(M).

It remains to define an α that satisfies (10). We define α in terms of ω as
follows:

α(u, v) =
{
ω(u, v)− 1 if (u, v) = (s, t)
ω(u, v) otherwise.

Proposition 17. Assume that d does not satisfy the constraints of (11). Then
for all d′ ∈ RS×S that satisfy the constraints of (11), we have (10).
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Proof. Since d does not satisfy the constraints of (11), there exists a pair of
states s, t ∈ S such that d(s, t) >

∑
u,v∈S d(u, v) · ω(u, v). Hence,∑

u,v∈S
d(u, v) · α(u, v) < 0. (12)

Let d′ ∈ RS×S satisfying the constraints of (11). Then d′(s, t) ≤
∑
u,v∈S d

′(u, v) ·
ω(u, v). Hence, ∑

u,v∈S
d′(u, v) · α(u, v) ≥ 0. (13)

¿From (12) and (13) we can immediately conclude (10). ut

6 Conclusions

It is interesting to compare the problem of computing the bisimilarity pseudo-
metric to that of computing the value of a Shapley stochastic game [12]. Both
problems involve computing a fixed point of a function F : Rn → Rn such that
computing F requires solving a linear program. However the function F is sim-
pler in the case of the pseudometric, being in particular polynomial piecewise
linear in the sense of [12]. On the other hand, for Shapley games the problem
of deciding whether the value of the game exceeds a given threshold is as hard
as the sum-of-square-roots problem—a problem not known even to be in NP.
The problem of approximating the value of a Shapely game is known to be in
PPAD, but is not known to be in P either.
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24. Zdeněk Sawa and Petr Jančar. Behavioural equivalences on finite-state systems

are PTIME-hard. Computers and Artificial Intelligence, 24(5):513–528, 2005.
25. Alexander Schrijver. Theory of Linear and Integer Programming. 1986.
26. David Thorsley and Eric Klavins. Approximating stochastic biochemical processes

with Wasserstein pseudometrics. IET Systems Biology, 4(3):193–211, 2010.
27. Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Com-

puting, 33(5):1093–1108, 2004.
28. Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of probabilistic

automata. SIAM Journal on Computing, 21(2):216–227, 1992.
29. Wen-Guey Tzeng. On path equivalence of nondeterministic finite automata. In-

formation Processing Letters, 58(1):43–46, 1996.
30. Antti Valmari and Giuliana Franceschinis. Simple O(m logn) time Markov chain

lumping. In TACAS, pages 38–52, 2010.



16 Di Chen, Franck van Breugel, James Worrell

A Some proofs

Due to the lack of space, for some results we only provide proof sketches. Below,
we provide complete proofs for some of those results.

A.1 The Distances are Rational

Recall that for each s, t ∈ S, the set Ωs,t is defined by

Ωs,t = {ω ∈ RS×S : ∀u, v ∈ S ω(u, v) ≥ 0∧
∀u ∈ S

∑
v∈S ω(u, v) = πs,u∧

∀v ∈ S
∑
u∈S ω(u, v) = πt,v }.

Note that ∑
u,v∈S

ω(u, v) =
∑
u∈S

πs,u = 1.

Hence, for all u, v ∈ S, ω(u, v) ≤ 1. Therefore, the set Ωs,t is bounded. We leave
it to the reader to verify that the set Ωs,t is convex. Hence, Ωs,t is a polytope.
Recall that V (Ωs,t) denotes the set of vertices of Ωs,t.

Next, we give a bound for the denominators of the vertices. We will use this
to bound the denominators of the distances.

Proposition 18. Let δ be the least common divisor of the denominators of π.
For each ω ∈ V (Ωs,t) and u, v ∈ S, ωu,v = p

δ for some 0 ≤ p ≤ δ.

Proof. By definition, a vertex is an intersection of hyperplanes given by the
(in)equalities defining Ωs,t. Obviously, the (in)equalities ω(u, v) ≥ 0 give rise to
zeroes. Let us focus on the other equalities. We multiply all πs,u and πt,v by
δ, turning them into integers. Obviously, it suffices to show that this modified
system of equations has an integral solution. By viewing (ω(u, v))u,v∈S and (δ ·
πs,u)u∈S(δ · πt,v)v∈S both as a vector, the system of equations can be captured
as the equation Aω = δπ. Let n be the number of states. Then A is an 2n× n2-
matrix. The first n rows are defined by

A(s,w),(u,v) =
{

1 if w = u
0 otherwise

and the second n rows are defined by

A(t,w),(u,v) =
{

1 if w = v
0 otherwise.

Note that all entries of A are zero or one, each column of A contains two ones,
one in the first n rows and one in the second n rows. Hence, we can conclude from
e.g. [25, page 276] that A is totally unimodular. From the proof of Theorem 15
of [2, page 111] we can conclude that the vector ω is integral. ut
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Now consider the set D defined by

D = { d ∈ RS×S : ∀s, t ∈ S `(s) 6= `(t)⇒ d(s, t) = 1∧
`(s) = `(t)⇒ ∀ω ∈ V (Ωs,t) d(s, t) ≤ c ·

∑
u,v∈S d(u, v) · ω(u, v)∧

d(s, t) ≥ 0∧
d(s, t) ≤ 1 }.

Obviously, the set D is bounded. Again, we leave it to the reader to verify that
the set D is convex. Let V (D) be the set of vertices of the polytope D. Next, we
give a bound for the denominators of these vertices as well.

Proposition 19. Let γ be the denominator of c. Let δ be the least common
divisor of the denominators of π. For each d ∈ V (D), there exists a q ≤
(γδ)n

2+1(n2)
n2
2 such that for all u, v ∈ S, d(u, v) = p

q for some 0 ≤ p ≤ q.

Proof. By definition, a vertex is an intersection of hyperplanes given by the
(in)equalities defining D. We can rewrite the inequality

d(s, t) ≤ c ·
∑
u,v∈S

d(u, v) · ω(u, v)

to ∑
u,v∈S

ω′(u, v) · d(u, v) ≥ 0

where

ω′(u, v) =
{
c · ω(u, v)− 1 if (u, v) = (s, t)
c · ω(u, v) otherwise

We multiply all ω′(u, v) by γδ, turning them into integers. Note that γδ·ω′(u, v) ≤
γδ, since ω(u, v) ≤ 1. We view (d(u, v))u,v∈S as a vector. The system of equations
can be formulated as Ad = 0 where the non-zero entries of the n2 × n2-matrix
A are ω′u,v. Cramer’s rule tells us that the denominators of d(u, v) divide the
determinant of A (multiplied by γδ). From the Hadamard’s inequality, we can
conclude that (γδ)n

2
(n2)

n2
2 is a bound for the the determinant of A. Hence, the

denominators of d(u, v) are bounded by (γδ)n
2+1(n2)

n2
2 . ut

Corollary 20. Let γ be the denominator of c. Let δ be the least common divisor
of the denominators of π. There exists a q ≤ (γδ)n

2+1(n2)
n2
2 such that for all

s, t ∈ S, dc(s, t) = p
q for some 0 ≤ p ≤ q.

Proof. Since the linear function mapping d ∈ D to
∑
s,t∈S d(s, t) achieves its

maximum at a vertex of D and dc is that maximum, the result follows from
Proposition 19. ut

Corollary 21. dc is rational.
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A.2 Couplings

We have already remarked that bisimilarity is closely related to the notion of
lumpability in Markov chains. The characterisation in Proposition 4 also illus-
trates a connection with the notion of coupling of Markov chains. For each
s, t ∈ S, let ω(s,t),(−,−) be a matching of πs,− and πt,−. Then the Markov chain
C = (S × S, ω) is a coupling (see, e.g., [3, Chapter 11] for a discussion of cou-
plings).

Such a coupling can be seen as two copies of M running sychronously, al-
though not necessarily independently. Couplings are used to give upper bounds
on convergence to stationary distributions. Here we use them to a slightly dif-
ferent end. Given a coupling C, as above, define the discrepancy of a state
(s, t) ∈ S × S, denoted dC(s, t), to be the probability that a trajectory of C
starting in state (s, t) reaches a state (u, v) with `(u) 6= `(v).

Formally, given a coupling C, we define ΓC : [0, 1]S×S → [0, 1]S×S as follows.
If `(s) 6= `(t) then ΓC(d)(s, t) = 1 and if `(s) = `(t) then

ΓC(d)(s, t) =
∑
u,v∈S

d(u, v) · ω(s,t),(u,v).

We leave it to the reader to check that ΓC is a monotone selfmap on [0, 1]S×S . By
Tarski’s fixed point theorem, ΓC has a least fixed point, which we denote by dC .
As we will show next, dC is closely related to our bisimilarity pseudometric d1.

Proposition 22. For every coupling C, d1 ≤ dC.

Proof. According to Tarski’s fixed point theorem, d1 is the least pre-fixed point
of ∆1. Hence, it suffices to show that dC is a pre-fixed point of ∆1 as well.
We distinguish two cases. If `(s) 6= `(t), then ∆1(dC)(s, t) = 1 = dC(s, t). If
`(s) = `(t) then

∆1(dC)(s, t) = min
ω∈Ωs,t

∑
u,v∈S

dC(u, v) · ω(u, v)

≤
∑
u,v∈S

dC(u, v) · ω(s,t),(u,v)

= dC(s, t).

ut

Proposition 23. For some coupling C, d1 ≥ dC.

Proof. We start by constructing a coupling, i.e., for each s, t ∈ S we give a
ω(s,t),(−,−) which is a matching of πs,− and πt,−. Let s, t ∈ S. If `(s) 6= `(t),
then we define ω(s,t),(u,v) = πs,u · πt,v. We leave it to the reader to verify that
ω(s,t),(−,−) which is a matching of πs,− and πt,−. If `(s) = `(t), then

d1(s, t) = min
ω∈Ωs,t

∑
u,v∈S

dC(u, v) · ω(u, v)
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since d1 is a fixed point of ∆1. Let ω(s,t),(−,−) be a vertex of Ωs,t which minimizes
the linear function mapping a matching ω to

∑
u,v∈S dC(u, v) · ω(u, v), i.e.

d1(s, t) =
∑
u,v∈S

dC(u, v) · ω(s,t),(u,v). (14)

By definition, ω(s,t),(−,−) is a matching of πs,− and πt,−.
Since dC is the least fixed point of ΓC , it suffices to show that d1 is a fixed

point of ΓC . If `(s) 6= `(t) then ΓC(d1)(s, t) = 1 = d1(s, t). If `(s) = `(t) then

ΓC(d1)(s, t) =
∑
u,v∈S

dC(u, v) · ω(s,t),(u,v)

= d1(s, t) [(14)]

ut

As a consequence of the above two propositions, the bisimilarity pseudomet-
ric d1 corresponds to the minimal coupling. Next, we will show that two states
have discrepancy zero in some coupling if and only if they are bisimilar.

Proposition 24. dC(s, t) = 0 for some coupling C if and only if s ∼ t.

Proof. ¿From Proposition 22 and 23 we can conclude that dC(s, t) = 0 for some
coupling C if and only if d1(s, t) = 0. In combination with Theorem 3, this gives
us the desired result. ut

The following simple lemma shows that the discrepancy can be used to bound
the variational distance between trace distributions. This can be seen as a quan-
titative version of the folklore that bisimilar states satisfy the same linear-time
properties.

Lemma 25 (Coupling Lemma). Let C be a coupling of the labelled Markov
chain M = (S,Σ, π, `). Then for any measurable set A ⊆ Σω and s, t ∈ S,

|PrM,s(A)− PrM,t(A)| ≤ dC(s, t) .

Proof. Let the random variable (X,Y ) ∈ Σω ×Σω denote the infinite sequence
of labels along a run of C that starts in state (s, t). Then

PrM,s(A) = Pr(X ∈ A)
≥ Pr((X = Y ) ∩ (Y ∈ A))
= 1− Pr((X 6= Y ) ∪ (Y 6∈ A))
≥ 1− Pr(X 6= Y )− Pr(Y 6∈ A)
= Pr(Y ∈ A)− Pr(X 6= Y )
= Pr(Y ∈ A)− dC(s, t)
= PrM,t(A)− dC(s, t) .

ut
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As a consequence of the Coupling Lemma and Proposition 23, we get that
our bisimilarity pseudometric is a bound for the variational distance between
trace distributions. In the lemma, we use PrM,s(A) to denote the probability
that a run of the labelled Markov chainM started in state s is in the set A. For
a formal definition of PrM,s(A) and a definition of measurable subset of the set
Σω of infinite sequences over Σ, we refer the reader to, e.g., [1, Chapter 10].

Corollary 26. For any measurable set A ⊆ Σω and s, t ∈ S,

|PrM,s(A)− PrM,t(A)| ≤ d1(s, t)(s, t) .

Whereas our bisimilarity pseudometric can be computed in polynomial time,
the variational distance between trace distributions is NP-hard to compute as
shown by Lyngsø and Pedersen in [21].
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