1. Let F, G and H be formulas and let S be a set of formulas. Which of the following statements are true? Justify your answer.

(a) If F is unsatisfiable, then $\neg F$ is valid.
(b) If $F \rightarrow G$ is satisfiable and F is satisfiable, then G is satisfiable.
(c) $P_1 \rightarrow (P_2 \rightarrow (P_3 \rightarrow \ldots (P_n \rightarrow P_1) \ldots))$ is valid.
(d) $S \models F$ and $S \models \neg F$ cannot both hold.
(e) If $S \models F \lor G$, $S \cup \{F\} \models H$ and $S \cup \{G\} \models H$, then $S \models H$.

2. Let F and G be two formulas.

(a) Explain the difference between F and G being equisatisfiable and them being logically equivalent.
(b) Explain very briefly the difference between $F \leftrightarrow G$ and $F \equiv G$.

3. Give an equational proof of the following equivalence, justifying each step with reference to the Boolean algebra axioms and the Substitution Rule as appropriate.

$$\neg((\neg P \lor Q) \land P) \lor Q \equiv \text{true}$$

4. Suppose that F and G are formulas such that $F \models G$.

(a) Show that if F and G have no variable in common then either F is unsatisfiable or G is valid.
(b) Now let F and G be arbitrary formulas. Show that there is a formula H, mentioning only propositional variables common to F and G, such that $F \models H$ and $H \models G$.

Hint. Recall that every truth table is realised by some propositional formula and consider what the truth table of H ought to look like: under which assignments must H be true and under which assignments must H be false?

5. A **perfect matching** in an undirected graph $G = (V, E)$ is a subset of the edges $M \subseteq E$ such that every vertex $v \in V$ is an endpoint of exactly one edge in M. Given a finite graph G, describe how to obtain a propositional formula φ_G such that φ_G is satisfiable if and only if G has a perfect matching. The formula φ_G should be computable from G in time polynomial in $|V|$.

6. Fix a non-empty set U. A **U-assignment** is a function from the collection of propositional variables to the power set of U, that is, \mathcal{A} maps each propositional variable to a subset of U. Such an assignment is extended to all formulas as follows:
• \(A[\text{false}] = \emptyset \) and \(A[\text{true}] = U \);
• \(A[\neg F] = U \setminus A[F] \).

Say that a formula \(F \) is \textbf{U-valid} if \(A[F] = U \) for all \textit{U}-assignments \(A \).

(a) Show that if \(F \) is \textit{U}-valid then \(F \) is valid with respect to the standard semantics defined in the lecture notes.
\textbf{Hint:} Show that each standard assignment \(A \) can be “simulated” by a certain \textit{U}-assignment \(A' \).

(b) Show that if \(F \) is valid then \(F \) is \textit{U}-valid.
\textbf{Hint:} Fix an arbitrary \(u \in U \) and argue that \(u \in A[F] \).

7. (a) Write down a \textbf{DNF}-formula equivalent to \((P_1 \lor Q_1) \land (P_2 \lor Q_2) \land \cdots \land (P_n \lor Q_n)\).

(b) Prove that any \textbf{DNF}-formula equivalent to the above formula must have at least \(2^n \) clauses.