Approximating a Behavioural Pseudometric
without Discount for Probabilistic Systems

Franck van Breugel', Babita Sharma', and James Worrell? *

! York University
4700 Keele Street, Toronto, M3J 1P3, Canada
2 Oxford University Computing Laboratory
Parks Road, Oxford, OX1 3QD, England

Abstract. Desharnais, Gupta, Jagadeesan and Panangaden introduced
a family of behavioural pseudometrics for probabilistic transition sys-
tems. These pseudometrics are a quantitative analogue of probabilistic
bisimilarity. Distance zero captures probabilistic bisimilarity. Each pseu-
dometric has a discount factor, a real number in the interval (0, 1]. The
smaller the discount factor, the more the future is discounted. If the dis-
count factor is one, then the future is not discounted at all. Desharnais
et al. showed that the behavioural distances can be calculated up to any
desired degree of accuracy if the discount factor is smaller than one. In
this paper, we show that the distances can also be approximated if the
future is not discounted. A key ingredient of our algorithm is Tarski’s
decision procedure for the first order theory over real closed fields. By
exploiting the Kantorovich-Rubinstein duality theorem we can restrict
to the existential fragment for which more efficient decision procedures
exist.

1 Introduction

For systems that contain quantitative information, like, for example, probabili-
ties, time and costs, several behavioural pseudometrics (and closely related no-
tions) have been introduced (see, for example, [4,6,8,12,13,16-19,26,31]). In
this paper, we focus on probabilistic transition systems, which are a variant of
Markov chains. Desharnais, Gupta, Jagadeesan and Panangaden [16] introduced
a family of behavioural pseudometrics for these systems. These pseudometrics
assign a distance, a real number in the interval [0, 1], to each pair of states of the
probabilistic transition system. The distance captures the behavioural similarity
of the states. The smaller the distance, the more alike the states behave. The
distance is zero if and only if the states are probabilistic bisimilar, a behavioural
equivalence introduced by Larsen and Skou [24].

The pseudometrics of Desharnais et al. are defined via real-valued interpre-
tations of Larsen and Skou’s probabilistic modal logic. Formulae assume truth
values in the interval [0,1]. Conjunction and disjunction are interpreted using

* The first and second author were supported by NSERC.



the lattice structure of the unit interval. The modality (a) is interpreted arith-
metically by integration. The behavioural distance between states s; and so is
then defined as the supremum over all formulae ¢ of the difference in the truth
value of ¢ in s; and in s9.

The definition of the behavioural pseudometrics of Desharnais et al. is para-
metrized by a discount factor d, a real number in the interval (0, 1]. The smaller
the discount factor, the more (behavioural differences in) the future are dis-
counted. In the case that 6 equals one, the future is not discounted. All differ-
ences in behaviour, whether in the near or far future, contribute alike to the
distance. For systems that (in principle) run forever, we may be interested in
all these differences and, hence, in the pseudometric that does not discount the
future.

In [14], Desharnais et al. presented an algorithm to approzimate the be-
havioural distances for § smaller than one. The first and third author [5] pre-
sented also an approximation algorithm for § smaller than one.

There is a fundamental difference between pseudometrics that discount the
future and the one that does not. This is, for example, reflected by the fact
that all pseudometrics that discount the future give rise to the same topology,
whereas the pseudometric that does not discount the future gives rise to a dif-
ferent topology (see, for example, [16, page 350]). As a consequence, it may not
be surprising that neither approximation algorithm mentioned in the previous
paragraph can be modified in an obvious way to handle the case that § equals
one.

The main contribution of this paper is an algorithm that approximates be-
havioural distances in case the discount factor  equals one. Starting from the
logical definition of the pseudometric by Desharnais et al., we first give a charac-
terisation of the pseudometric as the greatest (post-)fixed point of a functional
on a complete lattice [0,1]°, where S is the set of states of the probabilistic
transition system in question. This functional is closely related to the Kan-
torovich metric [22] on probability measures. Next, we dualize this characteriza-
tion exploiting the Kantorovich-Rubinstein duality theorem [23]. Subsequently,
we show, exploiting the dual characterization, that a pseudometric being a post-
fixed point can be expressed in the existential fragment of the first order theory
over real closed fields. Based on the fact that this first order theory is decidable, a
result due to Tarski [29], we show how to approximate the behavioural distances.
Finally, we discuss an implementation of our algorithm in Mathematica.

Exploiting the techniques put forward in this paper, we have also developed
an algorithm to approximate the behavioural pseudometric that is presented in
[3]. Due to lack of space, we cannot present this algorithm here. That other
algorithm and also the proofs of the results in this paper can be found in [28].

3 More generally, de Alfaro [11] and McIver and Morgan [25] have given real-valued
interpretations to the modal mu-calculus following this pattern. Moreover, de Alfaro
has shown that the behavioural pseudometrics induced by mu-calculus formulae
agree with those of [16].



2 Systems and pseudometrics

Some basic notions that will play a role in the rest of this paper are presented
below. First we introduce the systems of interest: probabilistic transition sys-
tems.

Definition 1. A probabilistic transition system is a tuple (S,m) consisting of

— a finite set S of states and
— a function 7 : S x S —[0,1]NQ satisfying >, .g7(s,s") € {0,1}.

We write s — if 3 cqgm(s,8") =1 and s £~ if Y, gm(s,s) =0.

For states s and s’, 7(s, s’) is the probability of making a transition to state s’
given that the system is in state s. Each state s either has no outgoing transi-
tions (s /) or a transition is taken with probability 1 (s —). To simplify the
presentation, we do not consider the case that a state s may refuse to make a
transition with some probability, that is, >, g 7(s, s’) € (0,1). However, all our
results can easily be generalized to handle that case as well (see [28]). We also
do not consider transitions that are labelled with actions. All our results can
also easily be modified to handle labelled transitions (see [28]). In the labelled
case, the definition of probabilistic transition system is a mild generalisation of
the notion of Markov chain.

In the rest of this paper, we will use the following probabilistic transition
system as our running example.

Ezample 1. We consider a probabilistic transition system with five states: sq, ss,
s3, sS4 and s5. The following table contains the transition probabilities and, hence,
captures w. The probabilistic transition system be depicted as the following
graph.

S1 82 83 S4 S5
5110 %%00 2
sol-= 0 0 L L 5

2|70 5 10 s17 P sy
s3l0 01 00 — 1
540 0000 ﬂ_gl N
s5(0 0 0 01

1683 S4 8531

We consider states of a probabilistic transition system behaviourally equiva-
lent if they are probabilistic bisimilar [24].

Definition 2. Let (S,7) be a probabilistic transition system. An equivalence
relation R on the set of states S is a probabilistic bisimulation if s1 R so implies
YoecpT(51,8) = > cpm(s2,s) for all R-equivalence classes E. States s1 and
sg are probabilistic bisimilar, denoted s1 ~ sa, if s1 R s for some probabilistic
bisimulation R.

Note that probabilistic bisimilar states s; and so have the same probability
of transitioning to an equivalence class E of probabilistic bisimilar states.



Ezample 2. Consider the probabilistic transition system of Example 1. The small-
est equivalence relation containing (ss, s5) is a probabilistic bisimulation. Hence,
the states s3 and s5 are probabilistic bisimilar.

The behavioural pseudometrics that we study in this paper yield pseudomet-
ric spaces on the state space of probabilistic transition systems.

Definition 3. A I-bounded pseudometric space is a pair (X,dx) consisting of
a set X and a distance function dx : X x X — [0, 1] satisfying

1. forallz e X, dx(x,z) =0,
2. foralz,yeX,dx(z,y)=dx(y,x), and
3. forallzx,y, z€ X, dx(z,2) <dx(z,y) +dx(y, 2)-

Instead of (X,dx) we often write X and we denote the distance function of a
metric space X by dx.

A (1-bounded) pseudometric space differs from a (1-bounded) metric space
in that different points may have distance zero in the former and not in the
latter. Since different states of a system may behave the same, such states will
have distance zero in our behavioural pseudometrics.

In the characterization of a behavioural pseudometric in Section 4 nonexpan-
sive functions play a key role.

Definition 4. Let X be a 1-bounded pseudometric space. A function f : X —
[0, 1] is nonexpansive if for all x1, x2 € X,

|f(z1) = f(x2)| < dx (21, 72).

The set of nonexpansive functions from X to [0,1] is denoted by X —= [0, 1].

3 Behavioural pseudometrics

Desharnais, Gupta, Jagadeesan and Panangaden [16] introduced a family of
behavioural pseudometrics for probabilistic transitions systems. Below, we will
briefly review the key ingredients of their definition.

To define their behavioural pseudometrics, Desharnais et al. defined a real-
valued semantics of a variant of Larsen and Skou’s probabilistic modal logic [24].
We describe this variant, adapted to the case of unlabelled transition systems,
in Definition 5.

Definition 5. The logic L is defined by
pu=true | Op[pAp|-p|poq

where ¢ € [0,1]N Q.



The main difference between the above logic and the one of Larsen and Skou
is that we have Oy and ¢ © g whereas they combine the operators ¢ and ©q into
one. Since they consider labelled transitions, they use the notation (a), for this
combined operator.

Desharnais et al. provided a family of real-valued interpretations of the logic.
That is, given a probabilistic transition system and a discount factor §, the
interpretation gives a quantitative measure of the validity of a formula ¢ of the
logic in a state s of the system. The interpretation [¢]s(s) is a real number in
the interval [0, 1]. It measures the validity of the formula ¢ in the state s. This
real number can roughly be thought of as the probability that ¢ is true in s.

Definition 6. Given a probabilistic transition system (S, ) and a discount fac-
tor 6 € (0,1], for each ¢ € L, the function [¢]s : S — [0,1] is defined by

[true]s(s) =1
[0els(s) = 62y cq m(s, ) els (s")
[ A 1#]}6%8; = min{[0]s(s), [¥]s(s)}

le © dls(s) = max{[¢]s(s) — ¢, 0}

Ezxample 3. Consider the probabilistic transition system of Example 1. For this
system, [Otrue]s(ss) = d and [Otrue]s(ss) = 0.

Given a discount factor ¢ € (0, 1], the behavioural pseudometric ds assigns a
distance, a real number in the interval [0, 1], to every pair of states of a probabilis-
tic transition system. The distance is defined in terms of the logical formulae and
their interpretation. Roughly speaking, the distance is captured by the logical
formula that distinguishes the states the most.

Definition 7. Given a probabilistic transition system (S, ) and a discount fac-
tor 6 € (0,1], the distance function ds: S x S — [0,1] is defined by

ds(s1,52) = Zglg[[@]]é(sl) — [¢ls(s2).

Ezample 4. Consider the probabilistic transition system of Example 1. For ex-
ample, the states s3 and sy are ¢ apart. This distance is witnessed by the formula
Otrue. The distances? are collected in the following table. Since a distance func-
tion is symmetric and the distance from a state to itself is zero, we do not give
all the entries.

|s1 52 S3 S4
s 2552 —267

2| 125—-256—3502+7063
s 253 552

3|25—752 25762
S4l0 ) 1)

253 552

85|25 762 25702 0 0

4 These distances were obtained “by hand” and checked for numerous different dis-
count factors using the algorithm described in [5].



Proposition 1 ([16, Theorem 5.2]). ds is a I-bounded pseudometric space.

Each behavioural pseudometric ds is a quantitative analogue of probabilistic
bisimilarity. This behavioural equivalence is exactly captured by those states
that have distance zero.

Proposition 2 ([16, Theorem 4.10]). Given a probabilistic transition system
(S, ) and a discount factor 6 € (0,1], for all s1, s2 € S,

ds(s1,s2) =0 if and only if s1 ~ sa.

In [14], Desharnais et al. present a decision procedure for the behavioural
pseudometric ds when § is smaller than one. Let us briefly sketch their algorithm.
They define the depth of a logical formula as follows.

depth(true) =0
depth(Qp) = depth(p) + 1
depth(¢ A 1) = max{depth(y), depth())}
depth(—y) = depth(e)
depth(p © q) = depth(e)

One can easily verify that [¢]s(s1) — [¢]s(s2) < 69€Pth) for each ¢ € L.
This suggests that one can compute ds to any desired degree of accuracy by
restricting attention to formulae ¢ of a fixed modal depth. Clearly, there exist
infinitely many formulae of each fixed modal depth. Nevertheless Desharnais et
al. show how to construct a finite subset F,, of the logical formulae of at most
depth n such that

ds(s1,52) — sup [@]s(s1) — [p]s(s2) < 0™
wEeFn
In this way, ds(s1, s2) can be approximated up to arbitrary accuracy provided &
is smaller than one.

4 A fixed point characterization and its dual

For the rest of this paper, we focus on the behavioural pseudometric that does
not discount the future. That is, we concentrate on the pseudometric d;. Below,
we present an alternative characterization of this pseudometric. In particular, we
characterize d; as the greatest (post-)fixed point of a function from a complete
lattice to itself. This characterization can be viewed as a quantitative analogue
of the greatest fixed point characterization of bisimilarity [27].

We also dualize the definition of A exploiting the Kantorovich-Rubinstein
duality theorem [23]. As we will see in Section 5, this dual characterization will
allow us to define A as the solution to a minimization problem rather than a
maximization problem, as above. In turn this will allow us to capture the fact
that a pseudometric is a post-fixed point of A in the existential fragment of the
first order theory over real closed fields.

For the rest of this paper, we fix a probabilistic transition system (S, ). We
endow the set of pseudometrics on S with the following order.



Definition 8. The relation C on 1-bounded pseudometrics on S is defined by
di C do ifdl(Sl,SQ) > dQ(Sl,SQ) fO’f’ all S1, S2 € S.

Note the reverse direction of C and > in the above definition. We decided
to make this reversal so that d; is a greatest fixed point, in analogy with the
characterization of bisimilarity, rather than a least fixed point. This choice has
no impact on any results in this paper.

Proposition 3 ([15, Lemma 3.2]). The set of 1-bounded pseudometrics on S
endowed with the order T forms a complete lattice.

Next, we introduce a function from this complete lattice to itself of which
the behavioural pseudometric d; is the greatest fixed point.

Definition 9. Let d be a 1-bounded pseudometric on S. The distance function
A(d) : S x S —[0,1] is defined by

A(d)(s1,5) = max { S £(s)(n(s1,8) — (53, 5)) \ f e (S.d) = [0,1] }

seSs

o oy = ond a0 )= {1 0L

Proposition 4. A(d) is a I-bounded pseudometric on S.

To conclude that A has a greatest fixed point, it suffices to show that A is
order-preserving.

Proposition 5. A is order-preserving.

According to Tarski’s fixed point theorem [30, Theorem 1], the fixed points
of an order-preserving function on a complete lattice form a complete lattice
and, hence, the function has a greatest fixed point. We denote the greatest fixed
point of A by gfp(A). This greatest fixed point of A is also the greatest post-fixed
point of A (see, for example, [10, Theorem 4.11]°).

Theorem 1. d; = gip(A).

The greatest fixed point of an order-preserving function on a complete lattice
can be obtained by iteration (see, for example, [10, Exercise 4.13]).

Definition 10. For each ordinal «, the I1-bounded pseudometric d* on S is
defined by

=T
dett = A(d®)
d’ = |_| d® if B is a limit ordinal
a€Eef

® d is a post-fized point of A if d T A(d). In [10, page 94], such a d is called a pre-
fixpoint.



For A, we need to iterate (at most) w times before reaching the greatest fixed
point. For the system of Example 1 we need w iterations.
Proposition 6. gfp(A) = d“.

Let us recall (a minor variation of) the Kantorovich-Rubinstein duality theo-
rem. Let X be a 1-bounded compact pseudometric space. Let p; and o be Borel
probability measures on X. We denote the set of Borel probability measures on

the product space with marginals @7 and pueo, that is, the Borel probability mea-
sures £+ on X2 such that for all Borel subsets B of X,

(B x X) = p1(B) and p(X x B) = pa(B),

by p1 ® puz. The Kantorovich-Rubinstein duality theorem tells us

maX{/X fd,ul_/deM2

The following proposition, which is a consequence of the Kantorovich-Rubinstein
duality theorem, defines A(d) as a minimum as opposed to the maximum in Def-
inition 9.

fEXﬁ;[O,l]}:min{/ dxdu‘ME/u@,ug}.
X2

Proposition 7. Let d be a 1-bounded pseudometric on S. Let s1, so € S such
that s1 — and sy —. Then

A(d)(s1, 52) = min Yo dlsiysiulsiysg)

(si,85)€S52

we 7T(81, ) ® 7T(827 )

where p € (s1,-) ® T(s2,-) if

Vs; €5 Z w(si,85) = m(s1,85) ANVs; €5 Z w(si, s5) = m(s2,8;).

s, €S SjGS

5 The algorithm

Before we present our algorithm, we first show that the fact that a pseudometric
is a post-fixed point of A can be expressed in (the existential fragment of) the
first order theory over real closed fields. This will allow us to exploit Tarski’s
decision procedure to approximate the behavioural pseudometric.

For the rest of this paper, we assume that the probabilistic transition system
(S, m) has N states s1, s2, ..., sn. Instead of 7(s;,s;) we will write m;;. We
represent a 1-bounded pseudometric on the set S of states of the probabilistic
transition system, as (the values of) a collection of real valued variables d;;.

The fact that d is a 1-bounded pseudometric can now be captured as follows.



Definition 11. The predicate pseudo(d) is defined by

pseudo(d) = /\ dij Z 0A dij S 1N

1<i,j<N
N di=0n N\ dij=din N dny <dnitdi
1<i<N 1<i,j<N 1<h,i,j<N

Furthermore, the fact that d is a post-fixed point of A can be captured as
follows.

Definition 12. The predicate post-fixed(d) is defined by

post-fixed(d)

= N\ post-fixed, (d, o, jo) V post-fixedy(d, io, jo) V post-fixeds (d, io, jo)
1<io,jo<N

where

post-fixed, (d, ig, jo) = Z Tigi > 0 A Z Tjo5 > 0 A

1<i<N 1<j<N
pigh<ijen N\ 1 =0/ p; <1
1<i <N

N DD iy = migg A

1SN 1SN

N DD g =i A

1<i<N 1<j<N

D dijpi < digg

1<i,j<N
post-fixed, (d, ig, jo) = Z Tigi = 0A Z Tjoj = O N0 < digj
1<i<N 1<j<N
post-fixeds(d, ig, jo) = Z Tigs > 0 A Z Tjj =0 | V
1<i<N 1<j<N
Z T = 0 A Z Tjoj >0 A
1<i<N 1<j<N

1< diojo
Now we are ready to present our algorithm. Consider the states s;, and s,.
We restrict our attention to the case that s;, — and s;, —. In the other cases
the computation of the distance is trivial.
In our algorithm, we use the algorithm tarski that takes as input a sentence
of the first order theory of real closed fields and decides the truth or falsity of
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the given sentence. The fact that there exists such an algorithm was first proved
by Tarski [29].

Let € be the desired accuracy. That is, we want to find an interval [£g, ug] C
[0,1] such that ug—£y < e and di(s;y, Sj,) € [fo, o). The algorithm approximate
takes as input an interval [¢,u] C [0, 1] such that di(s;,,sj,) € [¢,u] and returns
the desired result. As a consequence, approximate(0, 1) returns an approxima-
tion of di (s, Sj,) With accuracy e.

approximate({, u):

if u—V0<e
return [, u]

else
n -
if tarski(3dpseudo(d) A post-fixed(d) A dsyj, < M)

return approximate(f, m)

else

return approximate(m, u)

Note that the argument of tarski is a sentence that is part of the existen-
tial fragment of the first order theory over real closed fields. For this fragment
there are more efficient decision procedures than for the general theory (see, for
example, [2]).

Let us sketch a correctness proof of our algorithm. Assume that dq(s;,, j,) €
[¢,u]. We distinguish the following three cases.

— If u — £ < ¢, then the algorithm obviously returns the desired result.

— Assume that u—¢>e¢ and suppose that tarski returns true. Then there exists
a 1-bounded pseudometric d that is a post-fixed point of A and d(s;,, s5,) <
m. Since d; is the greatest post-fixed point of A, we have that d C d;. Hence,
d1(Sig, Sjo) < d(siy,85,) < m. Therefore, di(siy, sj,) € [£,m].

— Assume that u—¢>e¢ and suppose that tarski returns false. Then d(s;,, sj,)>
m for every 1-bounded pseudometric d that is a post-fixed point of A.
Since dy is a post-fixed point of A, we have that di(s;,,s;,) > m. There-
fore, di(siy, S5,) € [m, ul.

Obviously, the algorithm terminates.

6 An implementation in Mathematica

A decision procedure for the first order theory of real closed fields based on
quantifier elimination was first given by Tarski [29]. A number of algorithms have
been developed thereafter for the theory (see, for example, [2,9,21]). Collin’s
algorithm is implemented in the tool Mathematica and can be used for solving
our formulae. However, it works for very small examples and therefore it is
essential to simplify the formula and reduce its size to make it solvable. To
simplify the formula, we first compute some of the distances using the following
results.
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Proposition 8.

— If s1 # and s2 /> then di(s1,s2) = 0.
— If s1 # and s2 —, or s1 — and so /> then di(s1,s2) = 1.

Ezample 5. Consider the probabilistic transition system of Example 1. State sy
has distance one to all other states.

Next, we present a simple characterization of the distance between a state
that never terminates (that is, the probability of reaching a state with no out-
going transitions is zero) and another state.

Given a state s and n € w + 1, 7,,(s) is the probability of terminating in less
than n transitions when started in s.

Definition 13. For each n € w + 1, the function 7, : S — [0,1] is defined by

To(s) =0
1 if s
T7L+1(S) - { ZS’GS 71—(5’ Sl)Tn(SI) otherwise
7w (8) = sup,cq, Tn(s)

Example 6. Consider the probabilistic transition system of Example 1. Then we
have that 7,(s1) = g, Tw(s2) = %, Tw(s3) =0, Tw(s4) = 1 and 7,(s5) = 0.

Obviously, for a state s without outgoing transitions, we have that 7,(s) = 1.
For a state s that cannot reach any state without outgoing transitions, we have
that 7,,(s) = 0. For the remaining states, we can compute the probability of
termination using standard techniques as described in, for example, [20, Sec-
tion 11.2].

Proposition 9. If 7,(s2) =0 then di(s1,$2) = Tw(81)-

Ezxample 7. Consider the probabilistic transition system of Example 1. From
Proposition 9 we can conclude that di(s1, s3) = %, di(s2,53) = =, dy(84,53) =1

18°
and dy (ss5, s3) = 0.

Given a probabilistic bisimulation R, we can quotient the probabilistic tran-
sition system (S, ) as follows.

Definition 14. Let R be a probabilistic bisimulation. The probabilistic transi-
tion system (Sg,mRr) consists of

— the set Sg ={[s] | s € S} of R-equivalence classes and
— the function g : Sg x Sg — [0,1] defined by

mr(s) ) = 37 (s, "),
s""Rs’

Note that the function mx is well-defined since R is a probabilistic bisimula-
tion. We will apply the above quotient construction for probabilistic bisimilarity
(which can be computed in polynomial time [1]).
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Ezample 8. Consider the probabilistic transition system of Example 1. The small-
est equivalence relation containing {(ss, s5)} is a probabilistic bisimulation. The
resulting quotient can be depicted as

—
1@[83] 7 [s4]

By quotienting, the number of states that need to be considered and, hence,
the number of variables in the formula may be reduced. However, we still have
to check that the quotiented system gives rise to the same distances. Next we
relate the behavioural pseudometric d; of the original system (S, 7) with the
behavioural pseudometric dg of the quotiented system (Sg,7Rr).

il

Proposition 10. For all s1, s2 € S, dr([s1], [s2]) = di1(s1, s2).

To simplify the formula even further, we exploit the following three observa-
tions.

— Since d is a pseudometric, di(s;, s;) = 0 and di1(s;, sj) = di (s, s;). Therefore,
in pseudo(d) A post-fixed(d) we can replace all d;;’s with zero and all d;;’s
where 7 > j with dj;;’s. As a consequence, we only need to consider d;;’s with
i < j. This reduces the number of variables in the formula considerably.

— Let C be the set of pairs of states for which the distances have already been
computed. Then

Jd pseudo(d) A post-fixed(d) A diyj, < m
is equivalent to

Jd pseudo(d) A post-fixed(d) A dipj, < m A /\ dij = di(8:,85)
(i,5)eC

since d; is the greatest post-fixed point. As a consequence, we can replace
all d;;’s where (7,7) € C with their already computed distances di(s;, s;).
Again, the number of variables may be reduced.

— If m;,; = 0, we can infer that p;; = 0 for all 1 <4 < N. As a consequence,
we can replace the occurrences of all those p;;’s with 0. Symmetrically, if
Tjos = 0 we can simplify the formula similarly. Also this simplification may
reduce the number of variables.

We have implemented these simplifications in the form of a Java program
that takes as input the probability matrix 7 and that produces as output the
simplified formula in a format that can be fed to Mathematica.®

® The code and documentation is available at the URL
www.cse.yorku.ca/~franck/research/pm2m.
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Ezample 9. Consider the probabilistic transition system of Example 1. The sim-
plified formula for this system is given below.

Reduce [
Exists[d12,
(0 <= d12 <= 1) && (0.11112 <= d12 + 0.27778) && (d12 <= 0.38889) &&
Exists[{u12,u13,u32,u42,u43,u33},
(0 <= ul2 <= 1) && (0 <= ulld <= 1) && (0 <= u32 <= 1) &&
(0 <= u42 <= 1) && (0 <= ud3 <= 1) &&
(u1l2 + u32 + u42 == 0.4) && (uil3 + u43 + u33 == 0.6) &&
(ul2 + ul3 == 0.7) && (u32 + u33 == 0.1) && (ud42 + ud3 == 0.2) &
(d12 * ul2 + 0.11112 * ul3 + 0.27778 * u32 + u42 + u43 <= di12)] &&
Exists[{u21,u23,u24,u31,u33, u34},
(0 <= u21 <= 1) && (0 <= u23 <= 1) & (0 <= u24 <= 1) &
(0 <= u31 <= 1) && (0 <= u34 <= 1) &&
(u21 + u31 == 0.7) && (u23 + u33 == 0.1) && (u24 + u34 == 0.2) &
(u21 + u23 + u24 == 0.4) && (u31 + u33 + u34 == 0.6) &&
(d12 * u21 + 0.27778 * u23 + u24 + 0.11112 * u31 + u34 <= d12)] &&
(0 <= d12 <= 0.5)]]

Line 3 correspond to pseudo(d), line 4-9 correspond to post-fixed, (d, 1,2) and
line 10-15 correspond to post-fixed, (d, 2, 1). The formula was reduced to true by
Mathematica in 8.2 seconds on a 3GHz machine with 1GB RAM. When feeding
Mathematica the formula that has not been simplified, it runs out of memory
after some time.

We also attempted to solve this example with a solver called QEPCAD B [7]
but the performance of Mathematica on this example was better.

7 Conclusion

This paper combines a number of ingredients, known already for a long time, in-
cluding the Kantorovich-Rubinstein duality theorem of the fifties, Tarski’s fixed
point theorem of the fourties and Tarski’s decision procedure for the first order
theory of real closed fields of the thirties. We show that the behavioural pseudo-
metric dy, which does not discounts the future, can be approximated up to an
arbitrary accuracy. While the combination of the above results into a decision
procedure for the pseudometric is not technically difficult, we do solve a prob-
lem that has been open since 1999. Most of the results in Section 3 and 4 are
(variations on) known results. As far as we know, the results in Section 5 and 6
are new. The techniques exploited in this paper have also been used to approx-
imate other behavioural pseudometrics that do not discount the future like, for
example, the one presented in [3]. Furthermore, our algorithm can easily be ad-
justed to the discounted case. As future work, we plan to apply our techniques
to obtain approximation algorithms for other behavioural pseudometrics like,
for example, the one presented in [13]. Since the satisfiability problem for the
existential fragment of the first order theory of the real closed fields is PSPACE
[2], it is not surprising that our algorithm can only handle small examples as we
have shown in Section 6. As a consequence, the quest for practical algorithms
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to approximate d is still open. Since the closure ordinal of A is w, as proved in
Proposition 6, an iterative algorithm might be feasible.
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