
User Guide for TwoVect.m

A Mathematica Package for 2–Vector Spaces

Daniel A. Roberts

September 20, 2012

Contents

1 Introduction

This package was designed as an aid to performing calculations in 2Vect, the 2-category
of 2-vector spaces. Particularly important examples of such calculations involve verifying
the axioms of in monoidal 2-vector spaces, of which modular tensor categories (MTCs)
are of particular interest. The package was developed as part of my Master’s thesis at
the University of Oxford [7]. Please see the thesis for a more in depth overview of the
category theoretic structures involved and the underlying design of the package.

1.1 2-Categories and 2-Vector Spaces

A category consists of a set of objects and a set of arrows or morphisms that go between
the objects. 2-categories are further generalizations in category theory and may be
thought of as categories of categories [6]. A 2-category extends the idea of a category—objects
and morphisms—to include a higher level structure: morphisms between parallel morphisms.
In lieu of such complicated terminology, the field has created the terms 0-cell, 1-cell, and
2-cell to mean object, morphism, and morphism between parallel morphisms, respectively.

Vect is the category of vector spaces. The objects are n-dimensional vector spaces
and morphisms are the n × m linear maps between n-dimensional vector spaces and
m-dimensional vector spaces.

2Vect is the category of 2-vector spaces. The objects, N, are n copies of the
1-category Vect in a Cartesian product. 2Vect is a symmetric monoidal 2-category—it
is endowed with a bifunctor that maps 2 objects to another (and the order of the
combination may be swapped). In this paradigm, modular tensor categories are structures
to be found within 2Vect. In fact, the structure of 2Vect is general enough to represent
many different types of categories, not just MTCs.

Practically, 2-vector spaces involve a lot of 2-matrices whose elements themselves are
matrices (i.e. matrices of matrices).Composition and tensor product of 0-cells, 1-cells, and
2-cells in 2Vect is“finite dimensional higher linear algebra”—i.e. a“2”-linear algebra—which
is just as important as ordinary finite-dimensional linear algebra, but technically much
more involved. The package TwoVect.m implements this 2-linear algebra.

1

2Vect label actual representation isomorphism

0-cell 2

[
Vecta

Vectb

]

2

1-cell f : 2 → 3

Cn Cm

Cp Cq

Cr Cs

n m
p q
r s

“state” of 0-cell: 2 ψ ε 2

[
Ca

Cb

] [
a
b

]

“state” as a 1-cell ψ : 1 → 2

[
Ca

Cb

] [
a
b

]

Table 1: Example of a 0-cell, 1-cell, and “states” of a 0-cell for 2Vect. The 0-cell is
actually two copies of the category Vect, but we represent it as the number 2. The 1-cell
is actually a 3×2 matrix of vector spaces, but we represent it as a 3×2 matrix of numbers.
A state of 2 is a 2 × 1 matrix of vector spaces (i.e. a column vector), but we represent
it as a 2 × 1 matrix of numbers. Furthermore, the equivalence between the two ways of
thinking about “states” should be clear. From the categorical viewpoint of 2Vect, we do
not “look inside” the 0-cells to find the states, but can access them via 1-cells. We can
then apply morphisms to them via 1-cell composition.

To represent 2Vect, we make use of isomorphisms between the n-cells in the 2-category
and various orders of matrices [3, 1, 5]. We use natural numbers to represent 0-cells,
matrices of natural numbers to represent 1-cells, and matrices of matrices of complex
numbers to represent 2-cells. Formally, we’ve modeled 2Vect in Mathematica as a
skeletal, non-strict monoidal 2-category. So, in our Mathematica model, equivalent 0-cells
are equal and isomorphic 1-cells are equal. An example of the actual and isomorphic
representations of 0-cells and 1-cells is shown in Table 1. An example of a 2-cell is shown
in equation 2.

Consider the following example. If we have the following 1-cells f : 2 →3 and g :
2 →3, they will both be 3×2 dimensional matrices going from 2 copies of Vect to 3 copies
of Vect. Each element represents a vector space of dimension given by that element. Let
them be given by

f =

1 2
3 4
2 1

 (1)

g =

3 4
2 5
2 1

2

then a 2-cell α : f ⇒ g would have the form

a1,1

a2,1

a3,1

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2

[
c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

]

d1,1 d1,2 d1,3 d1,4

d2,1 d2,2 d2,3 d2,4

d3,1 d3,2 d3,3 d3,4

d4,1 d4,2 d4,3 d4,4

d5,1 d5,2 d5,3 d5,4

[
e1,1 e1,2

e2,1 e2,2

]

[f1,1]

(2)

1.2 Structural Isomorphisms

A further complication arises due to our representation not being strict. While working
with symmetric 2-monoidal 2-categories like 2Vect, we quickly find that many expressions
that are equal when working with symmetric monoidal categories will only hold up
to isomorphism. The presence of 2-cells provides an extra “degree of freedom” in the
structure by which certain equations no longer hold.

For instance, in the definition of a symmetric monoidal category (for instance, Vect),
we are told S ◦ (f ⊗ g) = (g ⊗ f) ◦ S, where f and g are morphisms, and S is the swap
operation [2]. In 2Vect, these 1-cells will no longer be of the same type. Furthermore,
related equations between 2-cells will no longer hold. To mediate between type, 2Vect is
endowed with a structural 2-cell isomorphism, denoted σf,g, to allow monoidally combined
1-cells to commute with the swap.1

However, by no longer of the same type, we mean something subtle. The two 1-cells,
S ◦(f�g) and (g�f)◦S, must always give the same functor (i.e. the same 1-cell matrix)
in our representation. But these are not the same one cell, even if they have the same
representation. This is due to the strictification implicit in our representation of 1-cells,
our treating matrices of vector spaces as matrices of numbers. Composed parallel 1-cells
leads to horizontal composition in the 2-cells that go between them. At the 2-cell level,
we will have different 2-cells, and without any subtlety, idS •(μ�ν) 6= (ν�μ)• idS, where
μ : f ⇒ f ′ and ν : g ⇒ g′.2 Essentially, this is just a statement about 2-matrices, and in
many cases about commutativity or associativity of the underlying tensor products and
direct sums. From a non-categorical perspective, going from S ◦ (f � g) to (g � f) ◦ S
will induce an implicit change of basis either the element-matrices or outer-matrices of
the associated 2-cells (or both).

As a result, we require three such structures, the swap structure σ, the interchange
structure τ , and the associator structure ω. To represent them, we make use of the

1The 2-cell is denoted σf,g because it is the structure tailored to two specific 1-cells, f and g, that
is a 2-cell. The components of σ are 2-cells, and σ itself is some higher level 2-transformation. (cf. the
relationship between natural transformations and their component arrows). This will be true of all of
the structural isomorphism presented in this section.

2This is not a surprise since we are not using any strictification in our representation of 2-cells—we
are representing them as they actually are.

3

σf,g

f g
g f

Figure 1: σ structural isomorphism

τg,f,i,h

f

g

h

i

f

g

h

i

Figure 2: structural isomorphism τ

diagrammatic language (or graphical calculus) as formulated by Joyal and Street for
working with symmetric monoidal categories [4], but we extend it to work with symmetric
monoidal 2-categories, such as 2Vect.

For 1-categories, each picture represents a morphism or process3—time flows from
bottom to top, objects are represented by lines, and morphisms are represented by boxes.
Objects are monoidally combined by being placed next to each other. The identity
morphism is just a line—i.e. nothing happens to the object. Two different pictures, two
different morphisms, are either equal or unequal; the structure of 1-categories does not
allow for any other relationship.

In 2-categories, pictures can be related in many ways—they can be equal, they can be
isomorphic, or related by a non-invertible 2-cell. Thus, we can have arrows between
pictures—arrows between morphisms—i.e. 2-cells. Additionally, these diagrams are
bracketed in 2-dimensions or boxed in order to specify their type. Figure 1 is the diagram
for the 2-cell σf,g, which moves the 1-cells f and g past a swap (and in the process swaps
their order). Figure 2 is the diagram for the 2-cell τg,f,i,h, which mediates between the
1-cells (g ◦ f)� (i ◦ h) and (g � i) ◦ (f � h). Figure 3 is the diagram for the 2-cell ωh,g,f ,
which mediates between the 1-cells h ◦ (g ◦ f) and (h ◦ g) ◦ f .

For 1-categories, bracketing is important, and one usually makes use of different
structures to rebracket. Similarly, for 2-categories, this generalization of rebracketing—boxing—is
necessary to compute equations.

For more information on these structures and for their explicit construction, please

3This goes hand-in-hand with the focus of category theory being the morphisms rather than the
objects.

4

ωh,g,f

f

g

h

f

g

h

Figure 3: structural isomorphism ω

see the thesis [7].

1.3 Finding 1-Categories, N -Dimensional 2-Vector Spaces (e.g.
MTCs)

Since the objects of 2Vect are categories, we will find our 1-categories of interest, which
are necessarily N -dimensional 2-vector spaces, as objects inside 2Vect. For instance,
Fib, the Fibonacci modular tensor category (which is a N -dimensional 2-vector space
with N = 2 and will be discussed at length in the first tutorial in Section 5.1), is thus the
object 2, endowed with a bunch of extra structure. 4 As such, the N -dimensional 2-vector
space can be “accessed” as HomCat(1, N) inside 2Vect. So, an object of N corresponds
to a 1-cell in 2Vect, and a morphism of N corresponds to a 2-cell of 2Vect.

A monoidal 2-vector space can be seen as structure internal to 2Vect, just as an
ordinary algebra is structure internal to Vect. Therefore, just as checking the axioms
for an ordinary algebra is an exercise in ordinary linear algebra, checking the axioms of
a monoidal 2-vector space is an exercise in 2-linear algebra, which is perfectly suited for
this package.

In addition handling monoidal 2-vector spaces, this package can also deal with fancier
structures and properties—i.e. braidings, twists, duals for objects, modularity, etc. All
of the axioms of MTCs are already built in, but the package may be easily extended to
work with any 2-vector space of interest (see Section 5.2 for a tutorial).

1.4 Calculate String Diagrams

Finally, this package can make it very easy to perform string diagram calculations within
a given monoidal 2-vector space, such as a modular tensor category. For instance, the
diagram in Figure 4 in Fib is computed with the following code:

4i.e. a 1-cell m : 4 → 2 given by [1 0 0 1
0 1 1 1] and a bunch of other 2-cells that all together satisfy the

MTC axioms, some of which is discussed in Sections 4.5 and 5.2.

5

Figure 4: string diagram for a nontrivial process of type τ ⊗ τ → τ

Needs["MTCategories‘"]

SetMTCFib[]

proj = {{{−1, {1 → 0}}}, {{{1}}}} // TwoCell

inj = {{{{1}}}, {{−1, {0 → 1}}}} // TwoCell

proj ∙ (proj⊗ proj) ∙ α[τ ⊗ τ, τ, τ] ∙ (inv[α[τ, τ, τ]] ⊗ τ) ∙
((τ ⊗ inj) ⊗ τ) ∙ (inv[ρ[τ]] ⊗ τ) // FullSimplify // TwoCellForm

The first line loads the required package. The second line selects the monoidal category
“Fib” to be active. The third and fourth lines define projection and injection maps. The
final line is a direct algebraic representation of the string diagram, as given in equation 3.
Mathematica returns the 2-cell

(
01→0(

−
√

GoldenRatio
1+GoldenRatio

)
)

as the solution.

(τ ⊗ u) ⊗ τ
(idτ⊗ητ)⊗idτ // (τ ⊗ (τ ⊗ τ)) ⊗ τ

α−1
τ,τ,τ⊗idτ

$$IIIIIIIIIIIIIIIIIIIIIII

τ ⊗ τ

ρ−1
τ ⊗idτ

88qqqqqqqqqqq

((τ ⊗ τ) ⊗ τ) ⊗ τ

ατ⊗τ,τ,τ

yytttttttttttttttttttttt

τ

τ ⊗ τ

pτ

ggNNNNNNNNNNNNN
(τ ⊗ τ) ⊗ (τ ⊗ τ)

pτ⊗pτ

oo

(3)

For the full tutorial, please see Section 5.1.

6

2 Setup

2.1 Package “Installation”

The package consists of three separate package files: TwoVect.m, MTCategories.m, and
MTCategory.m. To “install” them, either place them in a directory on Mathematica’s
path or add their location to the path. To see directories on the path, enter the following
in a notebook:

$Path

This will output a list of all the directories on the path. To add the current directory of
the project files to the path, enter:

AppendTo[$Path, ToFileName[{PackageLocation}]];

where PackageLocation is a string to the directory where the files are located. For
example, if the files are in the directory C:\Category Theory\MTCPackage\, you would
enter:

AppendTo[$Path, ToFileName[{"C:\\Category Theory\\MTCPackage"}]];

Standard escape characters are necessary when entering strings in Mathematica, so you
must enter “\\” in order to enter the backslash in the path to the files.

N.B. The AppendTo command must be used each time Mathematica is loaded (since
the path resets). If, instead, the files are placed in a default path directory, no further
action is necessary upon Mathematica restarts.

2.2 Using a Sub-Package

To use a function from any of the packages, Mathematica must be told that the function
you are calling requires the package. This can be done at the top of your notebook using
the Needs command. The format is the name of the package followed by the ‘ character.
For instance, to use the three different packages, in order from lowest level to highest
level, the commands would be:

Needs["TwoVect‘"]

Needs["MTCategories‘"]

Needs["MTCategory‘"]

Furthermore, due to dependencies (the higher level sub-packages depend on all the lower
level sub-packages), loading a higher level package will automatically load all the functions
from the lower level package.

7

2.3 Sub-Package Differences

This package contains three different sub-packages, each operating at a different level
(roughly low-level, mid-level, and high-level), where the level refers to how close the user
is to the underlying 2-category, 2Vect, and simplicity of the coding.

TwoVect.m gives you access to the raw 2-category 2Vect, and has no structural
support for containing special categories (like MTCs), although, of course, such structure
can be implemented on top of it.

MTCategories.m implements exactly that structure. This sub-package allows for
manipulation of any number of modular tensor categories and of monoidal functors
between them.

MTCategory.m is the highest level package. It allows for manipulation of any particular
monoidal 2-vector space, which the user can set globally. In most cases in the user guide,
the monoidal 2-vector space of interest will be a modular tensor category, although it does
not have to be. The MTC must be formally set using the SetMTC function, but the
syntax is very simple and makes almost no references to 2-category formalism. In many
cases, the syntax is identical to the labels you place on arrows in MTC arrow diagrams.
Finally, string diagram calculations within the category can be performed directly using
this package. Please see Section 5.1.1 for an example.

3 Input Format and Display Commands

3.1 Mathematica Special Symbols

To enter Greek letters, operators, or other special symbols into a Mathematica notebook,
you can go to Insert → Special Characters, and then select the desired symbol.

Alternatively, you can use keyboard shortcuts. This is done by pressing the esc key,
entering the shortcut, and then pressing esc again. The shortcut for most Greek letters
is their corresponding Roman letter. For instance, to enter α, you type esc a esc.

Finally, the shortcut for ⊗ is ’c* ’ (so you enter esc c * esc), the shortcut for ∙ is ’.’,
the shortcut for � is ’c.’, and the shortcut for ◦ is ’sc’.

3.2 0-Cells

In this representation, 0-Cells are numbers. Thus, there is no special input format or
display command. Furthermore, they are usually implicitly handled by the 1-cells and
2-cells and are not normally inputted by themselves.

3.3 0-Dimensional Matrices

This package makes use of 0-dimensional matrices, where at least one of the dimensions
(but not necessarily both) of the matrix are 0. These are entered in the form:

zeroMat = {-1,{c->r}}

where c is the number of columns, r is the number of rows, and at least one of r and
c must be 0. The whole input {−1, {c → r}} stands in explicitly for the empty r × c
matrix.

8

3.4 1-cells

In this representation, 1-cells are matrices. The safest way to input a 1-cell is as a
matrix. The matrix can then be passed to the function OneCell. For instance, to input
the matrix [

1 0 0 1
0 1 1 1

]

(the fusion rules for Fib) and convert it to a 1-cell, you would use the following commands
into a Mathematica notebook:

mFib = OneCell[{{1, 0, 0, 1}, {0, 1, 1, 1}}]

As a result, the input matrix

{{1, 0, 0, 1}, {0, 1, 1, 1}}

is converted to

{{{1, 0, 0, 1}, {0, 1, 1, 1}},{4 -> 2}}

which is the form in which 1-cells are stored. The second part shows that the 1-cell goes
from the 0-Cell 4 to the 0-Cell 2 (it is also the number of columns and the number of
rows of the input matrix, respectively).

Alternatively, you could have just inputted

mFib = {{{1, 0, 0, 1}, {0, 1, 1, 1}},{4 -> 2}}

with the same result. However, be careful, by inputting 1-cells directly, there is no check
to ensure that the matrix corresponds correctly with the inputted 0-Cells. Instead, it is
better to input a matrix and convert it.

To display the 1-cell in a form similar to the Mathematica MatrixForm command,
you can use the command OneCellForm:

OneCellForm[mFib]

or, identically,

mFib // OneCellForm

with the result being

{(
1 0 0 1
0 1 1 1

)

, (4 → 2)

}

9

3.5 2-cells

In this representation, 2-cells are matrices of matrices, or 2-matrices. Mathematica can
naturally handle 2-matrices, and then they can be converted to 2-cells with the command
TwoCellForm (in analogy to 1-cells). Let us look at the associator for Fib. As a 2-cell,
is has the form:

α =

[1] ∅0×0 ∅0×0 [1] ∅0×0 [1] [1] [1]

∅0×0 [1] [1] [1] [1] [1] [1]

[
ϕ−1 ϕ− 1

2

ϕ− 1
2 −ϕ−1

]

where, for instance (and using our conventions for the fusion rules in Section 4.4), the
matrix in the bottom right represents ατττ

τ . Additionally, ϕ is the golden ratio, and ∅0×0

symbolizes 0-dimensional matrix of dimensions 0 × 0. To input this into Mathematica as
a 2-matrix, we can either input it all at once, or input all the individual element-matrices
first and then create a matrix of them. For this example, we will show the latter method:

α11 = {{1}}

α12 = {-1,{0->0}}

α13 = {-1,{0->0}}

α14 = {{1}}

α15 = {-1,{0->0}}

α16 = {{1}}

α17 = {{1}}

α18 = {{1}}

α21 = {-1,{0->0}}

α22 = {{1}}

α23 = {{1}}

α24 = {{1}}

α25 = {{1}}

α26 = {{1}}

α27 = {{1}}

α28 = {{GoldenRatio^-1,GoldenRatio^(-1/2)},{GoldenRatio^(-1/2),-GoldenRatio^-1}}

N.B. all of these entries MUST be matrices. Thus, for instance, for α11 we must use still
use two curly brackets and not just enter {1}.

Now, the element matrices can be combined into a 2-matrix

αTwoMat = {{α11,α12,α13,α14,α15,α16,α17,α18},{α21,α22,α23,α24,α25,α26,α27,α28}}

We can display 2-matrices in a pleasing form with the command TwoMatrixForm in a
manner similar to MatrixForm. The 2-matrix can then be converted into a 2-cell by:

αFib = TwoCell[αTwoMat]

which returns the ridiculously ungainly

10

{{{{{1}}, {-1, {0 -> 0}}, {-1, {0 -> 0}}, {{1}}, {-1, {0 -> 0}}, {{1}}, {{1}},

{{1}}}, {{-1, {0 -> 0}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}},

{{1/GoldenRatio, 1/Sqrt[GoldenRatio]}, {1/Sqrt[GoldenRatio],

-(1/GoldenRatio)}}}}, {{{{1, 0, 0, 1, 0, 1, 1, 1},

{0, 1, 1, 1, 1, 1, 1, 2}}, {8 -> 2}} -> {{{1, 0, 0, 1, 0, 1, 1, 1},

{0, 1, 1, 1, 1, 1, 1, 2}}, {8 -> 2}}}}

To display this in a reasonable form, use TwoCellForm:

TwoCellForm[αFib]

which displays

{

(1) 00→0 00→0 (1) 00→0 (1) (1) (1)

00→0 (1) (1) (1) (1) (1) (1)

(
1

GoldenRatio
1√

GoldenRatio
1√

GoldenRatio
− 1

GoldenRatio

)

,

1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 2

,(8→2)

→

1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 2

,(8→2)

}

where the 00→0 entries are the 0×0, 0-dimensional matrices. Following the 2-matrix part
of the 2-cell is the source and destination 1-cells.

Alternatively, you can enter 2-cells directly in the correct form (without creating
2-matrices), but, again, be careful because there is no check to make sure the 1-cell and
0-Cells are in the correct form (i.e. that all the dimensions match up correctly).

Finally, and probably the easiest method for inputting 2-cells, you can get a 2-cells in
the correct form with variable entries by specifying its source and destination 1-cells. The
values of the individual element-matrix elements (i.e. the numbers) can then easily be
filled in by giving values to those variables. This method would be analogous to entering
a matrix by specifying its dimensions, getting a matrix of variables of those dimensions,
and then individually setting those variables to their appropriate values.

As an example, let us enter the braid β for Fib. We want to enter

β =

[1] ∅0×0 ∅0×0

[
e−

4
5
iπ
]

∅0×0 [1] [1]
[
e

3
5
iπ
]

 (4)

Furthermore, we know that from the 2-category perspective, β : m ⇒ m ◦ S2,2, with
S2,2 : 2 � 2 → 2 � 2 and m : 2 � 2 → 2, where m are the 1-cell fusion rules for Fib
and S2,2 is the swap 1-cell. Thus, to get a β of the right form we can use the function
GenerateVariableTwoCell. The inputs are the source and destination 1-cells. We
already have the source, mFib, from Section 4.4. If not, we need to load it with the
command

mFib = {{1, 0, 0, 1}, {0, 1, 1, 1}} // OneCell

11

To create the required swap 1-cell, we call

S22 = GetOneCellSwap[2, 2]

Now, we can generate the variable 2-cell

βFib = GenerateVariableTwoCell[mFib, mFib ◦ S22]

This gives the output

{{{{{a3}}, {-1, {0->0}}, {-1, {0->0}}, {{a4}}}, {{-1, {0->0}}, {{a5}}, {{a6}},

{{a7}}}}, {{{{1, 0, 0, 1}, {0, 1, 1, 1}}, {4->2}} ->

{{{1, 0, 0, 1}, {0, 1, 1, 1}}, {4->2}}}}

We can look at this in a more reasonably form by entering

TwoCellForm[βFib]

Now we can set the variables a3 through a7 to their appropriate values. A quick
comparison with Equation 4 shows that we need to enter

a3 = 1

a4 = Exp[-4*I*Pi/5]

a5 = 1

a6 = 1

a7 = Exp[3*I*Pi/5]

We can now confirm that what we have is correct by displaying the result

TwoCellForm[βFib]

This method of generating variable 2-cells (prior to setting the variables) can also be used
to display the various equations that the 2-cells may satisfy and (in the cases where they
are small enough) solve them.

3.6 Loading and Using a Category with MTCategory.m

The sub-project MTCategory.m allows you to load and work in a single specific MTC.
However, the MTC must first be loaded. This can be done by individually specifying the
structures and then passing them to the SetMTC function. Additionally, two MTCs
have been preloaded, Fib and Ising, and can be set by the commands SetMTCFib and
SetMTCIsing, respectively.

First, let us specify that we will be working in MTCategory.m. We assume that you
have already added the package files to Mathematica’s path as explained in Section 3.1.
As per the Section 3.2, we enter

Needs["MTCategory‘"]

to load the package.
Now, if we want to work with Fib, we enter

12

SetMTCFib[]

and we are done. If we want to working with Ising, we enter

SetMTCIsing[]

and we are done. This command will output all the different structures that are defined,
except the nontrivial anyons. Due to the way in which the structures are stored, the
preloaded SetMTC commands do not load the nontrivial anyon(s), although it does tell
you what they are. Instead, you can very easily set them yourself, see the tutorial in
Section 5.1.1 for details. Now, we can check to make sure the loaded category is an MTC
with the command

IsMTC[]

After a short time (while Mathematica is checking all the axioms), it will print out True.
If you want to work with a different MTC (or even see if a proposed set of structures

satisfies any/all of the MTC axioms), you can specify your own structures. To set an
MTC, you only need to input the 1-cells: fusion rules and the unit. This is enough to
determine the form of the other structures, i.e. the 2-cells. Thus, SetMTC takes two
arguments, the 1-cell fusion rules and the 1-cell unit.

Let us pretend that Fib was not preloaded. First, we shall enter the fusion rules and
unit.

fuse = {{1,0,0,1},{0,1,1,1}} // OneCell

unit = {{1},{0}} // OneCell

Now, we can use set the form of the MTC

SetMTC[fuse, unit]

which prints out the 2-cell structures of the MTC and instructions for how to finish
loading it.

While the structures are still variable, we can look at the equations that must be
satisfied for the various axioms to hold and attempt to solve them (for instance, if
searching for new solutions). For instance, type

GetPentagonEquation[]

to see in a nicely displayed form the system of pentagon equations for Fib, whose solution
yields the Fib associator. To get them in a form that can be fed to a solver, use

GetPentagonEquation[False]

where the argument sets the DisplayForm variable to False, allow the output to be
handled by Mathematica. Each and every axiom can be printed or checked. Please
see Section 6.3 for more details about these (and similar) functions.

To set everything to the correct values for Fib, we enter (using semicolons to suppress
the output)

13

a3 = 1;

a4 = 1;

a5 = 1;

a6 = 1;

a7 = 1;

a8 = 1;

a9 = 1;

a10 = 1;

a11 = 1;

a12 = 1;

a13 = 1;

a14 = GoldenRatio^-1;

a15 = GoldenRatio^(-1/2);

a16 = GoldenRatio^(-1/2);

a17 = -GoldenRatio^-1;

which completes the associator,

a22 = 1;

a23 = Exp[-4*I*Pi/5];

a24 = 1;

a25 = 1;

a26 = Exp[3*I*Pi/5];

which completes the braid,

a27 = 1;

a28 = Exp[4*I*Pi/5];

which completes the twist,

a18 = 1;

a19 = 1;

a20 = 1;

a21 = 1;

which completes the left and right unitors.5 After all these values are set, run

IsMTC[]

to ensure that you entered everything correctly (or to test if your new structures satisfy
all the axioms). In fact, each axiom can be checked individually. Please see Section 6.3
for a complete list. Furthermore, if we run

GetPentagonEquation[]

5N.B. the numbers are generated by Mathematica and may not always be the same (it creates an
unused variable of the form a#, where # takes the next available value. If you run SetMTC again,
the names will be different. The names used above are the names that generated for the first use in a
session, assuming all those names are free.

14

now, we see that all the equations hold.
At any time, to view the loaded category, you can run

PrintMTC[]

Finally, if you want to load a structure directly, you can do that with a Set command.
Let us do something silly. Get the form of the associator with the command

Getα[]

This will return the 2-cell α. Now, let us change the first entry to a 2 and set it back.

αbad = {{{{{1}}, {-1, {0 -> 0}}, {-1, {0 -> 0}}, {{1}}, {-1, {0 -> 0}}, {{1}},

{{1}}, {{1}}}, {{-1, {0 -> 0}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}}, {{1}},

{{1/GoldenRatio, 1/Sqrt[GoldenRatio]}, {1/Sqrt[GoldenRatio],

-(1/GoldenRatio)}}}}, {{{{1, 0, 0, 1, 0, 1, 1, 1},

{0, 1, 1, 1, 1, 1, 1, 2}}, {8 -> 2}} -> {{{1, 0, 0, 1, 0, 1, 1, 1},

{0, 1, 1, 1, 1, 1, 1, 2}}, {8 -> 2}}}}

Setα[αbad]

Now, type

PrintMTC[]

and you can see that the bad α has been loaded.
Now, try

IsMTC[]

and you see that Mathematica (correctly) returns False.
Finally, as you might have guessed, you can use Get commands to get any of the

loaded structures. For example,

Getm[]

Getu[]

Getα[]
Getβ[]
Getθ[]
Getρ[]
Getλ[]

returns the 1-cell fusion rules, the 1-cell unit, the 2-cell associator, the 2-cell braid, the
2-cell twist, the 2-cell right unitor, and the 2-cell left unitor, respectively.

15

Figure 5: string diagram for a nontrivial process that takes τ ⊗ τ to τ

Figure 6: string diagram for the simplest process that takes τ ⊗ τ to τ

4 Tutorials

4.1 String Diagram Amplitudes

In this tutorial, we will calculate the amplitude of a “string” diagram, demonstrating how
it can be done using the highest level Mathematica package.6

The specific string diagram that we will calculate will be within the modular tensor
category Fib and is shown in Figure 5. Fib consists of one nontrivial particle species,
the τ anyon. Figure 5 shows the fusion of two τ anyons (i.e. τ ⊗ τ) into a τ anyon by way
of some other processes. We want to compute the amplitude of this process compared
to the process where the two τ ’s simply fuse into a τ anyon, which is shown in Figure 6.
We can imagine needed to compute the amplitude for the nontrivial process due to some
sort of topological obstruction (i.e. it takes place in a handle in the source 3-dimensional
topological field theory) that prevents us from simplifying it to Figure 6. N.B. In this
diagram (and all following string diagrams), time runs up from the bottom, the solid line
represents τ anyons, and the dashed line represents the trivial u anyon (which is the same
as the vacuum).

In standard arrow form, we can represent Figure 5 as

6By this, I mean “string” in the monoidal categorical sense, not the string theory sense.

16

(τ ⊗ u) ⊗ τ
(idτ⊗ητ)⊗idτ // (τ ⊗ (τ ⊗ τ)) ⊗ τ

α−1
τ,τ,τ⊗idτ

$$HHHHHHHHHHHHHHHHHHHHHHH

(τ ⊗ τ)

ρ−1
τ ⊗idτ

88ppppppppppp

((τ ⊗ τ) ⊗ τ) ⊗ τ

ατ⊗τ,τ,τ

yytttttttttttttttttttttt

τ

τ ⊗ τ

pτ

ggOOOOOOOOOOOOO
(τ ⊗ τ) ⊗ (τ ⊗ τ)

pτ⊗pτ

oo

where ρ is the right unitor, α is the associator, ηA is a map from u to A ⊗ A∗ (and since
τ ∗ = τ , ητ is a map from the vacuum to τ ⊗ τ), and pτ is the τ projector.7 We are trying
to calculate the composition of these six arrows, which is the amplitude for the process.

As stated before, this package contains three different sub-packages, each operating
at a different level (roughly low-level, mid-level, and high-level), where the level refers to
how close the user is to the underlying 2-category, 2Vect, and simplicity of the coding.
In our discussion of this tutorial so far, we have only operated at the 1-category level.
Both the arrow diagrams and string diagrams are standard representations for MTCs at
the l-category level.

4.1.1 Using MTCategory.m

To work within a single MTC at the 1-category level, we use the sub-package MTCategory.m.
We assume that you have already added the package files to Mathematica’s path as explain
in Section 3.1. Note: all three package files must be added as MTCategory.m depends on
the other two.

To start, we must specify that we want to use the functions in MTCategory.m. As
per the Section 3.2, we enter

Needs["MTCategory‘"]

to load the package. Now, we must “load” the MTC that we intend to work with. Since
Fib is one of two preloaded MTCs, this is done by the command

SetMTCFib[]

This command will load all the structures of Fib (and prints them out in a nicely
displayed form). However, due to the way in which the structures are stored, the preloaded
SetMTC commands do not load the nontrivial anyon(s), although it does tell you what
they are. Thus, next we need to load τ as a 1-cell (alright, so we cannot entirely escape
the 2-category formalism). This is done by the command

τ= {{0},{1}} // OneCell

7Since the τ ⊗ τ fusion rule for Fib is τ ⊗ τ → u ⊕ τ , there is always projection map that takes you

from τ ⊗ τ to τ . The arrow representation of Figure 6 is simply τ ⊗ τ
pτ // τ .

17

i.e. we take the matrix

[
0
1

]

and convert it into a 1-cell. To confirm that this is correct,

we can display it in 1-cell form by

τ // OneCellForm

and here we can easily see that this output is matched to the output for τ from the
function SetMTCFib[].

Finally, before we begin calculating the amplitude, we need to load two 2-cells that
also are not preloaded. Remember, 1-cells correspond to the objects of the MTC and
2-cells correspond to the morphisms. So we need to create two of the morphisms from
the arrow diagram we are trying to compute. Luckily, they are very simple. From the
MTC point of view, we need to create the morphisms pτ : τ ⊗ τ → τ and ητ : u → τ ⊗ τ .
From the 2-category point of view, these are given by

pτ =

∅0×1

[1]

ητ =

[1]

∅1×0

These can be inputted directly a 2-matrices and then converted to 2-cells via

pτ = {{{-1,{1->0}}},{{{1}}}} // TwoCell

ητ = {{{{1}}},{{-1,{0->1}}}} // TwoCell

However, they can also be inputted using helper functions to make the task less daunting
(one only needs to know how to input 1-cells, which is really just inputting matrices). In
this case, you would enter

pτ = GenerateVariableTwoCell[τ⊗τ, τ]
ητ = GenerateVariableTwoCell[Getu[], τ⊗τ]

where the function Getu[] returns the 1-cell unit for Fib (which is pre-loaded). These
two commands return, respectively,

{{{{-1, {1->0}}}, {{{a3}}}}, {{{{1}, {1}}, {1->2}} -> {{{0}, {1}}, {1->2}}}}

{{{{{a4}}}, {{-1, {0->1}}}}, {{{{1}, {0}}, {1->2}} -> {{{1}, {1}}, {1->2}}}}

and thus we simply set

a3 = 1

a4 = 1

to complete the entry of the 2-cells.8 Either way, please consult Section 4.5 for a full
guide on inputting 2-cells.

8The amplitudes are set to 1 because: for ητ , this is the morphism that satisfies the snake equation, and
for pτ , we want to calculate the amplitude of the string diagram in 5 compared to just this morphism—for
simplicity we set it to 1.

18

Now that all the 1-cells and 2-cells are loaded, we can calculate the amplitude.
With this sub-package, calculating morphisms is as simple as reading them off from the
arrow labels and then composing them. The six morphisms (which, from the 2-category
perspective are 2-cells) are:

a = inv[ρ[τ]]⊗id[τ];
b = (id[τ]⊗ητ)⊗id[τ];
c = inv[α[τ,τ,τ]]⊗id[τ];
d = α[τ⊗τ,τ,τ];
e = pτ⊗pτ;
f = pτ;

cf. the six arrows in the diagram above. The Mathematica code is essentially identical to
the labels on the arrows, with the exceptions being the need to use the inv function
(that computes the inverse of a 2-cell) and the need to treat subscripts as function
arguments. Everything is built in (once an appropriate MTC is loaded with SetMTC
or SetMTCFib) except for τ , pτ , and ητ , which we loaded before.

To find the result, we need to compose the morphisms. This can be done in two
different ways. First, we can compose them using ∙ operator, just as you would write out
the composition. Using the convention that the earlier ones go to the right, we have

f∙e∙d∙c∙b∙a // FullSimplify

where the FullSimplify is used to help simplify the result (and parenthesis are unnecessary
since the composition is associative). Alternatively, you can make a list of the morphisms
(in this case, with the earlier ones to the left) and use the Compose2Cells command

list = {a, b, c, d, e, f};

Compose2Cells[list] // FullSimplify

Of course, you don’t need to make use of the temporary variables a, b, c, d, e, or f,
instead, to calculate the amplitude you could have simply written,

(inv[ρ[τ]]⊗id[τ]) ∙ ((id[τ]⊗ητ)⊗id[τ]) ∙ (inv[α[τ,τ,τ]]⊗id[τ]) ∙ α[τ⊗τ,τ,τ] ∙
(pτ⊗pτ ∙ pτ)) // FullSimplify

making sure to put parenthesis around each 2-cell to be composed, since Mathematica
does not know to do ⊗ before ∙. Either and any way, the result will be the same.
The output will be a 2-cell. Use the TwoCellForm command to display it in a more
meaningful form. The result should look like

∅0×1

[
−

√
ϕ

1+ϕ

]

The top cell gives the amplitude for the output to be a u (i.e. the final fusion product).
But we explicitly made the output a τ with our final morphism, pτ . Thus, it is a
0-dimensional matrix showing that this does not happen. The bottom cell gives the
amplitude for the output to be a τ . For some reason, Mathematica will not simplify this
further, but since 1 + ϕ = ϕ2, this is equivalent to −ϕ− 3

2 , which is the correct answer.
Thus, we find that there is a nontrivial amplitude for this process.

19

4.2 Solving New Equations

The sub-packages MTCategories.m and MTCategory.m are designed to work with many
or one MTC. In order to work with other 2-vector spaces that are not modular tensor
categories, we must work solely with TwoVect.m—i.e the low-level 2-linear algebra operations
and the 2-cell structural isomorphisms discussed in Section 2.2.

However, for this example, we will show you how to implement an equation that the
package already implements, the pentagon equation of monoidal categories. From this, it
should be clear how to generalize the method to any equation of interest within 2-vector
spaces.

This entire tutorial is demonstrated in the notebook New Equation (Pentagon) Tutorial.m.
The pentagon equation, shown as equation 5, is an axiom of monoidal categories

specifying that the two different ways of rebracketing four objects must be equal. By Mac
Lane’s coherence theorem [6], this will ensure that all the different ways of rebracketing
objects for n > 4 will also be equal.

((A ⊗ B) ⊗ C) ⊗ D
αA⊗B,C,D

**UUUUUUUUUUUUUUUU
αA,B,C ⊗ idD

ttiiiiiiiiiiiiiiii

(A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C,D

��

(A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D

��
A ⊗ ((B ⊗ C) ⊗ D)

idA⊗αB,C,D

// A ⊗ (B ⊗ (C ⊗ D))

(5)

4.2.1 Entering the Equation

To start, we must specify that we want to use the functions in TwoVect.m. As per the
Section 3.2, we enter

Needs["TwoVect‘"]

to load the package. Remember, don’t forget to first load the path as described in
Section 3.1.

Let us start by defining our function:

PentagonEquation[m_, α_] := Module[{longpath, shortpath, n, nmn, mnn},

(*the rest of the code will go here*)

]

We define a function PentagonEquation, which is a function of the 1-cell product
functor, m, and the 2-cell associator α. This function will either confirm that a given
α solves the pentagon equation, or will generate the equations that a variable α must
solve. The function Module tells Mathematica to create a list of variables whose scope is
only within the brackets []. Thus, we are creating local variables longpath, shortpath, n,
nmn, and mnn, which we will soon see correspond to the two paths through the pentagon
equation (one has three arrows, the other has two arrows, since it is a pentagon) and also
various short notation for commonly used expressions.

Next, we will define these shortcut variables:

20

n = GetDest[m];

Since m is a 1-cell, its destination will be a 0-cell. By definition, n will be a number
corresponding to the base number of objects in the category of interest—i.e. the n in the
n-dimensional 2-vector space. For Fib, this is 2.

Next, let us define the next two variables, nmn and mnn.

nmn = (n�m)�n;

mnn = (m�n)�n;

It may be hard to see, but these are 1-cells. The operation � computes the n-cell
tensor-product. For 0-cells, this is simple multiplication. For 1-cells, this is the matrix
tensor-product. For 2-cells, this is the 2-matrix tensor product. If one of the arguments
is a different cell type than the other, the one that is lesser is automatically promoted to
an (n+1)-cell by the operation id[arg], which takes either a 0-cell or a 1-cell and returns
the identity 1-cell or 2-cell, respectively. In fact, there are many different ways of writing
the above expressions. For instance,

nm = n�m;

nm = id[n]�m;

nm = GetIdentityOneCell[n]�m;

nm = OneCellTimes[id[n],m];

nm = OneCellTimes[GetIdentityOneCell[n],m];

all do the same thing. However,

nm = OneCellTimes[n,m];

will fail because OneCellTimes is a more primitive function and doesn’t automatically
promote n-cells to (n + 1)-cells. For brevity and the fact that it works regardless of cell
type, the first method is usually preferred. However, you must be careful to realize what
your actual cell type will be. When in doubt, test the expression in a scrap notebook.
Finally, since all the tensor products are associative, it does not matter how you bracket
when using �, and in fact, � is a n-ary operation.

Now, we are ready to begin coding the equation.
The first step, when presented with any such 1-category equation, is to convert it

to a 2-category equation using diagrammatic notation. This will elucidate the required
reboxing moves and thus indicate the proper expressions to enter into the Mathematica
function.

First, for all the new structures, we need to establish the source and destination
type—i.e. the boxing of the source and destination 1-cells—so we won’t have a type
mismatch when applying them. In this case, the new structure is α, and we will establish
its type by boxing the source and destination as shown in Figure 7. From the perspective
of 1-categories, α is a natural transformation with components αA,B,C : (A ⊗ B) ⊗ C →
A ⊗ (B ⊗ C). However, in 2Vect, natural transformations are 2-cells, and the tensor
product functor for the monoidal category inside 2Vect (which was just shown as ⊗) is
a 1-cell of 2Vect that we call m. Thus, we represent (A⊗B)⊗C as a diagram in 2Vect
with stacked m’s, and we represent A⊗ (B⊗C) as a diagram in 2Vect with stacked m’s
in a different way, to show their different bracketing. Additionally, we must box these

21

α

m

m

m

m

Figure 7: α

m

m

m

Figure 8: The start state to the pentagon equation, ((A ⊗ B) ⊗ C) ⊗ D.

source and destination diagrams. Since we are defining α, we can pick any boxing—i.e.
since it’s a definition we get to define its type. Boxing is done by picking two elements
of the diagram at a time (that are either next to each other or follow each other) and
putting a box around them.9 Once the type is set, it must be used consistently through
the same equation. Thus, in order to apply a 2-cell, such as α, it may be necessary to
rearrange the boxing into the appropriate form to get the correct type. This can only be
done by the structural isomorphisms, and this process of diagramming the equation will
force us to insert all the necessary structures.

Once we have diagrams for all our new structures, we start by drawing the 1-cell
start state, ((A ⊗ B) ⊗ C) ⊗ D, as a diagram in 2Vect. This is done using the same
method above to draw A ⊗ (B ⊗ C), including the boxing. Again, the start state may
be arbitrarily boxed (as long as the rules for boxing are followed) from the beginning as
long as it is kept consistent. However, let us box in the way shown in Figure 8.

9N.B. Lines are implicitly the identity 1-cell. Thus, an arbitrary number of boxes may be drawn and
removed from lines, since they may represent one or more identities.

22

α

idm

m

m

m

m

m

m

Figure 9: pentagon equation, path 1, step 1: αA,B,C ⊗ idD

Now, since both paths through the pentagon must be equal, we will have a string of
diagrams for each path.

We we start with the longer three-legged path. Thanks to our fortuitous initial boxing,
the diagram is in the right form for αA,B,C ⊗ idD (as it is written from the 1-category
perspective) to be applied—we can see embedded in the lower left of the diagram the
correct type for the source of α as we boxed it in Figure 7. Thus, we apply α to that part
and apply the 2-cell identity to the m at the top. The result is shown in Figure 9. In the
destination 1-cell, we see that α was applied in the lower left, and the rest of the diagram
remained unchanged. The 2-cell we applied, αA,B,C ⊗ idD from the view of the 1-category,
is shown drawn above the arrow. From the 2Vect perspective, this is idm ◦ (α � ididn),
where n is the base 0-cell for this category. In this, we correspond the αA,B,C with the
α, the idD with the ididn (that is, the identity 2-cell taken from the identity 1-cell on the
base 0-cell of the category), and the ⊗ with the idm. Thus, we can begin to see that by
writing this equation within 2Vect, we will be able to test the equation for all simple
objects (and thus all objects) of the MTC. We are no longer concerned with arbitrary
objects A, B, C, and D, but instead will test for every combination by operating at the
2-cell level of 2Vect.

The part of the diagram we enter into Mathematica is the middle diagram that sits
over the arrow. Näıvely, we would write this as:

TwoCellHorizontalComposition[GetIdentityOneCell[m],

TwoCellTimes[α, GetIdentityTwoCell[GetIdentityOneCell[n]];

However, this is cumbersome, due to the long names of the functions and due to the need
to write expressions such as ididn and idm. We can solve the former problem as with the
� operation. We define our functions to automatically promote n-cells to (n + 1)-cells
using GetIdentityOneCell or GetIdentityTwoCell, as appropriate. Thus, instead of
idm and ididn , we may simply write m and n, and Mathematica is smart enough to figure
out what we mean. Furthermore, we define ◦ to implement 2-cell horizontal composition
(which, N.B., is certainly not associative, so pay careful attention to the boxing of the
1-cell part of the diagram). Additionally, we also define ◦ to be 1-cell composition (which

23

τ

idm

m

m

m

m

m

m

Figure 10: pentagon equation, path 1, step 2: τ reboxing

is very much related to 2-cell horizontal composition).10 The operation is chosen based
on the highest cell type in the arguments. Having said all that, instead of that long mess,
we enter:

longpath = m ◦ (α�n);

Now, let us move on to the next leg on the path. We want to apply (according to the
pentagon diagram) αA,B⊗C,D—however, the type is not right. In fact, we need to make
two reboxing moves. First, as we see the source types match, we need to apply τ . This
is shown in 10. In order to apply τ , we implicitly used a box in the right-most line of
the source 1-cell of the diagram to conform with the input source type for τ . This can
be added since there is an implied boxing of the many identities that the line consists of
(q.v. footnote 9).11 The code for this line is:

longpath = longpath ∙ (m ◦ Getτ[m, n�m, n, n]);

Here, we introduce a new function and a new operation. The ∙ operation implements
TwoCell VerticalComposition. This operation is associative, and can be used as an
n-ary operation (which the primitive function TwoCellVerticalComposition cannot).
Furthermore, the Getτ function returns the τ reboxing 2-cell. The order of the arguments
is defined in Figure 2. Ultimately, the arguments ought to be 1-cells, but if a 0-cell is
entered, it is automatically promoted to a 1-cell as described previously. This makes the
notation and the coding very compact.

Now, we will apply ω to the outer two boxes, which will finally align the top part of
the diagram so that the next step in the actual pentagon equation may be applied. This

10For 1-cells, this is also not n-ary. Even though a ◦ (b ◦ c) = (a ◦ b) ◦ c for 1-cells in our representation,
they are of different type, and it is essential to remember how they are bracketed.

11For the pentagon equation, all of the τ ’s will take at least two identities as arguments—rendering
the τ equal to the identity 2-cell—and thus could be omitted. However, they have all been included in
all the equations we will present, for completeness, and so the reader can gain an understanding of how
they ought to be applied. In many cases they will not be identities.

24

ω

m

m

m

m

m

m

Figure 11: path 1, step 3: ω reboxing.

is shown in Figure 11, where we have used an implicit box around the top m in the source
1-cell—any single element can be considered boxed—to make the input consistent with
the source 1-cell of ω. The code for this line is:

longpath = longpath ∙ Getω[m, m�n, nmn];

Here, we introduce a new function Getω, which returns the ω reboxing 2-cell. As with
Getτ, the arguments ought to be 1-cells, but if they are 0-cells they are automatically
promoted. The order of the arguments for Getω is defined in Figure 3.

Now, we will apply the next actual step in the pentagon equation αA,B⊗C,D. We see
that the top of the 1-cell destination diagram from our last step is in the correct form
for the application of α, and this corresponds to exactly the next step in the pentagon
equation. The application of this step is shown in Figure 12. The code for this line is:

longpath = longpath ∙ (α ◦ nmn);

Now, again, before we can apply the final leg of this path through the pentagon, we need
to rebox—this time to effectively undo the reboxing from before. First we apply a ω−1,
Figure 13, and then we apply a τ−1, Figure 14. However, notice the difference in the
bottom row boxing from the destination 1-cell from Figure 13 and the source 1-cell from
Figure 14, which, ostensible, should be the same picture. However, using the freedom
given to us because the associator for the 2-monoidal structure of 2Vect, �, is the
identity, we can associate parallel levels without applying any structural isomorphism
2-cell. Also, for clarity, we have omitted the box around the left-most line in the
destination 1-cell of Figure 14.12 The code for these two lines is:

longpath = longpath ∙ inv[Getω[m, n�m, nmn]];

longpath = longpath ∙ (m ◦ inv[Getτ[n, n, m, m�n]]);

12If this was not true (for instance, if we used a different 2-monoidal structure on 2Vect), then this
reboxing would come at the cost of applying another structural isomorphism 2-cell).

25

idm

α

m

m

m

m

m

m

Figure 12: pentagon equation, path 1, step 3: αA,B⊗C,D

ω−1

m

m

m

m

m

m

Figure 13: pentagon equation, path 1, step 4: ω−1 reboxing

26

τ−1

idm

m

m

m

m

m

m

Figure 14: pentagon equation, path 1, step 5: τ−1 reboxing

The only new function here is the inv function, which takes either a 1-cell or a 2-cell and
returns the inverse 1-cell or 2-cell, respectively. This can also be done using the primitive
function, TwoCellInverse.

Finally, we are in exactly the correct form to apply the last leg of the pentagon, which
is (from 1-category perspective) idA ⊗ αB,C,D. This is shown in Figure 15. The code for
this line is:

longpath = longpath ∙ (m ◦ (n�α));

The destination 1-cell of this Figure is required result; the diagram represents a particular
boxing (although many are possible) of A ⊗ (B ⊗ (C ⊗ D)).

Now, we must diagram and then program the shorter path of the pentagon equation.
The short path through the pentagon proceeds in an identical fashion, with two caveats.

First, since we started with an arbitrary boxing of the first 1-cell state, ((A⊗B)⊗C)⊗
D—which happened to be convenient for application of the first leg of the first path—we
cannot simply apply the first leg of the new path. Almost always, some reboxing will be
necessary. In this case, to apply αA⊗B,C,D, we first need to apply τ , followed by ω.

Second, similar to the first caveat, just because the end state, A ⊗ (B ⊗ (C ⊗ D)),
is reached, does not mean that the process is complete. For the first path, we ended
with an arbitrary boxing of that state. For the second path, most likely we will end with
a different boxing. Thus, reboxing steps will need to be taken to ensure that the final
diagrams for both paths match—i.e. so they are the same type and fit for comparison.
Thus, the construction of the second path is not any different from the construction of
the first path, except that it requires both reboxing at the beginning and at the end,
which is necessitated by the boxing we chose to start and end with in the first path.

The code for the entire second path is:

shortpath = m ◦Getτ[m, m�n, n, n];

shortpath = shortpath ∙ Getω[m, m�n, mnn];

shortpath = shortpath ∙ (α ◦ mnn);

shortpath = shortpath ∙ inv[Getω[m, n�m, mnn]];

27

α

idm

m

m

m

m

m

m

Figure 15: pentagon equation, path 1, step 6: idA ⊗ αB,C,D

shortpath = shortpath ∙ (m ◦ inv[Getτ[n, m, m, n�n]]);

shortpath = shortpath ∙ (m ◦ Getτ[m, n�n, n, m]);

shortpath = shortpath ∙ Getω[m, m�n, (n�n)�m];

shortpath = shortpath ∙ (α ◦ ((n�n)�m));

shortpath = shortpath ∙ inv[Getω[m, n�m, (n�n)�m]];

shortpath = shortpath ∙ (m ◦ inv[Getτ[n, n, m, n�m]]);

Ironically, while the second path was shorter from the 1-category perspective (and thus
got the designation shortpath), it is in fact longer from the 2Vect perspective due to our
choice of boxing (we made it convenient to box the longpath requiring pre-reboxing and
post-reboxing on the shortpath).

Overall, the code for the completed function is:

PentagonEquation[m_, α_] := Module[{longpath, shortpath, n, nmn, mnn},

n = GetDest[m];

nmn = (n�m)�n;

mnn = (m�n)�n;

longpath = m ◦ (α�n);

longpath = longpath ∙ (m ◦ Getτ[m, n�m, n, n]);

longpath = longpath ∙ Getω[m, m�n, nmn];

longpath = longpath ∙ (α ◦ nmn);

longpath = longpath ∙ inv[Getω[m, n�m, nmn]];

longpath = longpath ∙ (m ◦ inv[Getτ[n, n, m, m�n]]);

longpath = longpath ∙ (m ◦ (n�α));

shortpath = m ◦Getτ[m, m�n, n, n];

shortpath = shortpath ∙ Getω[m, m�n, mnn];

shortpath = shortpath ∙ (α ◦ mnn);

shortpath = shortpath ∙ inv[Getω[m, n�m, mnn]];

28

shortpath = shortpath ∙ (m ◦ inv[Getτ[n, m, m, n�n]]);

shortpath = shortpath ∙ (m ◦ Getτ[m, n�n, n, m]);

shortpath = shortpath ∙ Getω[m, m�n, (n�n)�m];

shortpath = shortpath ∙ (α ◦ ((n�n)�m));

shortpath = shortpath ∙ inv[Getω[m, n�m, (n�n)�m]];

shortpath = shortpath ∙ (m ◦ inv[Getτ[n, n, m, n�m]]);

Return[longpath == shortpath];

]

4.2.2 Solving the Equation

Let’s try our new equation using the following very simple fusion rules:

m = OneCell[{{1, 0, 0, 0}, {0, 1, 1, 0}}];

In general, we need to create variable versions of the structures we are interested in
finding. Thus, for each 2-cell structure we create some helper functions:

GenerateαSource[m_] := m ◦ (m � GetDest[m]);

GenerateαDest[m_] := m ◦ (GetDest[m] � m);

GenerateVariableα[m_] := GenerateVariableTwoCell[GenerateαSource[m],
GenerateαDest[m]];

For m to be a valid product functor, we require both the source and the destination of
our α to be the same in our representation (i.e. even though they are of different type
and thus have different diagrams—in fact, Figure 7 is exactly the 2-cell that mediates
between these diagrams/types/boxings). Thus, first we test this:

GenerateαSource[m] == GenerateαDest[m]

For our fusion rules, this is True. It is clear that this property is entirely a function of
the fusion rules m. Checking for this is handled automatically when using the built-in
function IsPentagon[m, α] from the sub-package MTCategories.m.

Now we generate and display our associator, which will have the correct form and
structure, but variable entries:

(αTest = GenerateVariableα[m]) // TwoCellForm

The output of this expression should be:

{

(a3) 00→0 00→0 00→0 00→0 00→0 00→0 00→0

00→0 (a4) (a5) 00→0 (a6) 00→0 00→0 00→0

,

1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0

,(8→2)

→

1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0

,(8→2)

}

which is our variable 2-cell associator. Now let’s get the pentagon equation:

29

Equation = PentagonEquation[m, αTest]

The output is really ugly (mostly due to a lot of 0-dimensional matrices). [JAMIE, I
SORT OF HAVE HELPER FUNCTIONS THAT CAN MAKE THIS DISPLAY
NICE —i.e. the machinery behind the DisplayForm optional variable—but
that would involve modifying the PentagonEquation function that I just showed
them how to write. Does this needlessly complicate things, or is it necessary?]

Let’s solve it:

Solve[Equation]

Great! We have a solution. Four, in fact:

{{a3->1, a5->0}, {a3->1, a5->1}, {a3->0, a4->0, a6->0}, {a3->1,a4->0, a6->0}}

However, if we are trying to form a monoidal category, we generally demand that α is
invertible. So, in fact, not all of these solutions are valid. What we should have written
was:

Solve[Equation && IsTwoCellInvertible[αTest]]

which ensures that our α is invertible. Now, we only have one solution:

{{a3->1, a5->1}}

In many cases the equations generated will be very complicated systems of equations,
and Mathematica will not be able to simply solve them. Then, clever tricks on the part
of you, the human, are required.

4.2.3 Additional Function Testing

Rather than using the very simple fusion rules in the last section, let’s test our function
using Fib.

First we load the sub-package that lets us work within a single category. Then, we
set the current category to Fib.

Needs["MTCategory‘"]

SetMTCFib[]

Mathematica prints out all of the structures of Fib, including a non-trivial associator.
Now, let’s use the loaded fusion rules and associator as inputs to our function:

PentagonEquation[Getm[], Getα[]]

The output is True, meaning the function we coded successfully implements the pentagon
equation.

30

5 List of Functions by Package

The following is a list of all the functions in the three packages. To see information about
any of these functions from within Mathematica please enter:

?FunctionName

where FunctionName is the name of the function you want to display info about.

5.1 TwoVect.m

5.1.1 Matrix and 2-Matrix Functions

Dim[x] gives the dimensions of the matrix x and can handle 0D matrices.

Is0D[A] determine whether the matrix (not a 1-cell or a 2-cell) A is in 0D form.

TensorProduct[x, y] gives the tensor product of matrices x and y. 0D matrices should
be entered in the form {−1, {n → m}}, where at least one of m or n must be a 0.
1 × n dimensional matrices must be entered in the form {{a, b, c, . . .}}, and n × 1
dimensional matrices must be entered in the form {{a}, {b}, {c}, . . .}.

DirectSum[x, y] gives the direct sum of matrices x and y. 0D matrices should be
entered in the form {−1, {n → m}}, where at least one of m or n must be a
0. 1×n dimensional matrices must be entered in the form {{a, b, c, . . .}}, and n×1
dimensional matrices must be entered in the form {{a}, {b}, {c}, . . .}.

Dot0D[A,B] gives a matrix dot product, AB, that works with 0D matrices.

IdentityMat[n] generates the n × n identity matrix and can handle n = 0.

MatrixInverse[A] if it exists, computes A−1, the inverse of the matrix A, and can handle
0D matrices.”

IsMatrixInvertible[A] returns True if the matrix A is invertible and False if it is not.
Only square matrices are candidates to be invertible. Handles 0D matrices.

GetAdjointMatrix[A] returns A†, the adjoint (conjugate transpose) of the input matrix,
A. Handles 0D matrices.

GenerateVariableMatrix[InputDim] generates a matrix (with dimensions specified
by the list
InputDim) filled entirely with new unique variables (i.e. to generate an m × n
dimensional matrix with variable entries, InputDim = {m,n}). Will also work for
m = 0 and/or n = 0.

CellByCellMatrixEquation[A,B] takes two matrices to be equated and equates them
cell by cell (i.e. it creates a matrix of A[[i, j]] == B[[i, j]] rather than just A == B).

CellByCellTwoMatrixEquation[A,B] takes two 2-matrices to be equated and equates
them
element-matrix cell by cell (i.e. it creates a 2-matrix of A[[i, j]][[k,m]] == B[[i, j]][[k,m]]
rather than just A == B).

31

5.1.2 Generic 2Vect Functions for 1-cells and 2-cells

GetSource[A] returns the source n-Cell for either 2-cells or 1-cells.

GetDest[A] returns the destination n-Cell for either 2-cells or 1-cells.

GetCellType[A] returns 0 if A is a 0-Cell, 1 if A is a 1-cell, 2 if A is a 2-cell, and an
error otherwise (although if something is neither it may not always catch the error).

5.1.3 1-cell Functions

OneCell[A] takes a matrix A and converts it into a 1-cell.

OneToMat[A] takes a 1-cell A and converts it into a matrix.

OneCellComposition[f, g] composes the 1-cells f and g as f ◦ g, with the convention
of right to left (i.e. g followed by f).

OneCellTimes[f, g] combines the 1-cells f and g in parallel as f � g using the tensor
product 2-functor �.

GetIdentityOneCell[n] returns the identity 1-cell of n, the input 0-Cell.

OneCellInverse[f] takes the input 1-cell f and returns the inverse 1-cell, if it exists.

IsOneCellInvertible[f] returns True if the 1-cell f is invertible and False if it is not.
Only 1-cells that go between the same 0-Cells (i.e. represented by square matrices)
are candidates to be invertible.

GetAdjointOneCell[A] returns the adjoint (conjugate transpose) of the input 1-cell.

GetOneCellSwap[m,n] will return the 1-cell Sm,n. If 0-Cells m and n (i.e. 2 natural
numbers) are combined using the tensor product 2-functor as m � n, then Sm,n is
the swap 1-cell such that Sm,n acting on m� n will give n�m.

5.1.4 2-cell Functions

TwoCell[A] takes a 2-matrix (i.e. a matrix of matrices) A and converts it into a 2-cell.

TwoToTwoMat[A] takes a 2-cell A and converts it into a 2-matrix (i.e. a matrix of
matrices).

TwoCellVerticalComposition[F,G] composes the 2-cells F and G vertically as F ◦G,
with the convention of right to left (i.e. G followed by F). The source of F must
equal the destination of G.

⇓G

N

f

��

h

JJ
g // M
⇓F

32

N

f

%%

h

99⇓ F ◦ G M

TwoCellHorizontalComposition[G,F] composes the 2-cells G and F horizontally as
G • F , with the convention of right to left (i.e. F followed by G). The destination
0-Cell of the source and destination 1-cells of F must be the same as the source
0-Cell of the source and destination 1-cells of G.

N

f1

$$

f2

::⇓ F M

g1

##

g2

;;⇓ G P

N

g1◦f1

&&

g2◦f2

88⇓ G • F P

TwoCellTimes[F,G] combines the 2-cells F and G in parallel as F �G using the tensor
product 2-functor �.

GetIdentityTwoCell[f] returns the identity 2-cell (under vertical composition) of f ,
the input 1-cell.

TwoCellInverse[F] takes the input 2-cell F and returns the inverse 2-cell (under vertical
composition), if it exists.

IsTwoCellInvertible[F] returns True if the 2-cell F is invertible (under vertical composition)
and False if it is not. Only 2-cells whose element-matrices (i.e. inner matrices) are
all square are candidates to be invertible.

GetAdjointTwoCell[A] returns the adjoint (conjugate transpose) of the input 2-cell.

WhiskerRight[f,G], for input 1-cell f and 2-cell G, horizontally combines the 2-cell G
followed by the 2-cell given by GetIdentityTwoCell[f] (i.e. the 2-cell idf • G).
The order is a little unintuitive.

WhiskerLeft[G, f], for input 2-cell G and 1-cell f , horizontally combines the 2-cell given
by
GetIdentityTwoCell[f] followed by the 2-cell G (i.e. the 2-cell G • idf). The
order is a little unintuitive.

GenerateVariableTwoCell[TwoCellSource, TwoCellDest] returns a 2-cell whose element-matrix
elements (i.e. the elements of the inner matrices) are filled entirely with new and
unique variables. The inputs TwoCellSource and TwoCellDest are the 1-cell source
and destination, respectively, of the new 2-cell to be generated.

33

5.1.5 2-cell Structural Isomorphisms

Getω[a, b, c], with 1-cell inputs a, b, and c, is used to generate the structural isomorphism
horizontal associator, ω, which is used to correct for horizontally composing three
2-cells in a row. If any of the arguments are 0-cells, they are automatically promoted
to 1-cells using GetIdentityOneCell.
Getω[GetDest[A],GetDest[B],GetDest[C]]◦(A • (B • C))
== ((A • B) • C)◦Getω[GetSource[A],GetSource[B],GetSource[C]].

a1 ◦ (b1 ◦ c1)
ωa1,b1,c1 +3

A•(B•C)

��

(a1 ◦ b1) ◦ c1

(A•B)•C

��
a2 ◦ (b2 ◦ c2) ωa2,b2,c2

+3 (a2 ◦ b2) ◦ c2

(6)

ωh,g,f

f

g

h

f

g

h

Getτ[a, b, c, d], with 1-cell inputs a, b, c, and d, is used to generate the structural
isomorphism, τ , which is used to correct for the fact that horizontally composing two
pairs of 2-cells and then monoidally combining them is not the same as monoidally
combining the two pairs and then horizontally composing them. If any of the
arguments are 0-cells, they are automatically promoted to 1-cells using GetIdentityOneCell.
Getτ[GetDest[A],GetDest[B],GetDest[C],GetDest[D]]◦(A•B)� (C •D) ==
(A�C)•(B�D)◦Getτ[GetSource[A],GetSource[B],GetSource[C],GetSource[D]].

(a1 ◦ b1)� (c1 ◦ d1)
τa1,b1,c1,d1 +3

(A•B)�(C•D)

��

(a1 � c1) ◦ (b1 � d1)

(A�C)•(B�D)

��
(a2 ◦ b2)� (c2 ◦ d2) τa2,b2,c2,d2

+3 (a2 � c2) ◦ (b2 � d2)

(7)

34

τg,f,i,h

f

g

h

i

f

g

h

i

Getσv[A,B], with 1-cell inputs A and B, is used to generate the structural isomorphism,
σ, a 2-cell swap (i.e. an interchange between a 1-cell swap and 1-cells on each leg
of the swap). If any of the arguments are 0-cells, they are automatically promoted
to 1-cells using GetIdentityOneCell.
Thus, at the 2-cell level, if μ : F1 → F2 and ν : G1 → G2 (with 1-cells Fi :
A → B and Gi : C → D), then Getσv[F2, G2]◦(idSB,D

• (μ � ν)) == ((ν � μ) •
idSA,C

Getσv[F1, G1].

SB,D ◦ (F1 �G1)
σF1,G1 +3

idSB,D
•(μ�ν)

��

(G1 � F1) ◦ SA,C

(ν�μ)•idSA,C

��
SB,D ◦ (F2 �G2) σF2,G2

+3 (G2 � F2) ◦ SA,C

(8)

σf,g

f g
g f

5.1.6 Display Functions

TwoMatrixForm[F] display 2-matrices (i.e. matrices of matrices, or, 2-cells without
their 1-cell source and destination) in a form equivalent to MatrixForm[F] for
regular matrices.

OneCellForm[f] display 1-cells in a form equivalent to MatrixForm[F] for regular
matrices.

TwoCellForm[F] display 2-cells in a form equivalent to MatrixForm[F] for regular
matrices.

35

5.1.7 Overloaded Operations (that work for 1-cells and 2-cells)

A ◦ B or SmallCircle[A,B] computes 1-cell composition or 2-cell horizontal composition,
depending on the cell type of the arguments. This operation is not associative. The
operation is chosen based on the highest cell type of the arguments, and the other
argument is promoted to an (n+1)-cell by the operation GetIdentityOneCell or
GetIdentityTwoCell.

A � B � . . . or CircleDot[A,B, . . .] computes the n-cell tensor-product. For 0-cells,
this is simple multiplication. For 1-cells, this is the matrix tensor-product. For
2-cells, this is the 2-matrix tensor product. If one of the arguments is a different
cell type than the other, the one that is lesser is automatically promoted to an
(n+1)-cell by the operation GetIdentityOneCell or GetIdentityTwoCell. This
is an n-ary operation as the tensor product is associative.

A ∙ B∙ . . . or CenterDot[A,B, . . .] computes 2-cell vertical composition. This operation
is associative, and can be used as an n-ary operation.

id[A] returns either the identity 1-cell or the identity 2-cell, depending on whether the
argument is a 0-Cell or 1-cell, respectively.

inv[A] returns either the inverse 1-cell or the inverse 2-cell, depending on whether the
argument is a 1-cell or 2-cell, respectively.

Compose2Cells[list] vertically composes a list of 2-cells. The first element of the list
is the first 2-cell applied, which is usually written as the right-most 2-cell (i.e. if A
and B are 2-cells and you want to compute A ◦B, then you would enter {B,A} as
the argument to this function). This is an alternative to the many ways of vertically
composing 2-cells.

5.2 MTCategories.m

Within this section, there are two optional arguments that appear in many of the functions.
DisplayForm is optional argument that controls how the output is displayed. If True,

it will display the structures using TwoCellForm (as opposed to the standard form which
can be used for input or solving).

WithErrors is an optional argument that controls whether errors are outputted. If
False, the errors will be suppressed. This option is essentially intended to be used when
the 2-cell arguments have variable entries and you are trying to find the equations that
the axioms require (and perhaps send them to a solver). If True, the output will let the
user know which axioms fail (if any).

5.2.1 Generating Functions

GenerateMonoidalStructures[m,u,DisplayForm] generates a complete set of monoidal
category 2-cell structures, α, ρ, and λ (with the correct 1-cell source and destination),
for a given product functor 1-cell m and unit 1-cell u. N.B. DisplayForm is set to
False by default.

GenerateMTCStructures[m,u,DisplayForm] generates a complete set of modular
tensor category 2-cell structures (including the full set of monoidal category structures),

36

α, ρ, λ, β, and θ (with the correct 1-cell source and destination), for a given product
functor 1-cell m and unit 1-cell u. N.B. DisplayForm is set to False by default.

GenerateHandle[m,u] generates the handle (which is a 1-cell object) of the MTC given
by product functor m and unit u. The handle is the sum over all the simple objects
of that simple object fused with its dual:

∑
A ⊗ A∗, for all simple objects A.

5.2.2 Monoidal Categories

IsPentagon[m,α,WithErrors,DisplayForm] is a function that calculates and tests
the pentagon equation, an axiom of monoidal categories, where the 1-cell m specifies
the fusion rules, and the 2-cell α specifies the associator. IsPentagon[m,α] tests
the form and consistency of m and α, whether α is invertible, and the pentagon
equation itself. The last two arguments are optional (and default to True and True,
respectively).

((A ⊗ B) ⊗ C) ⊗ D
αA⊗B,C,D

**UUUUUUUUUUUUUUUU
αA,B,C ⊗ idD

ttiiiiiiiiiiiiiiii

(A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C,D

��

(A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D

��
A ⊗ ((B ⊗ C) ⊗ D)

idA⊗αB,C,D

// A ⊗ (B ⊗ (C ⊗ D))

(9)

IsTriangle[m,α, ρ, λ, u,WithErrors,DisplayForm] is a function that calculates and
tests the triangle equation, an axiom of monoidal categories, where the 1-cell m
specifies the fusion rules, the 1-cell u specifies the unit, the 2-cell ρ specifies the
right unitor, and the 2-cell λ specifies the left unitor, and the 2-cell α specifies
the associator. IsTriangle[m,α, ρ, λ, u] tests the form and consistency of the
arguments, whether ρ and λ are invertible, and the triangle equation itself. The last
two arguments are optional (and default to True and True, respectively). Note: this
function should only be called after the category is shown to satisfy the pentagon
equation.

(A ⊗ u) ⊗ B
αA,u,B //

ρA⊗idB ''NNNNNNNNNNN
A ⊗ (u ⊗ B)

idA⊗λBwwppppppppppp

A ⊗ B

(10)

IsMonoidal[m,α, ρ, λ, u] tests if the input structures form a monoidal category, where
m is the 1-cell tensor product functor specifying the fusion rules, u is the 1-cell unit,
α is the 2-cell associator, ρ is the 2-cell right unitor, and λ is the 2-cell left unitor.

5.2.3 Modular Tensor Categories

IsBraided[m,α, β] tests if a monoidal category is braided with the input 2-cell β. For
this function to be used, m andα (and other structures, of course) must be shown
already to form a monoidal category.

37

IsHexagon1[m,α, β,DisplayForm] is a function that calculates if a monoidal category
satisfies the first hexagon equation for braided monoidal categories (an axiom of
MTCs), where the 1-cell m specifies the fusion rules, the 2-cell α specifies the
associator, and the 2-cell β specifies the braid. This function is essentially intended
to be used when α and/or β have variable entries (as opposed to simply calling
IsBraided[m,α, β]. The last argument is optional (and defaults to True).

A ⊗ (B ⊗ C)
βA,B⊗C// (B ⊗ C) ⊗ A

αB,C,A

((QQQQQQQQQQQQ

(A ⊗ B) ⊗ C

αA,B,C

66mmmmmmmmmmmm

βA,B⊗idC ((QQQQQQQQQQQQ
B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C αB,A,C

// B ⊗ (A ⊗ C)

idB⊗βA,C

66mmmmmmmmmmmm

(11)

IsHexagon2[m,α, β,DisplayForm] is a function that calculates if a monoidal category
satisfies the second hexagon equation for braided monoidal categories (an axiom
of MTCs), where the 1-cell m specifies the fusion rules, the 2-cell α specifies the
associator, and the 2-cell β specifies the braid. The last argument is optional (and
defaults to True). This function is essentially intended to be used when β has
variable entries (as opposed to simply calling IsBraided[m,α, β]). However, it
MUST NOT be used when α has variable entries since α−1 is required (since a
variable α cannot be inverted).

(A ⊗ B) ⊗ C
βA⊗B,C// C ⊗ (A ⊗ B)

α−1
C,A,B

((QQQQQQQQQQQQ

A ⊗ (B ⊗ C)

α−1
A,B,C

66mmmmmmmmmmmm

idA⊗βB,C ((QQQQQQQQQQQQ
(C ⊗ A) ⊗ B

A ⊗ (C ⊗ B)
α−1

A,C,B

// (A ⊗ C) ⊗ B

βA,C⊗idB

66mmmmmmmmmmmm

(12)

IsTwisted[m,β, θ,WithErrors,DisplayForm] is a function that calculates if a braided
monoidal category has a twist (an axiom of MTCs), where the 1-cell m specifies
the fusion rules, the 2-cell β specifies the braid, and the 2-cell θ specifies the twist.
IsTwisted[m,β, θ] tests the form and consistency of the arguments, whether θ is
invertible, and the twist equation itself. The last two arguments are optional (and
default to True and True, respectively). Note: this function should only be called
after m and β (with additional structures, of course) are shown form a braided
monoidal category.

A ⊗ B
θA⊗B //

θA⊗θB

��

A ⊗ B

A ⊗ B
βA,B

// B ⊗ A

βB,A

OO (13)

IsFrobenius[m] tests the Frobenius condition, which is necessary but not sufficient for
confirming the rigidity property of MTCs.

38

=

m†

m

m†

m

GenerateDual[x,m, u] returns the dual candidate of the 1-cell x (i.e. tentatively x∗).
Note: this can only be called if IsFrobenius[m] is True.

A∗

A†

m†

u

=

IsRigid[m,α, u] tests if a monoidal category satisfies the rigidity property (i.e. has
duals). For this function to be used, m and α must form a monoidal category.

A
idA //

ηA⊗ idA

��

A

(A ⊗ A∗) ⊗ A αA,A∗,A

// A ⊗ (A∗ ⊗ A)

idA⊗εA

OO (14)

A∗
idA∗ //

idA∗⊗ ηA

��

A∗

A∗ ⊗ (A ⊗ A∗)
α−1

A∗,A,A∗

// (A∗ ⊗ A) ⊗ A∗

εA⊗idA∗

OO (15)

IsRibbonCoherent[m, θ, u,DisplayForm] tests whether the 2-cell twist θ is compatible
with duals. Essentially, this tests whether the twisted braided monoidal category is
a ribbon category. The last argument is optional (and defaults to False). For this
function to be used, m, θ, and u (with additional structures, of course) must form

39

a twisted braided monoidal category, and IsRigid[m,α, u] must be True.

u
ηA // A ⊗ A∗

idA⊗θA∗

$$

θA⊗idA∗

::A ⊗ A∗ (16)

IsModular[m,u, β] tests if a braided twisted monoidal category that is rigid satisfies
the modular property, where m is the 1-cell fusion rules, u is the 1-cell unit, and β
is the 2-cell braid.

IsMTC[m,α, ρ, λ, u, β, θ] tests if the input structures form a modular tensor category,
where where m is the 1-cell product functor, α is the 2-cell associator, ρ is the 2-cell
right unitor, λ is the 2-cell left unitor, u is the 1-cell unit, β is the 2-cell braid, and
θ is the 2-cell twist.

5.2.4 Monoids (Algebras)

IsMonoidAssociative[m,A, μ, α,DisplayForm] determines whether the 2-cell multiplication
μ satisfies the monoid associativity equation for the 1-cell A to be a monoid. The
last argument is optional (and defaults to True). For this function to be used,
the 1-cell fusion rules m and the 2-cell associator α (with additional structures, of
course) must form a monoidal category.

(A ⊗ A) ⊗ A
αA,A,A

((QQQQQQQQQQQQ
μ⊗idA

xxppppppppppp

A ⊗ A

μ

��

A ⊗ (A ⊗ A)

idA⊗μ

��
A A ⊗ Aμ

oo

(17)

IsMonoidRightUnit[m,A, μ, η, u, ρ,DisplayForm] determines whether the 2-cell multiplication
μ and the 2-cell unit η satisfies the monoid right unit equation for η to be the unit of
the 1-cell monoid A. The last argument is optional (and defaults to True). For this
function to be used, the 1-cell fusion rules m, the 1-cell unit u, the 2-cell associator
α, and the 2-cell right unitor ρ (with additional structures, of course) must form a
monoidal category.

A ⊗ A

μ
##GGGGGGGGG A ⊗ u

idA⊗ηoo

ρA
||xxxxxxxxx

A

(18)

IsMonoidLeftUnit[m,A, μ, η, u, λ,DisplayForm] determines whether the 2-cell multiplication
μ and the 2-cell unit η satisfies the monoid left unit equation for η to be the unit of
the 1-cell monoid A. The last argument is optional (and defaults to True). For this
function to be used, the 1-cell fusion rules m, the 1-cell unit u, the 2-cell associator
α, and the 2-cell left unitor λ (with additional structures, of course) must form a

40

monoidal category.

u ⊗ A
η⊗idA //

λA ""FFFFFFFFF A ⊗ A

μ
{{xxxxxxxxx

A

(19)

IsMonoid[m,u, α, ρ, λ, A, μ, η] determines whether A, μ, and η form a monoid (i.e. an
algebra). A is the 1-cell object the algebra is over, μ is the 2-cell multiplication, and
η is the 2-cell unit. The structures m, u, α, ρ, λ must form a monoidal category
with m the 1-cell product functor, u the 1-cell unit, α the 2-cell associator, ρ the
2-cell right unitor, and λ the 2-cell left unitor. Note: this function does not specify
the error if the function returns False.

IsMonoidDaggerFrobenius[m,α,A, μ, η,DisplayForm] determines whether the monoid
given by A, μ, and η is †-Frobenius. The last argument is optional (and defaults
to False). For this function to be used, the 1-cell fusion rules m and the 2-cell
associator α (with additional structures, of course) must form a monoidal category,
and IsMonoid[m,u, α, ρ, λ, A, μ, η] must be True (i.e. A, μ, and η must already
be shown to form a monoid).

IsMonoidCommutative[m,A, μ, β,DisplayForm] determines whether the monoid given
by A and μ is Commutative. The last argument is optional (and defaults to False).
For this function to be used, the 1-cell fusion rules m, the 2-cell associator α, and the
2-cell braid β (with additional structures, of course) must form a braided monoidal
category, and IsMonoid[m,u, α, ρ, λ, A, μ, η] must be True (i.e. A, μ, and η must
already be shown to form a monoid).

A ⊗ A
β //

μ
##GGGGGGGGG A ⊗ A

μ
{{xxxxxxxxx

A

(20)

5.2.5 Monoidal Functors

IsMonoidalFunctorStructureEquation1[F, φ,m1, α1,m2, α2,WithErrors,DisplayForm]
is a function that tests if the 1-cell functor F and 2-cell structure φ (and the
structures of the two monoidal categories, labeled by subscripts 1 and 2, respectively)
satisfy the first structure equation for F to be a strong monoidal functor. This
equation shows that (FA � FB) � FC goes to F (A ⊗ (B ⊗ C)) in two different
ways, where here, in this notation, ⊗ is used to represent the action of m1 and
� is is used to represent the action of m2. The last two arguments are optional
(and default to True and True, respectively). This function tests the form and
consistency of the arguments, whether φ is invertible, and the structure equation
itself. Note: this function should only after the categories given by subscripts 1 and
2 in the input are shown form monoidal categories.

41

(FA • FB) • FC

φA,B • idFC

��

α2 FA,FB,FC // FA • (FB • FC)

idFA•φB,C

��
F (A ⊗ B) • FC

φA⊗B,C

��

FA • F (B ⊗ C))

φA,B⊗C

��
F ((A ⊗ B) ⊗ C)

Fα1 A,B,C

// F (A ⊗ (B ⊗ C))

(21)

IsMonoidalFunctorStructureEquation2and3[F, φ, φu,m1, α1, ρ1, λ1, u1,m2, α2, ρ2, λ2, u2,

WithErrors, DisplayForm] is a function that the 1-cell functor F and 2-cell structures
φu and φ (and the structures of the two monoidal categories, labeled by subscripts
1 and 2, respectively) satisfy the second and third structure equations for F to be
a strong monoidal functor. The second equation shows that FA � u2 goes to FA
in two different ways, and the third equation shows that u2 � FB goes to FB in
two different ways, where here, in this notation, ⊗ is used to represent the action
of m1 and � is is used to represent the action of m2. The last two arguments
are optional (and default to True and True, respectively). This function tests the
form and consistency of the arguments, whether φu is invertible, and the structure
equation itself, and then will specify any errors. Note: this function should only
after the categories given by subscripts 1 and 2 in the input are shown form monoidal
categories and the first monoidal structure equation is shown to be satisfied.

FA • u2

idFA•φu

��

ρ2 // FA

FA • Fu1 φA,u1

// F (A ⊗ u1)

Fρ1

OO (22)

u2 • FB

φu•idFB

��

λ2 // FB

Fu1 • FB
φu1,B

// F (u1 ⊗ B)

Fλ1

OO (23)

IsStrongMonoidalFunctor[F, φ, φu,m1, α1, ρ1, λ1, u1,m2, α2, ρ2, λ2, u2] tests if proposed
structures (the 1-cell F and the 2-cells φ and φu) form a strong monoidal functor
from the category given by product functor m1 to the category given by product
functor m2. The structures labeled by 1 are from the category given by m1 and
structures labeled by 2 are from the category given by m2.

5.2.6 Solvers (prototype)

SolveMonoidal[m,u] solves for the 2-cells α, λ, and ρ, for the candidate monoidal
category with product functor 1-cell m and unit 1-cell u. This function is a
prototype and tends to run out of memory.

42

5.2.7 Automatic Reboxing Functions

These functions take care of the “lower-level” work in 2Vect. Essentially, they allow you
to apply morphisms of a particular 2-vector space (i.e. a particular MTC) to specific
objects in that 2-vector space (i.e. or MTC). Remember, the objects of a particular
2-vector space are 1-cells in 2Vect, and morphisms between those objects are 2-cells in
2Vect.

αABC[m,α,A,B,C] returns the 2-cell given by αA,B,C (i.e. the natural transformation
α applied to objects A, B, and C), where A, B, and C are 1-cell objects of
the monoidal category, and m is the 1-cell product functor. The output 2-cell
is automatically appropriately reboxed.

βAB[m,β,A,B] returns the 2-cell given by βA,B (i.e. the natural transformation β
applied to objects A and B), where A and B are 1-cell objects of the braided
monoidal category, and m is the 1-cell product functor. The output 2-cell is
automatically appropriately reboxed.

θA[m, θ,A] returns the 2-cell given by θA (i.e. the natural transformation θ applied to
object A), where A is a 1-cell object of the twisted braided monoidal category, and
m is the 1-cell product functor. The output 2-cell is automatically appropriately
reboxed.

λA[m,λ, u,A] returns the 2-cell given by λA (i.e. the natural transformation λapplied
to object A), where A is a 1-cell object of the monoidal category, m is the 1-cell
product functor, and u is the 1-cell unit object. The output 2-cell is automatically
appropriately reboxed.

ρA[m, ρ, u,A] returns the 2-cell given by ρA (i.e. the natural transformation ρ applied
to object A), where A is a 1-cell object of the monoidal category, m is the 1-cell
product functor, and u is the 1-cell unit object. The output 2-cell is automatically
appropriately reboxed.

φAB[m1,m2, F, φ, A,B] returns the 2-cell given by φA,B (i.e. the natural transformation
φ applied to objects A and B), where A and B are 1-cell objects of the monoidal
category given by m1. F is the 1-cell monoidal functor, m1 is the 1-cell product
functor of the first category, and m2 is the 1-cell product functor of the second
category. The output 2-cell is automatically appropriately reboxed.

5.3 MTCategory.m

SetMTC[m,u] is used to set the modular tensor category you want to work with. The
2-cell structures are created in the appropriate form with variable entries. Please
input m, the 1-cell fusion rules, and u, the 1-cell unit. SetMTC[m,u, alphaSet, rhoSet, lambdaSet, betaSet, thetaSet]
is used to set the modular tensor category with user inputted 2-cell structures.
Please run IsMTC[] to ensure that the structures satisfy all the MTC axioms. As
before, m, the 1-cell fusion rules, and u, the 1-cell unit, must be inputted as 1-cells.

SetMTCFib[] is used to set the modular tensor category you want to work with to Fib,
the Fibonacci MTC.

43

m =

[
1 0 0 1
0 1 1 1

]

(24)

u =

[
1
0

]

τ =

[
0
1

]

α =

[1] ∅0×0 ∅0×0 [1] ∅0×0 [1] [1] [1]

∅0×0 [1] [1] [1] [1] [1] [1]

[
ϕ−1 ϕ− 1

2

ϕ− 1
2 −ϕ−1

]

ρ =

[1] ∅0×0

∅0×0 [1]

λ =

[1] ∅0×0

∅0×0 [1]

β =

[1] ∅0×0 ∅0×0

[
e−

4
5
iπ
]

∅0×0 [1] [1]
[
e

3
5
iπ
]

θ =

[1] ∅0×0

∅0×0

[
e

4
5
iπ
]

SetMTCIsing[] is used to set the modular tensor category you want to work with to
the Ising MTC.

m =

1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 0

 (25)

u =

1
0
0

 (26)

σ =

0
1
0

 (27)

ψ =

0
0
1

 (28)

44

ρ =

[1] ∅0×0 ∅0×0

∅0×0 [1] ∅0×0

∅0×0 ∅0×0 [1]

λ =

[1] ∅0×0 ∅0×0

∅0×0 [1] ∅0×0

∅0×0 ∅0×0 [1]

ασ,σ,σ =
1
√

2

[
1 1
1 −1

]

β =

[1] ∅0×0 ∅0×0 ∅0×0

[
e−

1
8
iπ
]

∅0×0 ∅0×0 ∅0×0 [−1]

∅0×0 [1] ∅0×0 [1] ∅0×0 [−i] ∅0×0 [−i] ∅0×0

∅0×0 ∅0×0 [1] ∅0×0

[
e

3
8
iπ
]

∅0×0 [1] ∅0×0 ∅0×0

θ =

[1] ∅0×0 ∅0×0

∅0×0

[
e

1
8
iπ
]

∅0×0

∅0×0 ∅0×0 [−1]

Setα[αSet] sets the 2-cell α, the associator of the MTC. Input must be the appropriate
2-cell. Please run IsMTC[] to ensure that the new structure satisfies all the MTC
axioms.

Setρ[ρSet] sets the 2-cell ρ, the right unitor of the MTC. Input must be the appropriate
2-cell. Please run IsMTC[] to ensure that the new structure satisfies all the MTC
axioms.

Setλ[λSet] sets the 2-cell λ, the left unitor of the MTC. Input must be the appropriate
2-cell. Please run IsMTC[] to ensure that the new structure satisfies all the MTC
axioms.

Setβ[βSet] sets the 2-cell β, the braid of the MTC. Input must be the appropriate 2-cell.
Please run IsMTC[] to ensure that the new structure satisfies all the MTC axioms.

Setθ[θSet] sets the 2-cell θ, the twist of the MTC. Input must be the appropriate 2-cell.
Please run IsMTC[] to ensure that the new structure satisfies all the MTC axioms.

PrintMTC[] is used to print all the structures of the current MTC. It is not checked
for consistency or form. Please run IsMTC[] to ensure correct form and to ensure
that the structures satisfy all the MTC axioms.

45

IsMTC[] tests if the currently set MTC satisfies all the axioms. IsMTC[m,α, ρ, λ, u, β, θ]
tests if the input structures form a modular tensor category, where where m is the
1-cell product functor, α is the 2-cell associator, ρ is the 2-cell right unitor, λ is the
2-cell left unitor, u is the 1-cell unit, β is the 2-cell braid, and θ is the 2-cell twist.

GenerateHandle[] generates the handle (which is a 1-cell object) of the currently set
MTC.
GenerateHandle[m,u] generates the handle of the MTC given by product functor
m and unit u. The handle is the sum over all the simple objects of that simple object
fused with its dual:

∑
A ⊗ A∗, for all simple objects A.

IsMonoid[A, μ, η] tests if A, μ, and η form a monoid (i.e. an algebra), where A is a 1-cell
object the algebra is over (and is an object of the currently set MTC), μ is the 2-cell
multiplication, and η is the 2-cell monoid unit. IsMonoid[m,u, α, ρ, λ, A, μ, η] tests
whether A, μ, and η form a monoid in the monoidal category given by m, u, α, ρ,
and λ (where m is the 1-cell product functor, u is the 1-cell unit, α is the 2-cell
associator, ρ is the 2-cell right unitor, and λ is the 2-cell left unitor). Note: does
not specify the error (i.e. whether there is a problem with the form of A, μ, or η,
or whether the equation fails) if the function returns False.

IsMonoidDaggerFrobenius[A, μ, η] determines whether the monoid given by A, μ,
and η is †-Frobenius, where A is a 1-cell in the current category (and is the object
the monoid is over), μ is the 2-cell multiplication, and η is the 2-cell monoid unit.
Note: for this function to be called, A, μ, and η must already be shown to form a
monoid.

IsMonoidCommutative[A, μ] determines whether the monoid given by A and μ (η is
unneeded for this function) is Commutative, where A a 1-cell object in the current
category (and is the object the monoid is over), and μ is the 2-cell multiplication.
Note: for this function to be called, A, μ, and η must already be shown to form a
monoid.

Getm[] returns the 1-cell m, the fusion rules of the MTC.

Getu[] returns the 1-cell u, the unit of the MTC.

Getα[] returns the 2-cell α, the associator of the MTC.

Getρ[] returns the 2-cell ρ, the right unitor of the MTC.

Getλ[] returns the 2-cell λ, the left unitor of the MTC.

Getβ[] returns the 2-cell β, the braid of the MTC.

Getθ[] returns the 2-cell θ, the twist of the MTC.

GetPentagonEquation[DisplayForm] returns the pentagon equation, an axiom of
monoidal categories (and thus MTCs). DisplayForm is an optional argument that
defaults to True. In general, this function is intended to be used when α has variable

46

entries.

((A ⊗ B) ⊗ C) ⊗ D
αA⊗B,C,D

**UUUUUUUUUUUUUUUU
αA,B,C ⊗ idD

ttiiiiiiiiiiiiiiii

(A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C,D

��

(A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D

��
A ⊗ ((B ⊗ C) ⊗ D)

idA⊗αB,C,D

// A ⊗ (B ⊗ (C ⊗ D))

(29)

GetTriangleEquation[DisplayForm] returns the triangle equation, an axiom of monoidal
categories (and thus MTCs). DisplayForm is an optional argument that defaults
to True. In general, this function is intended to be used when α, λ, and/or ρ have
variable entries.

(A ⊗ u) ⊗ B
αA,u,B //

ρA⊗idB ''NNNNNNNNNNN
A ⊗ (u ⊗ B)

idA⊗λBwwppppppppppp

A ⊗ B

(30)

GetHexagonEquation1[DisplayForm] returns the first hexagon equation for braided
monoidal categories, an axiom of MTCs. DisplayForm is an optional argument that
defaults to True. In general, this function is intended to be used when β and/or α
have variable entries.

A ⊗ (B ⊗ C)
βA,B⊗C// (B ⊗ C) ⊗ A

αB,C,A

((QQQQQQQQQQQQ

(A ⊗ B) ⊗ C

αA,B,C

66mmmmmmmmmmmm

βA,B⊗idC ((QQQQQQQQQQQQ
B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C αB,A,C

// B ⊗ (A ⊗ C)

idB⊗βA,C

66mmmmmmmmmmmm

(31)

GetHexagonEquation2[DisplayForm] returns the first hexagon equation for braided
monoidal categories, an axiom of MTCs.DisplayForm is an optional argument that
defaults to True. In general, this function is intended to be used when β has variable
entries, but MUST NOT be used when α has variable entries since α−1 is required
(since a variable α cannot be inverted).

(A ⊗ B) ⊗ C
βA⊗B,C// C ⊗ (A ⊗ B)

α−1
C,A,B

((QQQQQQQQQQQQ

A ⊗ (B ⊗ C)

α−1
A,B,C

66mmmmmmmmmmmm

idA⊗βB,C ((QQQQQQQQQQQQ
(C ⊗ A) ⊗ B

A ⊗ (C ⊗ B)
α−1

A,C,B

// (A ⊗ C) ⊗ B

βA,C⊗idB

66mmmmmmmmmmmm

(32)

47

GetTwistEquation[DisplayForm] returns the twist equation, an axiom of MTCs.
DisplayForm is an optional argument that defaults to True. In general, this function
is intended to be used when β and/or θ have variable entries.

A ⊗ B
θA⊗B //

θA⊗θB

��

A ⊗ B

A ⊗ B
βA,B

// B ⊗ A

βB,A

OO (33)

GetRibbonCoherenceEquation[DisplayForm] returns the equation of coherence between
the 2-cell twist θ and the dual structure of the MTC. This is a required axiom of
MTCs.
DisplayForm is an optional argument that defaults to True.

u
ηA // A ⊗ A∗

idA⊗θA∗

$$

θA⊗idA∗

::A ⊗ A∗ (34)

GetMonoidAssociativityEquation[A, μ,DisplayForm] returns the associativity equation
for A and μ to form a monoid, where A is the 1-cell object the algebra is over, and
μ is the 2-cell monoid multiplication. DisplayForm is an optional argument that
defaults to True.

(A ⊗ A) ⊗ A
αA,A,A

((QQQQQQQQQQQQ
μ⊗idA

xxppppppppppp

A ⊗ A

μ

��

A ⊗ (A ⊗ A)

idA⊗μ

��
A A ⊗ Aμ

oo

(35)

GetMonoidRightUnitEquation[A, μ, η,DisplayForm] returns the right unit equation
for A, μ, and η to form a monoid, where A is the 1-cell object the algebra is over,
μ is the 2-cell monoid multiplication, and η is the 2-cell monoid unit. DisplayForm
is an optional argument that defaults to True.

A ⊗ A

μ
##GGGGGGGGG A ⊗ u

idA⊗ηoo

ρA
||xxxxxxxxx

A

(36)

GetMonoidLeftUnitEquation[A, μ, η,DisplayForm] returns the left unit equation
for A, μ, and η to form a monoid, where A is the 1-cell object the algebra is over,
μ is the 2-cell monoid multiplication, and η is the 2-cell monoid unit. DisplayForm
is an optional argument that defaults to True.

48

u ⊗ A
η⊗idA //

λA ""FFFFFFFFF A ⊗ A

μ
{{xxxxxxxxx

A

(37)

GetMonoidDaggerFrobeniusEquation[A, μ, η,DisplayForm] returns the †-Frobenius
equation, the conditions required for the monoid formed by A, μ, and η to be
†-Frobenius (where A is the 1-cell object the algebra is over, μ is the 2-cell monoid
multiplication, and η is the 2-cell monoid unit). DisplayForm is an optional argument
that defaults to True.

GetMonoidCommutativityEquation[A, μ,DisplayForm] returns the commutativity
equation, the conditions required for the monoid formed by A, μ, and η to be
commutative (where A is the 1-cell object the algebra is over, μ is the 2-cell
monoid multiplication, and η is the 2-cell monoid unit). DisplayForm is an optional
argument that defaults to True.

A ⊗ A
β //

μ
##GGGGGGGGG A ⊗ A

μ
{{xxxxxxxxx

A

(38)

α[A,B,C] returns the 2-cell associator given by αA,B,C (i.e. α applied to objects A, B,
and C), where A, B, and C are 1-cell objects of the monoidal category. The output
2-cell is automatically appropriately reboxed.

β[A,B] returns the 2-cell braid given by βA,B (i.e. β applied to objects A and B), where
A and B are 1-cell objects of the braided monoidal category. The output 2-cell is
automatically appropriately reboxed.

θ[A] returns the 2-cell twist given by θA (i.e. θ applied to object A), where A is a 1-cell
object of the twisted braided monoidal category. The output 2-cell is automatically
appropriately reboxed.

λ[A] returns the 2-cell left unitor given by λA (i.e. λ applied to object A), where A
is a 1-cell object of the monoidal category. The output 2-cell is automatically
appropriately reboxed.

ρ[A] returns the 2-cell right unitor given by ρA (i.e. ρ applied to object A), where A
is a 1-cell object of the monoidal category. The output 2-cell is automatically
appropriately reboxed.

A ⊗ B or CircleTimes[A,B] monoidally combines in the underlying MTC. If A and B
are 1-cells (i.e. objects in the underlying MTC), then this is given by OneCellComposition[m,
OneCellTimes[A,B]]. If A and B are 2-cells (i.e. morphisms in the underlying
MTC), then this is given by TwoCellHorizontalComposition[id[m], TwoCellTimes[A,B]].
For both, m represents the fusion rules of the underlying category. If the arguments
are all 1-cells, this is an n-ary operation A ⊗ B ⊗ . . ., if the arguments are 2-cells
the operation is only binary (so please use appropriate bracketing).

49

References

[1] J.C. Baez. Higher-dimensional algebra II: 2-Hilbert spaces. Arxiv preprint
q-alg/9609018, 1996.

[2] B. Coecke. Quantum picturalism. Arxiv preprint arXiv:0908.1787, 2009.

[3] J. Elgueta. A strict totally-coordinatized version of Kapranov and Voevodsky’s
2-category 2Vect. In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 142, pages 407–428. Cambridge Univ Press, 2007.

[4] A. Joyal and R. Street. The geometry of tensor calculus i. Advances in Mathematics,
88(1):55–112, 1991.

[5] M. Kapranov and V. Voevodsky. Braided monoidal 2-categories and
Manin-Schechtman higher braid groups. Journal of Pure and Applied Algebra,
92(3):241 – 267, 1994.

[6] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.

[7] Daniel A. Roberts. Representing modular tensor categories: A computer algebra
system for topological quantum computing. Master’s thesis, Department of Computer
Science, University of Oxford, 2011.

50

