Compositional Morphology for Word Representations and Language Modelling

Jan Botha, Phil Blunsom

ICML 2014, Beijing

Motivating Example

What We see

The king finally abdicated after years of unkingly conduct .

Motivating Example

What We see

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

Motivating Example

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

> Wait what - unkingly?
unkingly 1 n'kıgli
a word you have probably never seen, but still understand

Motivating Example

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?
unkingly \wedge n'kıgli
a word you have probably never seen, but still understand
\Rightarrow compositional morphology in action

Motivating Example

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

> Wait what - unkingly?
unkingly \wedge n'kıgli
a word you have probably never seen, but still understand
\Rightarrow compositional morphology in action
WHAT OUR MODELS SEE (MOSTLY)
$\begin{array}{llllllllll}10 & 2 & 95 & 529 & 11 & 88 & 21 & 50 & 74 & 239\end{array}$

Motivating Example

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

> Wait what - unkingly?
unkingly $\wedge n$ 'kıgli
a word you have probably never seen, but still understand
\Rightarrow compositional morphology in action
WHAT OUR MODELS SEE (MOSTLY)
$\begin{array}{llllllllll}10 & 2 & 95 & 529 & 11 & 88 & 21 & 50 & 74 & 239\end{array}$

Motivating Example 2

Other languages display still more variation

CzECH CONJUGATION

čistit (to clean)
čistím
čistíš
čistí
čistíme
čistíte
čistil
čištěn
čisti
čistěte
čistěme

TURKISH PRODUCTIVE DERIVATION

Avrupa
Avrupalı
Avrupalılaş
Avrupalılaştır
Avrupalılaştırama
Avrupalılaşııramadık
(Europe)
(of Europe)
(become of Europe)
(to Europeanise)
(be unable to Europeanise)
(we were unable to Europeanise)

Motivating Example 2

Other languages display still more variation

CzECH CONJUGATION

čistit (to clean)
čistím
čistíś
čistí
čistíme
čistíte
čistil
čištěn
čisti
čistěte čistěme

TURKISH PRODUCTIVE DERIVATION

Avrupa
Avrupalı
Avrupalılaş
Avrupalılaştır
Avrupalılaştırama
Avrupalılaşııramadık
(Europe)
(of Europe)
(become of Europe)
(to Europeanise)
(be unable to Europeanise)
(we were unable to Europeanise)
\Rightarrow we should model morphemes!

REPRESENTING WORDS

- Discrete set?
$\{$ a, aardvark, \ldots, account, accounted, accounting, ...\}

REPRESENTING WORDS

- Discrete set?
$\{\mathrm{a}$, aardvark, \ldots, account, accounted, accounting, ...\}
- Vector space?

Extract from Collobert \& Weston Embeddings

Extract from Collobert \& Weston Embeddings

Extract from Collobert \& Weston Embeddings

Morpheme vectors

Existing word vectors already capture some morphology.
$-\overrightarrow{\text { banks }}-\overrightarrow{\text { bank }} \approx \overrightarrow{\text { kings }}-\overrightarrow{\text { king }} \approx \overrightarrow{\text { queens }}-\overrightarrow{\text { queen }}$

Morpheme vectors

Existing word vectors already capture some morphology.

- $\overrightarrow{\text { banks }}-\overrightarrow{\text { bank }} \approx \overrightarrow{\text { kings }}-\overrightarrow{\text { king }} \approx \overrightarrow{\text { queens }}-\overrightarrow{\text { queen }}$
(Mikolov et al. 2013)
Logical extension:
- $\overrightarrow{\text { kings }} \approx \overrightarrow{\text { king }}+\overrightarrow{-s}$
- unkingly $\approx \overrightarrow{\text { un- }}+\overrightarrow{\text { king }}+\overrightarrow{-l y}$

MORPHEME VECTORS

Existing word vectors already capture some morphology.
$-\overrightarrow{\text { banks }}-\overrightarrow{\text { bank }} \approx \overrightarrow{\text { kings }}-\overrightarrow{\text { king }} \approx \overrightarrow{\text { queens }}-\overrightarrow{\text { queen }}$
(Mikolov et al. 2013)
Logical extension:
$-\overrightarrow{\text { kings }} \approx \overrightarrow{\text { king }}+\overrightarrow{-s}$

- $\overrightarrow{\text { unkingly }} \approx \overrightarrow{\text { un- }}+\overrightarrow{\text { king }}+\overrightarrow{- \text { ly }}$

How to...

- obtain morpheme vectors
- compose morpheme vectors
- do it all within a language model usable in an MT decoder

MORPHOLOGICAL COMPOSITION AS ADDITION

Literally, word = sum of its parts?

MORPHOLOGICAL COMPOSITION AS ADDITION

Literally, word = sum of its parts?

Problems:

- bag of morphemes: $\overrightarrow{\text { hang }}+\overrightarrow{\text { over }} \neq \overrightarrow{\text { over }}+\overrightarrow{\text { hang }}$
- non-compositionality: $\overrightarrow{\text { greenhouse }} \neq \overrightarrow{\text { green }}+\overrightarrow{\text { house }}$

MORPHOLOGICAL COMPOSITION AS ADDITION

Literally, word = sum of its parts?

Problems:

- bag of morphemes: $\quad \overrightarrow{\text { hang }}+\overrightarrow{\text { over }} \neq \overrightarrow{\text { over }}+\overrightarrow{\text { hang }}$
- non-compositionality: $\overrightarrow{\text { greenhouse }} \neq \overrightarrow{\text { green }}+\overrightarrow{\text { house }}$

Pragmatic Solution

include word identity as component too:

$$
\begin{array}{rr}
\overrightarrow{\text { greenhouse }} \equiv & \overrightarrow{\text { green }}_{\text {stem }}+\overrightarrow{\text { house }}_{\text {stem }} \\
\overrightarrow{\text { unkingly }} \equiv & \overrightarrow{\text { un }}_{\text {pre }}+\overrightarrow{\text { king }}_{\text {stem }}+\overrightarrow{l y}_{\text {suf }}
\end{array}
$$

MORPHOLOGICAL COMPOSITION AS ADDITION

Literally, word = sum of its parts?

Problems:

- bag of morphemes: $\overrightarrow{\text { hang }}+\overrightarrow{\text { over }} \neq \overrightarrow{\text { over }}+\overrightarrow{\text { hang }}$
- non-compositionality: $\overrightarrow{\text { greenhouse }} \neq \overrightarrow{\text { green }}+\overrightarrow{\text { house }}$

Pragmatic Solution

include word identity as component too:

$$
\begin{aligned}
\overrightarrow{\text { greenhouse }} \equiv \overrightarrow{\text { greenhouse }}_{\text {id }}+{\overrightarrow{\text { green }_{\text {stem }}}+\overrightarrow{\text { house }}_{\text {stem }}}^{\overrightarrow{\text { unkingly }} \equiv \overrightarrow{\text { unkingly }}_{\text {id }}+\overrightarrow{\text { un }}_{\text {pre }}+\overrightarrow{\text { king }}_{\text {stem }}+\overrightarrow{l y}_{\text {suf }}}
\end{aligned}
$$

Simplest vector-based probabilistic LM

LBL (Log-bilinear model)
(Mnih \& Hinton, 2007; Mnih \& Teh, 2012)

"colorless green ideas sleep furiously ."

Add morpheme vectors inside LM

LBL++

"colorless green ideas sleep furiously ."

Computational Efficiency

Problem:

Each probability query requires normalisation over vocabulary.

- \mathcal{O} (vocab size)
- rich morphology \Rightarrow large vocabulary

Computational Efficiency

Problem:

Each probability query requires normalisation over vocabulary.

- \mathcal{O} (vocab size)
- rich morphology \Rightarrow large vocabulary

SOLUTION: DECOMPOSE MODEL USING WORD CLASSES

$$
\begin{aligned}
P(\text { word } \mid \text { history })= & P(\text { class }(\text { word }) \mid \text { history }) \\
& \times P(\text { word } \mid \text { class }(\text { word }), \text { history })
\end{aligned}
$$

- use unsupervised Brown-clustering
- each LM query becomes $2 \times \mathcal{O}(\sqrt{\text { vocab size }})$ \Rightarrow fast enough for MT-decoding

Evaluation Overview

Setup

- 4-gram models
- Czech, English, French, German, Spanish, Russian
- train on 20-50m tokens
- large vocabularies (exclude 5\% of singletons)

Evaluation Overview

Setup

- 4-gram models
- Czech, English, French, German, Spanish, Russian
- train on 20-50m tokens
- large vocabularies (exclude 5% of singletons)

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Evaluation Overview

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Perplexity Improvements by Language

CLBL \rightarrow CLBL++

Perplexity Improvements on German

CLBL \rightarrow CLBL++ (Break-down By Token Frequency)

Bins of test token frequency

Evaluation Overview

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Evaluation Overview

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

WORD SIMILARITY RATING

\square CLBL word vectors; unknown test word \Rightarrow generic $\overrightarrow{\text { unknown }}$

WORD SIMILARITY RATING

\square CLBL word vectors; unknown test word \Rightarrow generic $\overrightarrow{\text { unknown }}$
CLBL++ composed vectors; unknown test word \Rightarrow generic $\overrightarrow{\text { unknown }}$

WORD SIMILARITY RATING

\square CLBL word vectors; unknown test word \Rightarrow generic $\overrightarrow{\text { unknown }}$
CLBL++ composed vectors; unknown test word \Rightarrow generic $\overrightarrow{\text { unknown }}$
CLBL++ composed vectors; unknown test word $\Rightarrow \sum$ known $\overrightarrow{\text { morphemes }}$

Evaluation Overview

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Evaluation Overview

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Machine Translation Evaluation

How to use the LM?

- rescore n-best list $<$ rescore lattice $<$ decoder feature

Machine Translation Evaluation

How to use the LM?

- rescore n-best list $<$ rescore lattice $<$ decoder feature

Hierarchical-phrase based decoder (cdec)

- Baseline: Kneser-Ney LM feature
- Test: Kneser-Ney LM feature + CLBL feature

Machine Translation Evaluation

How to use the LM?

- rescore n-best list $<$ rescore lattice $<$ decoder feature

Hierarchical-phrase based decoder (cdec)

- Baseline: Kneser-Ney LM feature
- Test: Kneser-Ney LM feature + CLBL feature

CLBL speed-up from:

- class decomposition
- cache normalisers on-the-fly

Translation Quality (Bleu)

FOR TRANSLATING INTO GIVEN LANGUAGE

higher better

Translation Quality (Bleu)

For Translating into given Language

higher better

Translation Quality (Bleu)

For Translating into given Language

higher better

Qualitative Evaluation: English affix vectors

SUMMARY

Simple,
scaleable,
unsupervised
method for integrating morphology into vector-based LM

- improvements in three evaluation settings
- translation with normalised NLM works

SUMMARY

Simple,
scaleable,

unsupervised

method for integrating morphology into vector-based LM

- improvements in three evaluation settings
- translation with normalised NLM works

Software released shortly

$$
\begin{gathered}
\text { www.clg.ox.ac.uk/resources } \\
\{\text { Jan.Botha, Phil.Blunsom\}@cs.ox.ac.uk }
\end{gathered}
$$

