Compositional Morphology for Word Representations and Language Modelling

Jan Botha, Phil Blunsom

ICML 2014, Beijing

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

unkingly An'kinli
a word you have probably never seen, but still understand

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

unkingly An'kıŋli a word you have probably never seen, but still understand

 \Rightarrow compositional morphology in action

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

 \Rightarrow compositional morphology in action

 What our models see (mostly)

 10
 2
 95
 529
 11
 88
 21
 50
 74
 239

WHAT WE SEE

The king finally abdicated after years of unkingly conduct .

Wait what - unkingly?

 \Rightarrow compositional morphology in action

 WHAT OUR MODELS SEE (MOSTLY)

 10
 2
 95
 529
 11
 88
 21
 50
 74
 239

Other languages display still more variation

. . .

CZECH CONJUGATION

čistit (to clean) čistím čistíš čistí čistíme čistíme čistíte čistil čištěn čistě čistě

TURKISH PRODUCTIVE DERIVATION

Avrupa Avrupalı Avrupalılaş Avrupalılaştır Avrupalılaştırama Avrupalılaştıramadık

(Europe) (of Europe) (become of Europe) (to Europeanise) (be unable to Europeanise) (we were unable to Europeanise)

Other languages display still more variation

. . .

CZECH
CONJUGATION

čistit (to clean) čistím čistíš čistí čistíme čistíme čistíte čistil čištěn čisti čistě

TURKISH PRODUCTIVE DERIVATION

Avrupa Avrupalı Avrupalılaş Avrupalılaştır Avrupalılaştırama Avrupalılaştıramadık

(Europe) (of Europe) (become of Europe) (to Europeanise) (be unable to Europeanise) (we were unable to Europeanise)

\Rightarrow we should model morphemes!

Representing words

Discrete set?

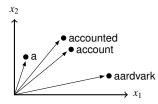
 $\{a, aardvark, \ldots, account, accounted, accounting, \ldots\}$

Representing words

Discrete set?

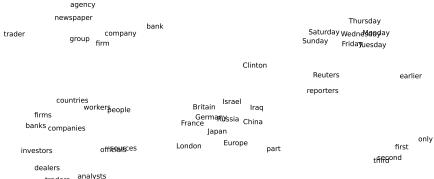
{a, aardvark, ..., account, accounted, accounting, ...}

► Vector space?



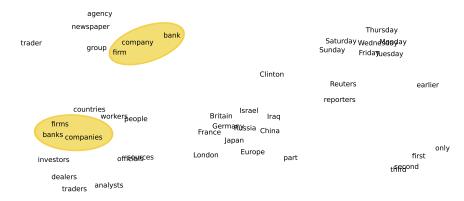
EXTRACT FROM COLLOBERT & WESTON EMBEDDINGS

EXTRACT FROM COLLOBERT & WESTON EMBEDDINGS



traders

EXTRACT FROM COLLOBERT & WESTON EMBEDDINGS



MORPHEME VECTORS

Existing word vectors already capture some morphology.

• $\overrightarrow{\text{banks}} - \overrightarrow{\text{bank}} \approx \overrightarrow{\text{kings}} - \overrightarrow{\text{king}} \approx \overrightarrow{\text{queens}} - \overrightarrow{\text{queen}}$

(Mikolov et al. 2013)

MORPHEME VECTORS

Existing word vectors already capture some morphology.

• $\overrightarrow{\text{banks}} - \overrightarrow{\text{bank}} \approx \overrightarrow{\text{kings}} - \overrightarrow{\text{king}} \approx \overrightarrow{\text{queens}} - \overrightarrow{\text{queen}}$

(Mikolov et al. 2013)

Logical extension:

•
$$\overrightarrow{\text{kings}} \approx \overrightarrow{\text{king}} + \overrightarrow{-s}$$

•
$$\overrightarrow{\text{unkingly}} \approx \overrightarrow{\text{un}} + \overrightarrow{\text{king}} + \overrightarrow{\text{ly}}$$

MORPHEME VECTORS

Existing word vectors already capture some morphology.

• $\overrightarrow{\text{banks}} - \overrightarrow{\text{bank}} \approx \overrightarrow{\text{kings}} - \overrightarrow{\text{king}} \approx \overrightarrow{\text{queens}} - \overrightarrow{\text{queen}}$

(Mikolov et al. 2013)

Logical extension:

• $\overrightarrow{\text{kings}} \approx \overrightarrow{\text{king}} + \overrightarrow{-s}$

•
$$\overrightarrow{\text{unkingly}} \approx \overrightarrow{\text{un}} + \overrightarrow{\text{king}} + \overrightarrow{\text{ly}}$$

Ноw то...

- obtain morpheme vectors
- compose morpheme vectors
- ► do it all within a language model usable in an MT decoder

Literally, word = sum of its parts?

Literally, word = sum of its parts?

Problems:

- bag of morphemes:
- ▶ non-compositionality: $\overline{\text{greenhouse}} \neq \overline{\text{green}} + \overline{\text{house}}$

$$\overrightarrow{\text{hang}} + \overrightarrow{\text{over}} \neq \overrightarrow{\text{over}} + \overrightarrow{\text{hang}}$$
$$\overrightarrow{\text{greenhouse}} \neq \overrightarrow{\text{green}} + \overrightarrow{\text{house}}$$

Literally, word = sum of its parts?

Problems:

► bag of morphemes:

► bag of morphemes:
$$\overrightarrow{hang} + \overrightarrow{over} \neq \overrightarrow{over} + \overrightarrow{hang}$$

► non-compositionality: $\overrightarrow{greenhouse} \neq \overrightarrow{green} + \overrightarrow{house}$

PRAGMATIC SOLUTION

include word identity as component too:

$$\overrightarrow{\text{greenhouse}} \equiv \overrightarrow{green}_{stem} + \overrightarrow{house}_{stem}$$
$$\overrightarrow{\text{unkingly}} \equiv \overrightarrow{un}_{pre} + \overrightarrow{king}_{stem} + \overrightarrow{ly}_{suf}$$

Literally, word = sum of its parts?

Problems:

bag of morpheme

▶ bag of morphemes:
$$hang + over \neq over + hang$$

▶ non-compositionality: $\overrightarrow{greenhouse} \neq \overrightarrow{green} + \overrightarrow{house}$

PRAGMATIC SOLUTION

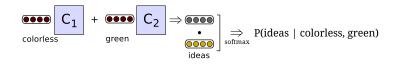
include word identity as component too:

$$\overrightarrow{\text{greenhouse}} \equiv \overrightarrow{\text{greenhouse}}_{id} + \overrightarrow{\text{green}}_{stem} + \overrightarrow{\text{house}}_{stem}$$
$$\overrightarrow{\text{unkingly}} \equiv \overrightarrow{\text{unkingly}}_{id} + \overrightarrow{\text{un}}_{pre} + \overrightarrow{\text{king}}_{stem} + \overrightarrow{\text{ly}}_{suf}$$

SIMPLEST VECTOR-BASED PROBABILISTIC LM

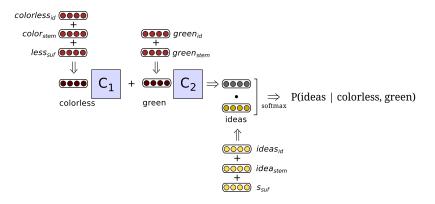
LBL (Log-bilinear model)

(Mnih & Hinton, 2007; Mnih & Teh, 2012)



"colorless green ideas sleep furiously ."

ADD MORPHEME VECTORS INSIDE LM



"colorless green ideas sleep furiously ."

COMPUTATIONAL EFFICIENCY

Problem:

Each probability query requires normalisation over vocabulary.

- ► $\mathcal{O}(\text{vocab size})$
- $\blacktriangleright \ \ rich \ morphology \Rightarrow large \ vocabulary$

COMPUTATIONAL EFFICIENCY

Problem:

Each probability query requires normalisation over vocabulary.

- ► O(vocab size)
- rich morphology \Rightarrow large vocabulary

SOLUTION: DECOMPOSE MODEL USING WORD CLASSES

 $P(\text{word} \mid \text{history}) = P(\text{class}(\text{word}) \mid \text{history})$ $\times P(\text{word} \mid \text{class}(\text{word}), \text{history})$

- use unsupervised Brown-clustering
- ► each LM query becomes $2 \times O(\sqrt{\text{vocab size}})$ ⇒ fast enough for MT-decoding

Setup

- 4-gram models
- ► Czech, English, French, German, Spanish, Russian
- train on 20–50m tokens
- ► large vocabularies (exclude 5% of singletons)

Setup

- 4-gram models
- ► Czech, English, French, German, Spanish, Russian
- train on 20–50m tokens
- ► large vocabularies (exclude 5% of singletons)

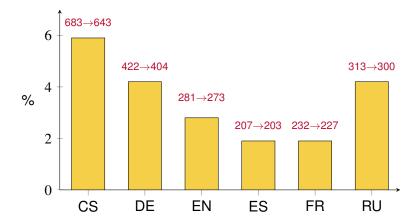
Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Three evaluation contexts:

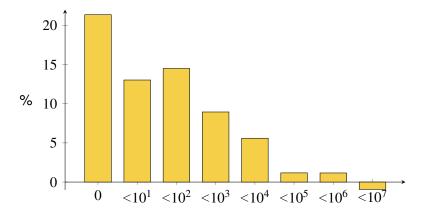
- Perplexity on test data
- Word similarity rating
- Machine translation

Perplexity Improvements by Language ${\tt clbl}{\rightarrow}{\tt clbl}{+}{+}$



PERPLEXITY IMPROVEMENTS ON GERMAN

CLBL→CLBL++ (BREAK-DOWN BY TOKEN FREQUENCY)



Bins of test token frequency

Three evaluation contexts:

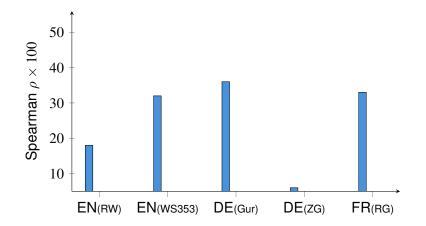
- Perplexity on test data
- Word similarity rating
- Machine translation

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

WORD SIMILARITY RATING

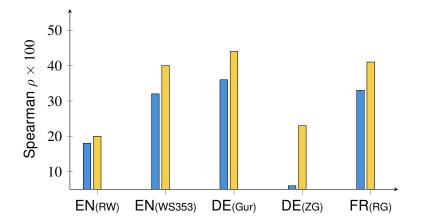
CLBL word vectors; unknown test word \Rightarrow generic $\overrightarrow{unknown}$



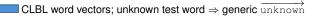
WORD SIMILARITY RATING

CLBL word vectors; unknown test word \Rightarrow generic $\overrightarrow{unknown}$

CLBL++ composed vectors; unknown test word \Rightarrow generic $\overrightarrow{\text{unknown}}$

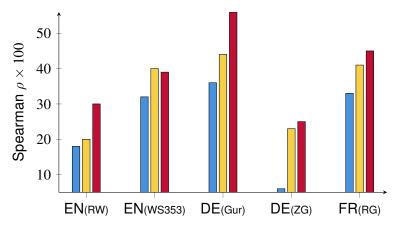


WORD SIMILARITY RATING



CLBL++ composed vectors; unknown test word \Rightarrow generic $\overrightarrow{\text{unknown}}$

CLBL++ composed vectors; unknown test word $\Rightarrow \sum$ known $\overrightarrow{morphemes}$



Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

Three evaluation contexts:

- Perplexity on test data
- Word similarity rating
- Machine translation

MACHINE TRANSLATION EVALUATION

How to use the LM?

rescore n-best list < rescore lattice < decoder feature</p>

MACHINE TRANSLATION EVALUATION

How to use the LM?

► rescore n-best list < rescore lattice < decoder feature

Hierarchical-phrase based decoder (cdec)

- ► Baseline: Kneser-Ney LM feature
- Test: Kneser-Ney LM feature + CLBL feature

MACHINE TRANSLATION EVALUATION

How to use the LM?

► rescore n-best list < rescore lattice < decoder feature

Hierarchical-phrase based decoder (cdec)

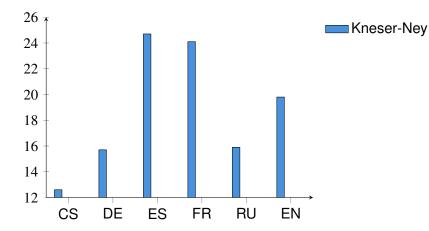
- ► Baseline: Kneser-Ney LM feature
- Test: Kneser-Ney LM feature + CLBL feature

CLBL speed-up from:

- class decomposition
- cache normalisers on-the-fly

TRANSLATION QUALITY (BLEU)

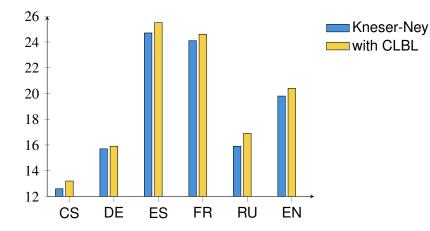
FOR TRANSLATING INTO GIVEN LANGUAGE



higher better

TRANSLATION QUALITY (BLEU)

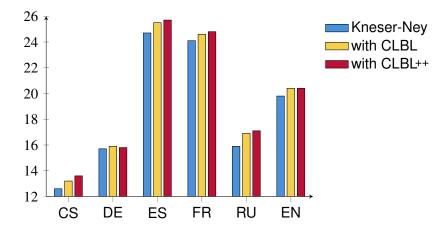
FOR TRANSLATING INTO GIVEN LANGUAGE



higher better

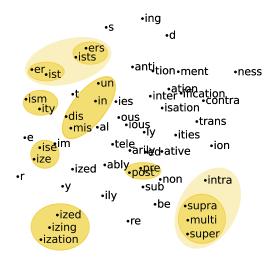
TRANSLATION QUALITY (BLEU)

FOR TRANSLATING INTO GIVEN LANGUAGE



higher better

QUALITATIVE EVALUATION: ENGLISH AFFIX VECTORS



SUMMARY

Simple, scaleable, unsupervised method for integrating morphology into vector-based LM

- improvements in three evaluation settings
- translation with normalised NLM works

SUMMARY

Simple, scaleable, unsupervised method for integrating morphology into vector-based LM

improvements in three evaluation settings

translation with normalised NLM works

Software released shortly

www.clg.ox.ac.uk/resources

{Jan.Botha,Phil.Blunsom}@cs.ox.ac.uk

