Governing Equations

Numerical Approximation 000 00000000 Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Non-Newtonian Fluids and Finite Elements

Janice Giudice

Oxford University Computing Laboratory Keble College

Governing Equations

Numerical Approximation 00 00000000 Conclusion and Further Work

Table of contents

Basic Definitions and Problem

Governing Equations

Conservation Equations Distinctions of Fluids The Governing Equations

Numerical Approximation

Some Results Finite Element Approximation A posteriori Error Analysis

Conclusion and Further Work

Governing Equations

Numerical Approximation 000 00000000

Conclusion and Further Work

Definitions

Fluid: a substance that continually deforms (flows) under an applied shear stress

Governing Equations

Numerical Approximation 000 00000000

Conclusion and Further Work

Definitions

Viscosity: a measure of the resistance of a fluid to deform under shear stress. It is commonly perceived as "thickness", or resistance to pouring.

Governing Equations

Numerical Approximation 000 00000000 Conclusion and Further Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Definitions

Sir Isaac Newton

Newtonian Fluid: The concept was first deduced by Isaac Newton and is directly analogous to Hooke's law for a solid. A fluid that flows like water and whose stress at each point is proportional to its strain rate at that point.

Governing Equations

Numerical Approximation 00 00000000 Conclusion and Further Work

Definitions

Non-Newtonian A fluid that is not Newtonian! That is, the stress and the strain are no longer linearly related.

Shear-Thinning Viscosity decreases with increasing applied stress

Shear-Thickening Viscosity increases with increasing applied stress.

Governing Equations 000 00 000 Numerical Approximation

Conclusion and Further Work

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

The Physical Problem

Tightly confined flow of a non-Newtonian fluid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Cauchy's Equation of Motion

Equates the rate of change of momentum of a selected fluid element and the sum of all forces acting on that fluid element.

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = \nabla \cdot \mathbf{T} + \rho \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

- **u** velocity of fluid,
- **T** stress tensor (internal forces),
- **f** forcing function (external forces),
- ρ density.

Governing Equations

Numerical Approximation

Conclusion and Further Work

A Viscous Fluid

Figure: Two elemental volumes.

The stress tensor for a viscous fluid is

$$\mathbf{T} = -\mathbf{p}\mathbf{I} + \tau = \begin{bmatrix} -p & 0 & 0\\ 0 & -p & 0\\ 0 & 0 & -p \end{bmatrix} + \begin{bmatrix} \tau_{11} & \tau_{12} & \tau_{13}\\ \tau_{21} & \tau_{22} & \tau_{23}\\ \tau_{31} & \tau_{32} & \tau_{33} \end{bmatrix}$$

Governing Equations

Numerical Approximation

Conclusion and Further Work

A Viscous Fluid

Figure: Two elemental volumes.

The stress tensor for a viscous fluid is

$$\mathbf{T} = -\mathbf{p}\mathbf{I} + \tau = \begin{bmatrix} -p & 0 & 0\\ 0 & -p & 0\\ 0 & 0 & -p \end{bmatrix} + \begin{bmatrix} \tau_{11} & \tau_{12} & \tau_{13}\\ \tau_{21} & \tau_{22} & \tau_{23}\\ \tau_{31} & \tau_{32} & \tau_{33} \end{bmatrix}$$

- $\tau = \mu \mathbf{e}(\mathbf{u})$ Deviatoric stress tensor.
- μ is the apparent viscosity.
- $\mathbf{e}(\mathbf{u}) = \frac{1}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top} \right)$ is the rate of strain tensor.

Governing Equations

Numerical Approximation

Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Navier-Stokes Equations

The stress tensor is $\mathbf{T} = -\mathbf{p}\mathbf{I} + \frac{\mu}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top} \right)$

Governing Equations

Numerical Approximation 00 00000000 Conclusion and Further Work

Navier-Stokes Equations

The stress tensor is
$$\mathbf{T} = -\mathbf{p}\mathbf{I} + rac{\mu}{2}\left(
abla\mathbf{u} + (
abla\mathbf{u})^{ op}
ight)$$

Navier-Stokes Equations

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

• $\nu = \frac{\mu}{\rho}$ Kinematic viscosity.

Governing Equations

Numerical Approximation 000 00000000 Conclusion and Further Work

Newtonian Fluids

The Newtonian property is encoded in the stress tensor

$\mathbf{T}=-\mathbf{p}\mathbf{I}+\tau$

Governing Equations

Numerical Approximation 00 00000000 Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Newtonian Fluids

The Newtonian property is encoded in the stress tensor

 $\mathbf{T} = -\mathbf{p}\mathbf{I} + \tau$

with

$$\tau = \mu \mathbf{e}(\mathbf{u}).$$

The apparent viscosity, μ , is a constant and so the stress and rate of strain are proportional – linearly related. This models a Newtonian fluid.

Governing Equations ○○ ○● ○○○ Numerical Approximation

Conclusion and Further Work

Non-Newtonian Fluids

Non-linear stress tensor

$$\mathbf{T} = -\mathbf{p}\mathbf{I} + \mu\mathbf{k}\left(\mathbf{x}, |\mathbf{e}(\mathbf{u})|\right)\mathbf{e}(\mathbf{u})$$

Governing Equations ○○ ○● ○○○ Numerical Approximation 00 00000000 Conclusion and Further Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Non-Newtonian Fluids

Non-linear stress tensor

$$\mathbf{T} = -\mathbf{p}\mathbf{I} + \mu\mathbf{k}\left(\mathbf{x}, |\mathbf{e}(\mathbf{u})|\right)\mathbf{e}(\mathbf{u})$$

- $\mu k \left(\mathbf{x}, |\mathbf{e}(\mathbf{u})| \right)$ is the apparent viscosity,
- $|\cdot|$ is the Frobenius norm.

Governing Equations ○○ ○● ○○○ Numerical Approximation 00 00000000 Conclusion and Further Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Newtonian Fluids

Non-linear stress tensor

$$\mathbf{T} = -\mathbf{p}\mathbf{I} + \mu\mathbf{k}\left(\mathbf{x}, |\mathbf{e}(\mathbf{u})|\right)\mathbf{e}(\mathbf{u})$$

• $\mu k \left(\mathbf{x}, |\mathbf{e}(\mathbf{u})| \right)$ is the apparent viscosity,

• $|\cdot|$ is the Frobenius norm.

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla \rho + 2\nu \nabla \cdot (k (\mathbf{x}, |\mathbf{e}(\mathbf{u})|) \mathbf{e}(\mathbf{u})) + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

Numerical Approximation

Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Simplifying the System

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla \rho + 2\nu \nabla \cdot (k (\mathbf{x}, |\mathbf{e}(\mathbf{u})|) \mathbf{e}(\mathbf{u})) + \mathbf{f}$$

$$\nabla \cdot \mathbf{u} = 0$$

Assuming that the flow is tightly confined and slow, we can drop the non-linear term and neglect inertial effects. Also we assume steady flow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Simplifying the System

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla \rho + 2\nu \nabla \cdot (k (\mathbf{x}, |\mathbf{e}(\mathbf{u})|) \mathbf{e}(\mathbf{u})) + \mathbf{f}$$

$$\nabla \cdot \mathbf{u} = 0$$

Assuming that the flow is tightly confined and slow, we can drop the non-linear term and neglect inertial effects. Also we assume steady flow.

$$rac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot
abla) \, \mathbf{u} = \mathbf{0}$$

Numerical Approximation

Simplifying the System

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla \rho + 2\nu \nabla \cdot (k (\mathbf{x}, |\mathbf{e}(\mathbf{u})|) \mathbf{e}(\mathbf{u})) + \mathbf{f}$$

$$\nabla \cdot \mathbf{u} = 0$$

Assuming that the flow is tightly confined and slow, we can drop the non-linear term and neglect inertial effects. Also we assume steady flow.

$$rac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot
abla) \, \mathbf{u} = \mathbf{0}$$

Under such restrictions, the governing equations are

$$-\mu
abla \cdot (k\left(\mathbf{x}, |\mathbf{e}(\mathbf{u})|
ight) \mathbf{e}(\mathbf{u})) + rac{1}{
ho}
abla p ~=~ \mathbf{f}$$

 $\nabla \cdot \mathbf{u} = \mathbf{0}$

Governing Equations

Numerical Approximation 00 00000000 Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Power-Law

Observation: For typical shear-thinning fluids, μ falls with increasing shear rate

Experimental Data: The log-log plot of shear stress to rate of shear is often found to be linear with a slope between zero and one:

$$\log k (|\mathbf{e}(\mathbf{u})|) = (r-2) \log |\mathbf{e}(\mathbf{u})| + \log 2\mu$$

$$\Rightarrow k (|\mathbf{e}(\mathbf{u})|) = 2\mu |\mathbf{e}(\mathbf{u})|^{r-2}$$

Power-Law

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Choice of Constitutive Relation

Possible choices are:

- Stokes flow: $k(|\mathbf{e}(\mathbf{u})|) \equiv 1$
- Power-law model: $k(|\mathbf{e}(\mathbf{u})|) = |\mathbf{e}(\mathbf{u})|^{r-2}, \quad 1 < r < \infty$
- Ladyzhenskaya model: $k(|\mathbf{e}(\mathbf{u})|) = \mu_0 + \mu_1 |\mathbf{e}(\mathbf{u})|^{r-2}, \quad \mu_0, \mu_1 > 0$

Choice of Constitutive Relation

Possible choices are:

- Stokes flow: $k(|\mathbf{e}(\mathbf{u})|) \equiv 1$
- Power-law model: $k(|\mathbf{e}(\mathbf{u})|) = |\mathbf{e}(\mathbf{u})|^{r-2}, \quad 1 < r < \infty$
- Ladyzhenskaya model: $k(|\mathbf{e}(\mathbf{u})|) = \mu_0 + \mu_1 |\mathbf{e}(\mathbf{u})|^{r-2}, \quad \mu_0, \mu_1 > 0$

Of greater generality and of more practical significance is the

• Carreau model:

$$\begin{aligned} &k(|\mathbf{e}(\mathbf{u})|) = \mu_{\infty} + (\mu_0 - \mu_{\infty})(1 + \lambda |\mathbf{e}(\mathbf{u})|^2)^{(\theta - 2)/2}, \\ &\mu_0 > \mu_{\infty} \ge 0, \ \lambda > 0, \ \theta \in (0, \infty) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Governing Equations 000 00 000 Conclusion and Further Work

Some Preliminary Numerical Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Governing Equations

Conclusion and Further Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

What do we Want?

• Numerical simulation of incompressible, viscous extrusion flows for shear-thinning power-law fluids.

Governing Equations

Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What do we Want?

- Numerical simulation of incompressible, viscous extrusion flows for shear-thinning power-law fluids.
- Accurate capturing of the thin boundary layers in the flow.

Governing Equations

Conclusion and Further Work

What do we Want?

- Numerical simulation of incompressible, viscous extrusion flows for shear-thinning power-law fluids.
- Accurate capturing of the thin boundary layers in the flow.
- The accurate prediction of the free surface between two pastes with different rheological properties flowing in channels or extruders.

Governing Equations

Conclusion and Further Work

What do we Want?

- Numerical simulation of incompressible, viscous extrusion flows for shear-thinning power-law fluids.
- Accurate capturing of the thin boundary layers in the flow.
- The accurate prediction of the free surface between two pastes with different rheological properties flowing in channels or extruders.

Adaptive Finite Element Methods!!

Governing Equations

Conclusion and Further Work

What do we Want?

- Numerical simulation of incompressible, viscous extrusion flows for shear-thinning power-law fluids.
- Accurate capturing of the thin boundary layers in the flow.
- The accurate prediction of the free surface between two pastes with different rheological properties flowing in channels or extruders.

Adaptive Finite Element Methods!!

 $\mathsf{SOLVE} \to \mathsf{ESTIMATE} \to \mathsf{MARK} \to \mathsf{REFINE}$

Governing Equations

Numerical Approximation

Conclusion and Further Work

・ロト ・ 一 ト ・ モト ・ モト

ъ

Adaptivity in a Channel

Governing Equations

Numerical Approximation

Conclusion and Further Work

Weak Formulation

Find
$$\mathbf{u} \in V = [W_0^{1,r}(\Omega)]^d$$
 and $p \in Q = L_0^{r'}(\Omega) = L^{r'}(\Omega)/\mathbb{R}$
$$a(\mathbf{u}, \mathbf{v}) + b(p, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in V$$
$$b(q, \mathbf{u}) = 0 \quad \forall q \in Q.$$

Governing Equations

Numerical Approximation

Conclusion and Further Work

Weak Formulation

Find
$$\mathbf{u} \in V = [W_0^{1,r}(\Omega)]^d$$
 and $p \in Q = L_0^{r'}(\Omega) = L^{r'}(\Omega)/\mathbf{R}$
$$a(\mathbf{u}, \mathbf{v}) + b(p, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in V$$
$$b(q, \mathbf{u}) = 0 \quad \forall q \in Q.$$

Here

Governing Equations

Numerical Approximation

Conclusion and Further Work

Weak Formulation

Find
$$\mathbf{u} \in V = [W_0^{1,r}(\Omega)]^d$$
 and $p \in Q = L_0^{r'}(\Omega) = L^{r'}(\Omega)/\mathbf{R}$
$$a(\mathbf{u}, \mathbf{v}) + b(p, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in V$$
$$b(q, \mathbf{u}) = 0 \quad \forall q \in Q.$$

Here

Inf-sup condition [Amrouche & Girault (1990)]: $\exists c_0 > 0 \text{ s.t.}$

$$\inf_{q\in \mathcal{Q}}\sup_{\mathbf{v}\in V}\frac{b(q,\mathbf{v})}{\|q\|_{\mathcal{Q}}\|\mathbf{v}\|_{V}}\geq c_{0}\qquad\forall q\in Q.$$

Numerical Approximation

Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Finite Element Approximation

Let $V_h \subset V$ and $Q_h \subset Q$ be finite-dimensional spaces consisting of p.w. polynomial functions, defined on a triangulation $\mathcal{T}_h = \{T\}$ of the computational domain Ω .

Numerical Approximation ○○ ○● ○○○○○○○ Conclusion and Further Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Element Approximation

Let $V_h \subset V$ and $Q_h \subset Q$ be finite-dimensional spaces consisting of p.w. polynomial functions, defined on a triangulation $\mathcal{T}_h = \{T\}$ of the computational domain Ω . Find $\mathbf{u}_h \in V_h$ and $p_h \in Q_h$ such that

Numerical Approximation

Conclusion and Further Work

Finite Element Approximation

Let $V_h \subset V$ and $Q_h \subset Q$ be finite-dimensional spaces consisting of p.w. polynomial functions, defined on a triangulation $\mathcal{T}_h = \{T\}$ of the computational domain Ω . Find $\mathbf{u}_h \in V_h$ and $p_h \in Q_h$ such that

$$\begin{array}{rcl} a(\mathbf{u}_h,\mathbf{v}_h)+b(p_h,\mathbf{v}_h) &=& (\mathbf{f},\mathbf{v}_h) & \forall \mathbf{v}_h \in V_h \\ b(q_h,\mathbf{u}_h) &=& 0 & \forall q_h \in Q_h. \end{array}$$

Discrete inf-sup condition: there exists $c_0 > 0$, s.t.

$$\inf_{q_h\in Q_h}\sup_{\mathbf{v}_h\in V_h}\frac{b(q_h,\mathbf{v}_h)}{\|q_h\|_Q\|\mathbf{v}_h\|_V}\geq c_0\qquad\forall q_h\in Q_h.$$

Governing Equations

Numerical Approximation

Conclusion and Further Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A Posteriori Error Analysis

How to quantify the size of the error

$$\mathbf{u}-\mathbf{u}_h, \qquad p-p_h$$

in terms of a computable bound?

Governing Equations

Numerical Approximation

Conclusion and Further Work

A Posteriori Error Analysis

How to quantify the size of the error

$$\mathbf{u} - \mathbf{u}_h, \qquad p - p_h$$

in terms of a computable bound?

We define the residual functionals $\mathbf{S}_1 \in V'$ and $S_2 \in Q'$ by

$$egin{array}{rcl} \langle {f S}_1,{f w}
angle &=& ({f f},{f w})-a({f u}_h,{f w})-b(p_h,{f w}) & & orall w\in V \ \langle S_2,q
angle &=& -b(q,{f u}_h) & & orall q\in Q. \end{array}$$

Our aim is to bound $\mathbf{u} - \mathbf{u}_h$ and $p - p_h$ in terms of norms of \mathbf{S}_1 and S_2 .

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Governing Equations

Numerical Approximation

Conclusion and Further Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Residual functionals

Here $\mathbf{S}_1 \in V'$ and $S_2 \in Q'$ are defined by:

$$egin{array}{rcl} \langle {f S}_1,{f w}
angle &=& ({f f},{f w})-a({f u}_h,{f w})-b(p_h,{f w}) & & orall w\in V \ \langle S_2,q
angle &=& -b(q,{f u}_h) & & orall q\in Q. \end{array}$$

Note the error representation formula:

$$\begin{array}{lll} a(\mathbf{u},\mathbf{w})-a(\mathbf{u}_h,\mathbf{w})+b(p-p_h,\mathbf{w}) &=& \langle \mathbf{S}_1,\mathbf{w}\rangle\\ && b(q,\mathbf{u}-\mathbf{u}_h) &=& \langle S_2,q\rangle \end{array}$$

for all $\mathbf{w} \in V$ and all $q \in Q$.

Governing Equations

Numerical Approximation

Conclusion and Further Work

Bounding the residual functionals

We have that

$$\langle \mathbf{S}_{1}, \mathbf{w} \rangle = \sum_{T \in \mathcal{T}_{h}} \int_{T} (\mathbf{f} + \nabla \cdot (k(|e(\mathbf{u}_{h})|)e(\mathbf{u}_{h})) - \nabla p_{h}) \cdot (\mathbf{w} - I_{h}\mathbf{w}) \, \mathrm{d}T$$
$$- \sum_{T \in \mathcal{T}_{h}} \int_{\partial T} [k(|e(\mathbf{u}_{h})|)e(\mathbf{u}_{h})\mathbf{n}_{T} - p_{h}\mathbf{n}_{T}] \cdot (\mathbf{w} - I_{h}\mathbf{w}) \, \mathrm{d}s$$

and

$$\langle S_2, q \rangle = \sum_{T \in \mathcal{T}_h} \int_T (\nabla \cdot \mathbf{u}_h) q \, \mathrm{d} T$$

Governing Equations

Numerical Approximation

Conclusion and Further Work

Bounding the residual functionals

$$\|\mathbf{S}_{1}\|_{V'} \leq C \left[\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{r'} \|\mathbf{R}_{1}\|_{\mathrm{L}^{r'}(T)}^{r'} \right)^{1/r'} + \left(\sum_{T \in \mathcal{T}_{h}} \sum_{e \subset \partial T \cap \Omega} h_{T} \|\mathbf{R}_{2}\|_{\mathrm{L}^{r'}(e)}^{r'} \right)^{1/r'} \right].$$

and

$$\|\mathbf{S}_2\|_{\mathcal{Q}'} \le \left(\sum_{\mathcal{T}\in\mathcal{T}_h} \|\mathbf{R}_3\|_{\mathbf{L}'(\mathcal{T})}^{r}\right)^{1/r}$$

 $\mathbf{R}_1 = \mathbf{f} + \nabla \cdot (k(|e(\mathbf{u}_h)|)e(\mathbf{u}_h)) - \nabla p_h, \qquad \mathbf{R}_3 = \nabla \cdot \mathbf{u}_h$

 $\mathbf{R}_2 = \frac{1}{2} \left[\!\!\left[\sigma_h \mathbf{n} \right]\!\!\right], \qquad \sigma_h = -\left(k(|e(\mathbf{u}_h)|)e(\mathbf{u}_h) - p_h I\right).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Governing Equations

Numerical Approximation

Conclusion and Further Work

A posteriori error bound

Theorem. Let $(\mathbf{u}, p) \in V \times Q$ denote the solution to b.v.p., and let $(\mathbf{u}_h, p_h) \in V_h \times Q_h$ denote its finite element approximation. Then, there is a positive constant $C = C(K_1, K_2, c_0, c'_0, r, \|\mathbf{f}\|_{V'})$ s.t.

$$\|\mathbf{u}-\mathbf{u}_{h}\|_{V}^{\mathsf{R}}+\|\boldsymbol{p}-\boldsymbol{p}_{h}\|_{Q}^{\hat{\mathsf{R}}} \leq C\left(\|\mathbf{S}_{1}\|_{V'}^{\mathsf{R}'}+\|\mathbf{S}_{2}\|_{Q'}^{\hat{\mathsf{R}}'}\right),$$

where

$$R = \max\{r, 2\}, \ \hat{R} = \max\{r', 2\}, \ 1/R + 1/R' = 1, \ 1/\hat{R} + 1/\hat{R}' = 1,$$

and S_1 and S_2 residual functionals which are computably bounded.

[Barrett, Robson, Süli (2004)]

Governing Equations

Numerical Approximation

Conclusion and Further Work

Some Numerical Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Governing Equations

Numerical Approximation

Conclusion and Further Work

Some Numerical Results

r = 1.3

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Governing Equations

Numerical Approximation

Conclusion and Further Work

Some Numerical Results

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions, ongoing and future research

- We developed the a posteriori error analysis of finite element approximations to a class on non-Newtonian flows.
- Ongoing research: implementation into an adaptive finite element method in 2D.
- Future work: application to multiple fluids, time-dependent problems in time-dependent geometries.