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Definitions

Fluid: a substance that continually deforms (flows) under
an applied shear stress
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Definitions

Viscosity: a measure of the resistance of a fluid to deform under
shear stress. It is commonly perceived as ”thickness”,
or resistance to pouring.
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Definitions

Sir Isaac Newton

Newtonian Fluid: The concept was first deduced by Isaac Newton
and is directly analogous to Hooke’s law for a solid.
A fluid that flows like water and whose stress at each
point is proportional to its strain rate at that point.
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Definitions

Non-Newtonian A fluid that is not Newtonian! That is, the stress
and the strain are no longer linearly related.

Shear-Thinning Viscosity decreases with increasing applied stress

Shear-Thickening Viscosity increases with increasing applied stress.
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The Physical Problem

Tightly confined flow of a non-Newtonian fluid.
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Cauchy’s Equation of Motion

Equates the rate of change of momentum of a selected fluid
element and the sum of all forces acting on that fluid element.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · T + ρf

∇ · u = 0

• u velocity of fluid,

• T stress tensor (internal forces),

• f forcing function (external forces),

• ρ density.



Basic Definitions and Problem Governing Equations Numerical Approximation Conclusion and Further Work

A Viscous Fluid

Figure: Two elemental volumes.

The stress tensor for a viscous fluid is

T = −pI + τ =

 −p 0 0
0 −p 0
0 0 −p

 +

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33



• τ = µe(u) Deviatoric stress tensor.

• µ is the apparent viscosity.

• e(u) = 1
2

(
∇u + (∇u)>

)
is the rate of strain tensor.
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Navier-Stokes Equations

The stress tensor is T = −pI + µ
2

(
∇u + (∇u)>

)

Navier-Stokes Equations

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p + ν∇2u + f

∇ · u = 0

• ν = µ
ρ Kinematic viscosity.
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Newtonian Fluids

The Newtonian property is encoded in the stress tensor

T = −pI + τ

with
τ = µe(u).

The apparent viscosity, µ, is a constant and so the stress and rate
of strain are proportional – linearly related. This models a
Newtonian fluid.
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Non-Newtonian Fluids

Non-linear stress tensor

T = −pI + µk (x, |e(u)|) e(u)

• µk (x, |e(u)|) is the apparent viscosity,

• | · | is the Frobenius norm.

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p + 2ν∇ · (k (x, |e(u)|) e(u)) + f

∇ · u = 0
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Simplifying the System

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p + 2ν∇ · (k (x, |e(u)|) e(u)) + f

∇ · u = 0

Assuming that the flow is tightly confined and slow, we can drop
the non-linear term and neglect inertial effects. Also we assume
steady flow.

∂u

∂t
+ (u · ∇) u = 0

Under such restrictions, the governing equations are

−µ∇ · (k (x, |e(u)|) e(u)) +
1

ρ
∇p = f

∇ · u = 0
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The Power-Law

Observation: For typical shear-thinning fluids, µ falls with
increasing shear rate

Experimental Data: The log-log plot of shear stress to rate of
shear is often found to be linear with a slope between
zero and one:

log k (|e(u)|) = (r − 2) log |e(u)|+ log 2µ

⇒ k (|e(u)|) = 2µ |e(u)|r−2

Power-Law
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Choice of Constitutive Relation

Possible choices are:

• Stokes flow: k(|e(u)|) ≡ 1

• Power-law model: k(|e(u)|) = |e(u)|r−2 , 1 < r < ∞
• Ladyzhenskaya model:

k(|e(u)|) = µ0 + µ1 |e(u)|r−2 , µ0, µ1 > 0

Of greater generality and of more practical significance is the

• Carreau model:
k(|e(u)|) = µ∞ + (µ0 − µ∞)(1 + λ |e(u)|2)(θ−2)/2,
µ0 > µ∞ ≥ 0 , λ > 0, θ ∈ (0,∞)
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Some Preliminary Numerical Results

r = 2 r = 1 + 1
2 r = 1 + 1

4 r = 1 + 1
8 r = 1 + 1

16
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What do we Want?

• Numerical simulation of incompressible, viscous extrusion
flows for shear-thinning power-law fluids.

• Accurate capturing of the thin boundary layers in the flow.

• The accurate prediction of the free surface between two
pastes with different rheological properties flowing in channels
or extruders.

Adaptive Finite Element Methods!!

SOLVE → ESTIMATE → MARK → REFINE
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Adaptivity in a Channel

48 simplices;113 nodes 124 simplices;281 nodes

332 simplices;725 nodes 1064 simplices;2241 nodes
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Weak Formulation

Find u ∈ V = [W1,r
0 (Ω)]d and p ∈ Q = Lr′

0 (Ω) = Lr′(Ω)/R

a(u, v) + b(p, v) = (f, v) ∀v ∈ V

b(q, u) = 0 ∀q ∈ Q.

Here

a(u, v) =

∫
Ω

k(x , |e(u)|)e(u) : e(v) dΩ

b(q, v) = −
∫

Ω

(∇ · v)q dΩ.

Inf-sup condition [Amrouche & Girault (1990)]: ∃c0 > 0 s.t.

inf
q∈Q

sup
v∈V

b(q, v)

‖q‖Q‖v‖V
≥ c0 ∀q ∈ Q.
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Finite Element Approximation

Let Vh ⊂ V and Qh ⊂ Q be finite-dimensional spaces consisting of p.w.
polynomial functions, defined on a triangulation Th = {T} of the
computational domain Ω.

Find uh ∈ Vh and ph ∈ Qh such that

a(uh, vh) + b(ph, vh) = (f, vh) ∀vh ∈ Vh

b(qh, uh) = 0 ∀qh ∈ Qh.

Discrete inf-sup condition: there exists c0 > 0, s.t.

inf
qh∈Qh

sup
vh∈Vh

b(qh, vh)

‖qh‖Q‖vh‖V
≥ c0 ∀qh ∈ Qh.
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A Posteriori Error Analysis

How to quantify the size of the error

u− uh, p − ph

in terms of a computable bound?

We define the residual functionals S1 ∈ V ′ and S2 ∈ Q ′ by

〈S1,w〉 = (f,w)− a(uh,w)− b(ph,w) ∀w ∈ V

〈S2, q〉 = −b(q, uh) ∀q ∈ Q.

Our aim is to bound u− uh and p − ph in terms of norms of S1 and S2.
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Residual functionals

Here S1 ∈ V ′ and S2 ∈ Q ′ are defined by:

〈S1,w〉 = (f,w)− a(uh,w)− b(ph,w) ∀w ∈ V

〈S2, q〉 = −b(q, uh) ∀q ∈ Q.

Note the error representation formula:

a(u,w)− a(uh,w) + b(p − ph,w) = 〈S1,w〉
b(q, u− uh) = 〈S2, q〉

for all w ∈ V and all q ∈ Q.
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Bounding the residual functionals

We have that

〈S1,w〉 =
∑

T∈Th

∫
T

(f +∇ · (k(|e(uh)|)e(uh))−∇ph) · (w − Ihw) dT

−
∑

T∈Th

∫
∂T

[k(|e(uh)|)e(uh)nT − phnT ] · (w − Ihw) ds

and

〈S2, q〉 =
∑

T∈Th

∫
T

(∇ · uh) q dT
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Bounding the residual functionals

‖S1‖V ′ ≤ C


 ∑

T∈Th

hr′
T ‖R1‖r′

Lr′ (T )

1/r′

+

 ∑
T∈Th

∑
e⊂∂T∩Ω

hT‖R2‖r′

Lr′ (e)

1/r′
.

and

‖S2‖Q′ ≤

 ∑
T∈Th

‖R3‖r
Lr (T )

1/r

R1 = f +∇ · (k(|e(uh)|)e(uh))−∇ph, R3 = ∇ · uh

R2 = 1
2
[[ σhn ]] , σh = − (k(|e(uh)|)e(uh)− phI ) .
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A posteriori error bound

Theorem. Let (u, p) ∈ V × Q denote the solution to b.v.p., and let
(uh, ph) ∈ Vh × Qh denote its finite element approximation. Then, there is a
positive constant C = C(K1, K2, c0, c

′
0, r , ‖f‖V ′) s.t.

‖u− uh‖R
V + ‖p − ph‖R̂

Q ≤ C
(
‖S1‖R′

V ′ + ‖S2‖R̂
′

Q′

)
,

where

R = max{r , 2}, R̂ = max{r ′, 2}, 1/R + 1/R′ = 1, 1/R̂ + 1/R̂
′
= 1,

and S1 and S2 residual functionals which are computably bounded.

[Barrett, Robson, Süli (2004)]
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Some Numerical Results

r = 2 U V P



Basic Definitions and Problem Governing Equations Numerical Approximation Conclusion and Further Work

Some Numerical Results

r = 1.3 U V P
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Some Numerical Results

r = 3.3 U V P
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Conclusions, ongoing and future research

• We developed the a posteriori error analysis of finite element
approximations to a class on non-Newtonian flows.

• Ongoing research: implementation into an adaptive finite
element method in 2D.

• Future work: application to multiple fluids, time-dependent
problems in time-dependent geometries.
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