
Agda-ventures with PolyP

Jeremy Gibbons1[0000-0002-8426-9917] and

Patrik Jansson2[0000-0003-3078-1437]

1 University of Oxford, UK
https://www.cs.ox.ac.uk/people/jeremy.gibbons/

2 Chalmers University of Technology and University of Gothenburg, SE
https://patrikja.owlstown.net/

Abstract. Revisiting Johan Jeuring’s PolyP 30 years on, we note that a
special-purpose language is no longer needed: general-purpose dependently
typed programming suffices. This is a text-based adventure from software
archeology, via codes to universes. Happy 60th Birthday, Johan!

1 Introduction

Among Johan Jeuring’s contributions to the world, not the least is his program-
ming language PolyP, developed in a series of papers from 1995 to 2002. One of
us was his first PhD student, and part of this endeavour.

PolyP was a research language designed for the purpose of exploring the no-
tion of polytypic programming : programs that are parametrized by the shape of
datatypes, so that one program can be applied to many different datatypes. In the
first paper on the topic [7], Jeuring quotes the definition from Webster’s dictionary:

poly·typ·ic [�pä-lē-"ti-pik], adj.: having or involving several different types

Other names for the same idea include ‘structurally polymorphic’, ‘shape polymor-
phic, ‘type parametric’, ‘generic’, and ‘datatype-generic’. Typical polytypic pro-
gramming problems are structural: equality, matching, folding, mapping, traversal,
encoding, printing, parsing, unification, and so on. A crucial criterion is the main-
tenance of strong static type safety; in contrast, approaches based on dynamic
typing may be able to express the same programs, but cannot make the same
static guarantees.

PolyP was implemented [5] as a preprocessor for Haskell, providing an addi-
tional polytypic construct that gets translated into ordinary Haskell. (The source
code is available at GitHub [3]. The original revision history has been preserved,
predating GitHub’s birth by a decade.) The work on PolyP led to a grant from the
Dutch research council NWO for the Generic Haskell project, running 2000–2004
[8], another preprocessor for Haskell, and then in turn to many different approaches
to generic programming [1].

https://www.cs.ox.ac.uk/people/jeremy.gibbons/
https://patrikja.owlstown.net/

22 Jeremy Gibbons and Patrik Jansson

So the ideas involved in PolyP have been influential over the past thirty years
or so. But they have also been superseded by developments in programming lan-
guages. In particular, what in 1995 required a domain-specific language and a
special-purpose preprocessor can be achieved in 2025 by good old-fashioned pro-
gramming. This has been enabled by the advances that have since been made in
dependent types. Whilst this theory significantly predates PolyP, it is only recently
that tools originally envisioned as supporting theorem proving and formalized
mathematics have become plausible programming languages.

In this short paper, we summarize the key ideas behind polytypic program-
ming, and show how they can now be captured directly in a dependently typed
programming language. Any dependently typed language will do, but we will use
Agda. Maybe we can entice you back, Johan? The water is much warmer these
days!

2 Polytypic programming

The general idea with PolyP is that “a polytypic function can be viewed as a family
of functions: one function for each datatype” [9], defined by induction over the
structure of the datatype. So first one needs to settle on the universe of datatypes.

PolyP used polynomial types: sums and products of some basic types, such
as booleans, integers, and the unit type. For recursive datatypes such as lists of
booleans and trees of integers, it used regular functors: initial algebras for functors
constructed from polynomial operations on a type parameter, closed under certain
compositions (so that one recursive datatype can be used in the shape functor for
another). And to accommodate polymorphic (container) datatypes too, it extended
to regular bifunctors.

For example [9], the Haskell datatypes of lists and rose trees

data List a = Nil | Cons a (List a)
data Rose a = Fork a (List (Rose a))

are the initial algebras respectively of the bifunctors written in PolyP as

FList = () +Par⇥Rec
FRose = Par⇥ (List @ Rec)

For FList , the bifunctor is a sum, with the unit type for the left summand; the
right summand is the product of the datatype parameter (that is, the first bifunctor
argument) and a recursive call (the second bifunctor argument). For FRose, the
right factor is the composition of List and the recursive position.

Continuing the example from [9], inductive datatypes Mu F A for bifunctor
F and element type A have a constructor and a destructor:

inn :: f a (Mu f a) ! Mu f a
out :: Mu f a ! f a (Mu f a)

A polytypic ‘map’ function for inductive datatypes

Agda-ventures with PolyP 23

pmap :: (a ! b) ! Mu f a ! Mu f b
pmap p = inn · fmap p (pmap p) · out

is defined in terms of a polytypic fmap for regular bifunctors:

polytypic fmap :: (a ! c) ! (b ! d) ! f a b ! f c d
= � p r ! case f of

f + g ! fmap p r -+- fmap p r
() ! id
Con t ! id
f ⇥ g ! fmap p r -⇥- fmap p r
d @ g ! pmap (fmap p r)
Par ! p
Rec ! r

where (-+-) and (-⇥-) map over sums and products respectively.
Note that there is no Functor or Bifunctor type class constraint on f , requiring

a separate instance declaration, as would typically be the case in Haskell. Rather,
the definition of fmap is essentially the template by which GHC would automati-
cally derive a functor instance.

3 Dependently typed programming

In PolyP, a polytypic definition like that of fmap specifies what code should be
generated for a specific type: “the compiler generates instances from the defini-
tion of the polytypic function and the type in the context where it is used” [5].
This is more than mere text processing, because PolyP does take care to type
check a polytypic definition, in the sense that no generated instance will yield a
Haskell type error. Still, PolyP is essentially a standalone domain-specific language
for polytypic definitions, which means that the full power of the target language
Haskell is not available in polytypic code.

This is a price that need not be paid, provided one can find a single language
expressive enough to encompass both the polytypic templates and the actual even-
tual code. Then a separate code generation phase is not required: it becomes “a
small matter of programming” in the one language. It turns out that a depen-
dently typed language like Agda [13] provides the expressivity needed: types (and
operations on types, such as functors and bifunctors) are values too.

So what would in PolyP be a polytypic function parametrized by a functor
becomes in Agda just a function with an argument. However, that argument can’t
literally be a type, or a functor. We can’t work with the types themselves, because
we can’t analyse them: they would be black boxes, and we need to perform case
analyses on them. Instead, we make separate codes for the types in the universe,
and define the interpretation mapping codes to types. Codes can be analysed and
manipulated, since they are just terms in an algebraic datatype.

24 Jeremy Gibbons and Patrik Jansson

As a simple introduction, let’s consider the universe of types consisting of sums
and products of the unit type, naturals, and booleans. We start with an algebraic
datatype of codes for the types in the universe:

data Code0 : Set where
NatT BoolT UnitT : Code0

⇤ _+_ : Code0 ! Code0 ! Code0

For example, here is the code for the sum of the unit type and the product of
naturals and booleans (that is, what would be Maybe (Nat ,Bool) in Haskell):

MaybeNatBoolCode : Code0

MaybeNatBoolCode = UnitT + (NatT ⇤ BoolT)

We can then define the interpretation of codes as types:

[[_]]0 : Code0 ! Set
[[NatT]]0 = Nat
[[BoolT]]0 = Bool
[[UnitT]]0 = >
[[c ⇤ c0]]0 = [[c]]0 ⇥ [[c0]]0
[[c + c0]]0 = Sum [[c]]0 [[c0]]0

This interpretation is simply a straightforward function definition—we have ex-
ploited Agda’s fancy mix-fix syntax, but we might as well have named the function
something like “ interp0”. The definition is by induction over the structure of codes:
interpretations of the three base type codes are given directly (“>” denotes the
unit type, with sole element tt), and interpretations of the product and sum code
constructors given inductively (“⇥” and “Sum” denote product and sum types
respectively).

Finally, we can define a polytypic function over this universe of types. For ex-
ample, here is the equality function: it takes the code for some type in the universe,
and two elements of the interpretation of that code, and returns a boolean. For
the three base cases (constant types), the comparison is delegated to type-specific
operators; for the two inductive cases (product and sum), it is given inductively.

equal0 : { c : Code0 } ! [[c]]0 ! [[c]]0 ! Bool
equal0 {NatT} n m = (n ==N m)
equal0 {BoolT} x y = (x ==B y)
equal0 {UnitT} x y = (x ==U y)
equal0 {c ⇤ c0} (x , x0) (y , y0) = equal0 x y ^ equal0 x0 y0
equal0 {c + c0} (inj1 x) (inj1 y) = equal0 x y
equal0 {c + c0} (inj2 x0) (inj2 y0) = equal0 x0 y0
equal0 {c + c0} _ _ = false

For example, the two elements inj1 tt and inj2 (3 , false) in the interpretation of
MaybeNatBoolCode are not equal; and indeed, the expression

Agda-ventures with PolyP 25

equal0 { MaybeNatBoolCode } (inj1 tt) (inj2 (3 , false))

normalizes to false. Note that the first argument to equal0 is written in curly braces,
marking it as implicit, since it can be inferred. In particular, it is omitted for the
recursive calls, and not needed for the example either: we can write just equal0
(inj1 tt) (inj2 (3 , false)).

4 The full story

So much for codes for types, and their interpretation as actual types. If we want to
handle inductive datatypes as fixpoints, we also want codes for functors. And for
polymorphic inductive datatypes, we want bifunctors. So here are three mutually
recursive datatypes of codes for them:

mutual
data Type : Set where

NatTy BoolTy UnitTy : Type

data Functor : Set where
Fix : Bifunctor ! Functor

data Bifunctor : Set where
⇤ _+_ : Bifunctor ! Bifunctor ! Bifunctor
Const : Type ! Bifunctor
• : Functor ! Bifunctor ! Bifunctor
Par Rec : Bifunctor

In order to interpret codes for inductive datatypes, we need to define these:

{-# NO_POSITIVITY_CHECK #-}
data Mu (f : Set ! Set) : Set where

In : f (Mu f) ! Mu f
out : { f : Set ! Set } ! Mu f ! f (Mu f)
out (In xs) = xs

Not all functors induce inductive datatypes, so we have to turn off the check that
Agda would otherwise insist on. Since we are modelling PolyP generating Haskell,
we don’t worry too much about the risk of non-termination.

We can now give the interpretations of the three kinds of code:

mutual
[[_]]T : Type ! Set
[[_]]F : Functor ! Set ! Set
[[_]]B : Bifunctor ! Set ! Set ! Set

[[NatTy]]T = Nat
[[BoolTy]]T = Bool

26 Jeremy Gibbons and Patrik Jansson

[[UnitTy]]T = >
[[Fix f]]F p = Mu ([[f]]B p)

[[f ⇤ g]]B p r = [[f]]B p r ⇥ [[g]]B p r
[[f + g]]B p r = Sum ([[f]]B p r) ([[g]]B p r)
[[Const t]]B p r = [[t]]T
[[d • f]]B p r = [[d]]F ([[f]]B p r)
[[Par]]B p r = p
[[Rec]]B p r = r

Each base code is interpreted as the corresponding base type. Our only code for a
functor is for a polymorphic inductive datatype, which is interpreted accordingly,
using the interpretation of its bifunctor parameter. Bifunctor codes for lifted prod-
uct and sum of two bifunctors are interpreted using the standard constructors; the
codes for a constant bifunctor and for the composition of a functor and a bifunctor
(“@” in PolyP, which is reserved in Agda so written with a bullet here) are defined
recursively; and the ‘parameter’ and ‘recursive argument’ are projections.

Next we can define the functorial action for functors and bifunctors (the pmap
and fmap we saw above), mutually recursive with catamorphisms:

mutual
{-# TERMINATING #-}
pmap : (d : Functor) ! (a ! b) ! [[d]]F a ! [[d]]F b
fmap : (f : Bifunctor) ! (a ! b) ! (c ! d) ! [[f]]B a c ! [[f]]B b d
cata : (f : Bifunctor) ! ([[f]]B a b ! b) ! [[Fix f]]F a ! b
cata f h (In xs) = h (fmap f id (cata f h) xs)
pmap (Fix f) g = cata f (In � fmap f g id)

fmap (f ⇤ g) p r (x , y) = (fmap f p r x , fmap g p r y)
fmap (f + g) p r (inj1 x) = inj1 (fmap f p r x)
fmap (f + g) p r (inj2 y) = inj2 (fmap g p r y)
fmap (Const t) p r x = x
fmap (d • g) p r xs = pmap d (fmap g p r) xs
fmap Par p r = p
fmap Rec p r = r

For example, the code ListF for the shape bifunctor for lists, the corresponding
code ListC for its fixpoint, and the interpretation MyList of the latter as an actual
functor are:

ListF : Bifunctor
ListF = Const UnitTy + (Par ⇤ Rec)

ListC : Functor
ListC = Fix ListF

Agda-ventures with PolyP 27

MyList : Set ! Set
MyList = [[ListC]]F

We can define constructors for these lists:

nilList : MyList a
nilList = In (inj1 tt)

consList : a ! MyList a ! MyList a
consList x xs = In (inj2 ((x , xs)))

and conversion functions from and to built-in lists:

toMyList : List a ! MyList a
toMyList = foldr consList nilList

fromMyList : MyList a ! List a
fromMyList = cata ListF alg where

alg : [[ListF]]B a (List a) ! List a
alg (inj1 tt) = []
alg (inj2 (x , xs)) = x :: xs

One canonical example of a polytypic function on polymorphic container datatypes
is to “crush” it [11], aggregating the elements using a monoid:

mutual
crush : (a ! a ! a) ! a ! (d : Functor) ! [[d]]F a ! a
crush _�_ e (Fix f) = cata f (crushB _�_ e f)

crushB : (a ! a ! a) ! a ! (f : Bifunctor) ! [[f]]B a a ! a
crushB _�_ e (f ⇤ g) (x , y) = crushB _�_ e f x � crushB _�_ e g y
crushB _�_ e (f + g) (inj1 x) = crushB _�_ e f x
crushB _�_ e (f + g) (inj2 y) = crushB _�_ e g y
crushB _�_ e (Const t) x = e
crushB _�_ e Par p = p
crushB _�_ e Rec r = r
crushB _�_ e (d • g) = crush _�_ e d � pmap d (crushB _�_ e g)

The binary operator is used to combine the two aggregations in a product, and
the unit value is used for constants. For instance, we can flatten a container to a
list, by making every element a singleton list then crushing using the list monoid:

flatten : (d : Functor) ! [[d]]F a ! List a
flatten d = crush _++_ [] d � pmap d (� x ! [x])

5 Polytypic packing and unpacking

Let us now look at a more extended example: another canonical piece of the
polytypism literature, namely polytypic packing. By this we mean encoding a value

28 Jeremy Gibbons and Patrik Jansson

of arbitrary type as a bitstream, in such a way as to be able (given information
also about the type) to decode the bitstream back to the original data.

One can think of this as simple-minded data compression. For simplicity, we
will encode to lists of bits and ignore the possible refinement of packing the bits
into words. We name the bits used to label left and right choices, and provide a
case analysis for them:

leftBit rightBit : Bool
leftBit = false
rightBit = true

caseBit : Bool ! a ! a ! a
caseBit b x y = if b then y else x

the idea being that

b = caseBit b leftBit rightBit

We provide primitives toBits and fromBits to convert between natural numbers and
lists of booleans (making the simplifying assumption that all numbers are distinct
to bitWidth bits—we could be cleverer about this):

bitWidth : Nat
bitWidth = 4 – we keep it small for testing

toBits : Nat ! List Bool
toBits n = reverse (go bitWidth n) where

go : Nat ! Nat ! List Bool
go zero n = []
go (suc m) n = let (q , r) = divMod2 n in r :: go m q

fromBits : List Bool ! Nat
fromBits = foldl (� n b ! (2 ⇤N n) +N (if b then 1 else 0)) 0

Now, as a first attempt we might represent a packer for data as a function
from that data to lists of bits. However, an unpacker would have to be more than
simply a function in the opposite direction: we have to return the unused bits too,
in order to be compositional; and we have to allow for failure, to make a total
function. So we define the following:

Unpacker : Set ! Set
Unpacker a = List Bool ! Maybe (a ⇥ List Bool)

In fact, that type supports a monad—the combination of the state monad trans-
former on bit-list state around the maybe monad, what would in Haskell be written
StateT [Bool] Maybe:

P : Set ! Set
P = Unpacker

Agda-ventures with PolyP 29

It turns out to be convenient to define packer using the same type:

Packer : Set ! Set
Packer a = a ! P >

A packer will always succeed, and will produce rather than consume some bits. In
that sense, the P monad is overkill—but it allows u now to think about composing
packers and unpackers. Note that an unpacker Unpacker A for some type A is
isomorphic to a function of type > ! P A, which is nicely dual to the packer type
A ! P >. (For more on this duality, see [6].)

The stateful interface is provided by two operations:

put : Packer (List Bool)
put bs’ = � bs ! just (tt , bs’)
get : Unpacker (List Bool)
get = � bs ! just (bs , bs)

But we will not need the full power of these two operations; we will use them only
in restricted ways. For packers, we need only add some output:

packerTell : Packer (List Bool)
packerTell bs = do

bs’ ← get
put (bs ++ bs’)

(for reasons that will become clear in due course, we prepend rather than append).
In particular, here are primitive packers for naturals, booleans, and the unit type:

packNat : Packer Nat
packNat n = packerTell (toBits n)

packBool : Packer Bool
packBool b = packerTell [b]

packUnit : Packer >
packUnit tt = return tt

Note that packUnit is a no-op. Primitive unpackers for naturals and units are
similarly easy:

unpackBool : Unpacker Bool
unpackBool = uncons

unpackUnit : Unpacker >
unpackUnit = return tt

To unpack a natural, we read a chunk of input, then convert these bits to a number:

unpackNat : Unpacker Nat
unpackNat = do

30 Jeremy Gibbons and Patrik Jansson

xs ← get
let (ys , zs) = splitAt bitWidth xs
put zs
return (fromBits ys)

5.1 Packing as a monadic catamorphism

Now, to pack a structure of an inductive datatype, we will use a monadic cata-
morphism [12], which is like the ordinary catamorphism except that the algebra
argument and the catamorphism itself are Kleisli arrows—that is, they have a
monadic return type:

mutual
cataM : (f : Bifunctor) ! ([[f]]B a b ! P b) ! [[Fix f]]F a ! P b

We will return to the definition of cataM shortly; but let’s first see how it is used.
We define three mutually recursive functions, packers respectively for a type,

a functor, and a bifunctor, taking correspondingly many element packers as argu-
ments:

packT : (t : Type) ! Packer [[t]]T
packF : (d : Functor) ! Packer a ! Packer ([[d]]F a)
packB : (f : Bifunctor) ! Packer a ! Packer b ! Packer ([[f]]B a b)

The packers for types each delegate to the appropriate primitive defined earlier:

packT NatTy n = packNat n
packT BoolTy b = packBool b
packT UnitTy tt = packUnit tt

We only have one code for functors, interpreted as an inductive datatype, and this
is where we use the monadic catamorphism:

packF (Fix f) p = cataM f (packB f p packUnit)

The catamorphism handles the recursive calls, so at the top level we do nothing
(packUnit) for the recursive positions.

Finally, we have one fairly simple case per bifunctor:

packB (f ⇤ g) p q (x , y) = do packB g p q y
packB f p q x

packB (f + g) p q (inj1 x) = do packB f p q x
packerTell [leftBit]

packB (f + g) p q (inj2 y) = do packB g p q y
packerTell [rightBit]

packB (Const t) p q = packT t

Agda-ventures with PolyP 31

packB (d • g) p q = packF d id � pmap d (packB g p q)
packB Par p q = p
packB Rec p q = q

Recall that the primitive operations to write bits were defined to prepend to the
list. We therefore specify that for products, we pack the right then the left compo-
nent of the pair; then the left component will appear first in the output. Similarly—
and more importantly—for sums, we emit the discriminator bit after packing the
payload.

Now back to the monadic catamorphism. This requires a distributive law of
the shape bifunctor over the monad—informally, this hoists the monad to the
top, executing the computations for each of the recursive positions to make one
composite computation collecting all the effects:

distr : (f : Bifunctor) ! [[f]]B a (P b) ! P ([[f]]B a b)

Then the catamorphism deconstructs the data, makes recursive calls on each of
the children, collects all their effects, applies the algebra h, and merges the effects
of that:

{-# TERMINATING #-}
cataM f h (In xs) = join (h <$> (distr f (fmap f id (cataM f h) xs)))

Note that the catamorphism is bottom up: the effects from children are incurred
before those of the parent. This is why we defined the primitive packers to prepend
bits instead of appending them: the encoding of the root of the data structure will
end up at the start of the output list, conveniently for unpacking.

The last ingredient is the distributive law. This is in essence another polytypic
program, with mutually recursive definitions for functors and bifunctors (types are
not needed):

distrF : (f : Functor) ! [[f]]F (P a) ! P ([[f]]F a)
distrB : (f : Bifunctor) ! [[f]]B (P a) (P b) ! P ([[f]]B a b)

distrF (Fix f) (In xs) = In <$> (distrB f (fmap f id (distrF (Fix f)) xs))
distrB (f ⇤ g) (xs , ys) = liftM2 _,_ (distrB f xs) (distrB g ys)
distrB (f + g) (inj1 x) = inj1 <$> distrB f x
distrB (f + g) (inj2 y) = inj2 <$> distrB g y
distrB (Const t) x = return x
distrB (d • g) xs = distrF d (pmap d (distrB g) xs)
distrB Par x = x
distrB Rec x = x

The variant we actually use is for bifunctors, but with pure values in the parameter
positions, so we must first inject these into the monad:

distr f = distrB f � fmap f return id

32 Jeremy Gibbons and Patrik Jansson

For example, with bit width set to 4 for brevity, the expression

packF ListC (packT NatTy) (toMyList (1 :: 2 :: 3 :: [])) []

reduces to the expression in Figure 1.

just (tt ,
true ::
false :: false :: false :: true :: – toBits 1
true ::
false :: false :: true :: false :: – toBits 2
true ::
false :: false :: true :: true :: – toBits 3
false :: [])

Fig. 1. The list of bits resulting from packing 1, 2, 3 is true to indicate a cons cell, then
four bits representing the number 1, then similarly for the next two elements, then false
to indicate a nil cell.

5.2 Unpacking as a monadic anamorphism

Let us now turn to unpacking. Being the inverse of packing, it will use the dual
pattern: a monadic anamorphism, which is again like the ordinary anamorphism
only where the coalgebra and the anamorphism itself are Kleisli arrows:

mutual
{-# TERMINATING #-}
anaM : (f : Bifunctor) ! (b ! P ([[f]]B a b)) ! b ! P ([[Fix f]]F a)

Unpacking is again defined in terms of three mutually recursive functions, unpack-
ers respectively for types, functors, and bifunctors, each with the corresponding
number of element unpackers as arguments:

unpackT : (t : Type) ! Unpacker [[t]]T
unpackF : (d : Functor) !

Unpacker a ! Unpacker ([[d]]F a)
unpackB : (f : Bifunctor) !

Unpacker a ! Unpacker b ! Unpacker ([[f]]B a b)

For the base types we defer to the earlier primitives:

unpackT NatTy = unpackNat
unpackT BoolTy = unpackBool
unpackT UnitTy = unpackUnit

Agda-ventures with PolyP 33

For the sole functor code, we use the anamorphism:

unpackF (Fix f) u = anaM f (� _ ! unpackB f u unpackUnit) _

Note that the ‘seed’ of the anamorphism is the unit type: all the information driving
the computation comes from the list of booleans, encoded in the monad. So the
bound variable of the lambda is irrelevant, and the initial seed of the anamorphism
can be inferred. As with packing, the anamorphism handles the recursive calls, so
at the top level we need do nothing for the recursive positions (unpackUnit, another
no-op).

And finally, there is one fairly simple case per bifunctor:

unpackB (f ⇤ g) u v = liftM2 _,_ (unpackB f u v) (unpackB g u v)
unpackB (f + g) u v = do b ← unpackBool

caseBit b
(inj1 <$> unpackB f u v)
(inj2 <$> unpackB g u v)

unpackB (Const x) u v = unpackT x
unpackB (d • g) u v = unpackF d (unpackB g u v)
unpackB Par u v = u
unpackB Rec u v = v

For products, we unpack the left then the right components; for sums, we consume
one discriminator bit in order to decide which branch to take.

Now back to the monadic anamorphism. This applies the coalgebra to the
seed, makes recursive calls to generate each of the children, collects all their effects,
merges the effects from the coalgebra and the recursive calls, then wraps the result
up in the constructor:

anaM f h y = In <$> join (distr f <$> (fmap f id (anaM f h) <$> h y))

To illustrate the round trip, it should be the case that whatever value we take,
if we pack it in front of any bit sequence then unpack the resulting sequence, that
composition should succeed, and should return the original value and sequence:

packUnpack : { a : Set } ! Packer a ! Unpacker a ! a ! List Bool ! Set
packUnpack p u x bs = (p x » u) bs ⌘ just (x , bs)

(recall that a packer returns unit, which we then discard by »). Then we can
instantiate this scheme for the types, functors, and bifunctors in our universe:

packUnpackT : (a : Type) ! [[a]]T ! List Bool ! Set
packUnpackT a = packUnpack (packT a) (unpackT a)

packUnpackF : (d : Functor) ! (a : Type) ! [[d]]F [[a]]T ! List Bool ! Set
packUnpackF d a = packUnpack (packF d (packT a))

(unpackF d (unpackT a))

34 Jeremy Gibbons and Patrik Jansson

packUnpackB : (f : Bifunctor) ! (a b : Type) !
[[f]]B [[a]]T [[b]]T ! List Bool ! Set

packUnpackB f a b = packUnpack (packB f (packT a) (packT b))
(unpackB f (unpackT a) (unpackT b))

For example, we can check the round trip property on a list of three naturals:

packUnpackList : 8 (bs : List Bool) !
packUnpackF ListC NatTy (toMyList (1 :: 2 :: 3 :: [])) bs

packUnpackList bs = refl

The value we give to packUnpackList is simply refl, which indicates that (and is
only type correct when) the two sides of the equivalence are definitionally equal.

6 Discussion

The technique we have used of identifying an algebraic datatype of codes for types
drawn from some universe is a standard pattern in dependently typed program-
ming. It is an instance in microcosm of the “formulation á la Tarski” that Martin-
Löf [10] used in macrocosm to construct a universe of discourse for intuitionistic
type theory. Another way of looking at it is specifying an embedded domain spe-
cific language for types (namely the codes), and semantics by way of a shallow
embedding into the host language (namely the interpretation) [2].

This paper is literate Agda, although some of the gory details have been elided
for presentation purposes. The full story can be seen in the source, which is avail-
able on GitHub [4], and typechecks at least with version 2.7.0.1 of Agda and
version 2.2 of the Agda standard library.

We have seen that the polytypic programming features that Johan pioneered
with PolyP can be done nowadays as ‘mere programming’, given a sufficiently rich
language—in particular, a dependently typed one. We have chosen Agda, but Idris
would work just as well.

Even Haskell is almost powerful enough these days: much of the PolyP func-
tionality was achieved in Haskell already in 2003 [14]. But dependent types have
the additional advantage that proofs become part of the language. We have ex-
ploited this briefly above: the code contains some unit tests, which are run as
part of typechecking. And indeed we have exploited these tests while writing the
programs: although many silly errors are ruled out by the types, it is in particular
still possible to write out the wrong bit sequences.

But a powerful and informative type system like Agda’s is not just there to
prevent accidents. It is also hugely valuable when it comes to writing the programs
in the first place: the type specifies much about the program, so with suitable
interaction between the type checker and the editor—for example, in the Agda
mode for Emacs—much of the program can be written automatically. Some values
can be inferred; case analyses can be automatically generated; programs can be

Agda-ventures with PolyP 35

typechecked while still containing holes, and these holes can be explored with
information about the goal type and the variables in scope.

Programming in this type-driven style in many ways feels like a text-based
adventure game. You find yourself in a hole, with various objects at your disposal,
and you have to find a way out. You keep getting sent on side-quests. Sometimes
it feels like you are fighting the typechecker; but sometimes it feels like the uni-
verse is on your side, and the obstacles are magically eliminated. In recent years,
Johan’s research interests have shifted from programming languages to technology
for education, including ‘serious games’: perhaps Johan can see scope for closing
the circle by bringing the two back together?

References

1. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: An extended com-
parative study of language support for generic programming. Journal of Functional
Programming 17(2), 145–205 (2007). https://doi.org/10.1017/S0956796806006198

2. Gibbons, J., Wu, N.: Folding domain-specific languages: Deep and shallow em-
beddings. In: International Conference on Functional Programming (Sep 2014).
https://doi.org/10.1145/2628136.2628138

3. Jansson, P.: PolyP source code. https://github.com/patrikja/PolyP
4. Jansson, P., Gibbons, J.: Source code for the “PolyP 30” paper. https://github.com/

DSLsofMath/PolyP30
5. Jansson, P., Jeuring, J.: PolyP – A polytypic programming language extension. In:

Principles of Programming Languages (POPL). pp. 470–482. ACM Press (1997).
https://doi.org/10.1145/263699.263763

6. Jansson, P., Jeuring, J.: Polytypic data conversion programs. Science of Computer
Programming 43, 35–75 (2002). https://doi.org/10.1016/S0167-6423(01)00020-X

7. Jeuring, J.: Polytypic pattern matching. In: Functional Programming Languages and
Computer Architecture. pp. 238–248. ACM (1995). https://doi.org/10.1145/224164.
224212

8. Jeuring, J.: Generic Haskell: A language for generic programming. NWO grant
612.069.000 (2000), https://www.nwo.nl/en/projects/612069000

9. Jeuring, J., Jansson, P.: Polytypic programming. In: Launchbury, J., Meijer, E.,
Sheard, T. (eds.) Advanced Functional Programming. Lecture Notes in Computer
Science, vol. 1129, pp. 68–114. Springer-Verlag (1996). https://doi.org/10.1007/
3-540-61628-4_3

10. Martin-Löf, P.: Intuitionistic Type Theory. Studies in Proof Theory, Bibliopolis
(1984), notes by Giovanni Sambin of a series of lectures given in Padua, June 1980.
ISBN 88-7088-105-9.

11. Meertens, L.: Calculate polytypically! In: Kuchen, H., Swierstra, S.D. (eds.) Pro-
gramming Languages: Implementations, Logics, and Programs. Lecture Notes in
Computer Science, vol. 1140, pp. 1–16. Springer-Verlag (1996). https://doi.org/10.
1007/3-540-61756-6_73

12. Meijer, E., Jeuring, J.: Merging monads and folds for functional programming. In:
Jeuring, J., Meijer, E. (eds.) Advanced Functional Programming. Lecture Notes in
Computer Science, vol. 925, pp. 228–266. Springer (1995). https://doi.org/10.1007/
3-540-59451-5_7

https://doi.org/10.1017/S0956796806006198
https://doi.org/10.1017/S0956796806006198
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/2628136.2628138
https://github.com/patrikja/PolyP
https://github.com/DSLsofMath/PolyP30
https://github.com/DSLsofMath/PolyP30
https://doi.org/10.1145/263699.263763
https://doi.org/10.1145/263699.263763
https://doi.org/10.1016/S0167-6423(01)00020-X
https://doi.org/10.1016/S0167-6423(01)00020-X
https://doi.org/10.1145/224164.224212
https://doi.org/10.1145/224164.224212
https://doi.org/10.1145/224164.224212
https://doi.org/10.1145/224164.224212
https://www.nwo.nl/en/projects/612069000
https://doi.org/10.1007/3-540-61628-4_3
https://doi.org/10.1007/3-540-61628-4_3
https://doi.org/10.1007/3-540-61756-6_73
https://doi.org/10.1007/3-540-61756-6_73
https://doi.org/10.1007/3-540-59451-5_7
https://doi.org/10.1007/3-540-59451-5_7

36 Jeremy Gibbons and Patrik Jansson

13. Norell, U.: Towards a Practical Programming Language Based on Dependent
Type Theory, vol. 32. Chalmers University of Technology (2007), https://www.cse.
chalmers.se/~ulfn/papers/thesis.pdf, ISBN 978-91-7291-996-9.

14. Norell, U., Jansson, P.: Polytypic programming in Haskell. In: Trinder, P., Michael-
son, G.J., Peña, R. (eds.) Implementation of Functional Languages. Lecture Notes
in Computer Science, vol. 3145, pp. 168–184. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-27861-0_11

https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://doi.org/10.1007/978-3-540-27861-0_11

