
Arithmetic coding with folds and unfolds

Richard Bird and Jeremy Gibbons

Programming Research Group, Oxford University
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

1 Introduction

Arithmetic coding is a method for data compression. Although the idea was
developed in the 1970’s, it wasn’t until the publication of an “accessible imple-
mentation” [14] that it achieved the popularity it has today. Over the past ten
years arithmetic coding has been refined and its advantages and disadvantages
over rival compression schemes, particularly Huffman [9] and Shannon-Fano [5]
coding, have been elucidated. Arithmetic coding produces a theoretically optimal
compression under much weaker assumptions than Huffman and Shannon-Fano,
and can compress within one bit of the limit imposed by Shannon’s Noiseless
Coding Theorem [13]. Additionally, arithmetic coding is well suited to adaptive
coding schemes, both character and word based. For recent perspectives on the
subject, see [10, 12].

The “accessible implementation” of [14] consisted of a 300 line C program,
and much of the paper was a blow-by-blow description of the workings of the
code. There was little in the way of proof of why the various steps in the process
were correct, particularly when it came to the specification of precisely what
problem the implementation solved, and the details of why the inverse operation
of decoding was correct. This reluctance to commit to specifications and correct-
ness proofs seems to be a common feature of most papers devoted to the topic.
Perhaps this is not surprising, because the plain fact is that arithmetic coding is
tricky. Nevertheless, our aim in these lectures is to provide a formal derivation
of basic algorithms for coding and decoding.

Our development of arithmetic coding makes heavy use of the algebraic laws
of folds and unfolds. Although much of the general theory of folds and unfolds is
well-known, see [3, 6], we will need one or two novel results. One concerns a new
pattern of computation, which we call streaming. In streaming, elements of an
output list are produced as soon as they are determined. This may sound like
lazy evaluation but it is actually quite different.

2 Arithmetic coding, informally

Arithmetic coding is simple in theory but, as we said above, tricky to implement
in practice. The basic idea is to:

1. Break the source message into symbols, where a symbol is some logical group-
ing of characters (or perhaps just a single character).

2 Richard Bird and Jeremy Gibbons

2. Associate each distinct symbol with a semi-open interval of the unit interval
[0..1).

3. Successively narrow the unit interval by an amount determined by the in-
terval associated with each symbol in the message.

4. Represent the final interval by choosing some fraction within it.

We can capture the basic datatypes and operations in Haskell by defining

type Fraction = Ratio Integer
type Interval = (Fraction,Fraction)
unit :: Interval
unit = (0, 1)
within :: Fraction → Interval → Bool
within x (l , r) = l ≤ x ∧ x < r
pick :: Interval → Fraction
pick (l , r) = (l + r)/2

Except where otherwise stated, we assume throughout that 0 ≤ l < r ≤ 1 for
every (l , r) :: Interval , so all intervals are subintervals of the unit interval. The
code above gives a concrete implementation of pick , but all we really require is
that

pick int within int

(We use underlining to turn a prefix function into an infix binary operator; this
would be written ‘within‘ in Haskell.)

2.1 Narrowing

The operation of narrowing takes two intervals i and j and returns a subinterval
k of i such that k is in the same relationship to i as j is to the unit interval:

(�) :: Interval → Interval → Interval
(l , r) � (p, q) = (l + (r−l) × p, l + (r−l) × q)

Diagrammatically, we have:

0

1

l

r

�

0

1

p

q

=

0

1

l

r

l+(r−l)×p

l+(r−l)×q

Exercise 1. Prove that x within (int1 � int2) ⇒ x within int1.

Exercise 2. Show that � is associative with identity unit . Is � commutative?

Exercise 3. Define an inverse � (‘widen’) of � such that (int1 � int2)� int1 = int2.

Exercise 4. Define the notion of the reciprocal i−1 of an interval i , such that

i � i−1 = unit = i−1 � i

(The reciprocal of a sub-unit interval will in general not itself be a sub-unit.)
Redefine widening in terms of narrowing and reciprocal.

Arithmetic coding with folds and unfolds 3

2.2 Models

In order to encode a message, each symbol has to be associated with a given in-
terval. For our purposes, Model is an abstract type representing a finite mapping
from Symbols to Intervals with associated functions:

encodeSym :: Model → Symbol → Interval
decodeSym :: Model → Fraction → Symbol

We assume that the intervals associated with symbols do not overlap: for any
m :: Model and x :: Fraction,

s = decodeSym m x ≡ x within (encodeSym m s)

Rather than having a single fixed model for the whole message, we allow the
possibility that the model can change as the message is read; such a scheme is
called adaptive. For instance, one can begin with a simple model in which symbols
are associated via some standard mapping with intervals of the same size, and
then let the model adapt depending on the actual symbols read. Therefore we
also assume the existence of a function

newModel :: Model → Symbol → Model

As long as the decoder performs the same adaptations as the message is recon-
structed, the message can be retrieved. Crucially, there is no need to transmit
the model with the message. The idea of an adaptive model is not just a useful re-
finement on the basic scheme, but also an essential component in the derivation
of the final algorithms.

Exercise 5. Specify the stronger condition that the intervals associated with
symbols partition the unit interval.

2.3 Encoding

Having defined the relevant datatypes and auxiliary operations we can now define
arithmetic encoding, which is to compute encode0 m unit , where

encode0 :: Model → Interval → [Symbol] → Fraction
encode0 m int = pick · foldl (�) int · encodeSyms m
encodeSyms :: Model → [Symbol] → [Interval]
encodeSyms m ss = unfoldr nextInt (m, ss)
nextInt :: (Model , [Symbol]) →

Maybe (Interval , (Model , [Symbol]))
nextInt (m, []) = Nothing
nextInt (m, s : ss) = Just (encodeSym m s , (newModel m s , ss))

The function encodeSyms m uses the initial model m to encode the symbols
of the message as intervals. These intervals are then used to narrow the unit
interval to some final interval from which some number is chosen. The code
makes use of the standard Haskell higher-order operators foldl and unfoldr ,
which are discussed in more detail in the following section.

4 Richard Bird and Jeremy Gibbons

2.4 Decoding

What remains is the question of how to perform the inverse operation of arith-
metic decoding. Rather than give a program, we will give a non-executable spec-
ification. The function decode0 :: Model → Interval → Fraction → [Symbol] is
specified by

ss begins (decode0 m int (encode0 m int ss))

for all ss , where xs begins ys if ys = xs ++ xs ′ for some xs ′. Thus decode0 is
inverse to encode0 in the sense that it is required to produce the sequence of
symbols that encode0 encodes but is not required to stop after producing them.
Termination is handled separately. Provided we record the number of symbols
in the message, or ensure that it ends with a special end-of-message symbol that
occurs nowhere else, we can stop the decoding process at the right point.

Exercise 6. The Haskell definition of begins :: Eq α → [α] → [α] → Bool is

[] begins ys = True
(x : xs) begins [] = False
(x : xs) begins (y : ys) = (x y ∧ xs begins ys)

What is the value of [] begins ⊥?.

Exercise 7. What are the advantages and disadvantages of the two schemes (re-
turning the length of the message, or making use of a special end-of-message
symbol) for determining when to stop decoding?

2.5 Remaining refinements

Simple though encode0 is, it will not suffice in a viable implementation and this
is where the complexities of arithmetic coding begin to emerge. Specifically:

– we really want an encoding function that returns a list of bits (or bytes)
rather than a number, not least because —

– for efficiency both in time and space, encoding should produce bits as soon
as they are known (this is known as incremental transmission, or streaming);

– consequently, decoding should be implemented as a function that consumes
bits and produces symbols, again in as incremental a manner as possible;

– for efficiency both in time and space, we should replace computations on
fractions (pairs of arbitrary precision integers) with computations on fixed-
precision integers, accepting that the consequent loss of accuracy will degrade
the effectiveness of compression;

– we have to choose a suitable representation of models.

All of the above, except the last, will be addressed in what follows. We warn the
reader now that there is a lot of arithmetic in arithmetic coding, not just the
arithmetic of numbers, but also of folds and unfolds.

Arithmetic coding with folds and unfolds 5

3 Folds and unfolds

Let us now digress a little to recall some of the theory of folds and unfolds. We
will return to and augment our understanding of these operators in subsequent
sections.

The higher-order operator foldl iterates over a list, from left to right:

foldl :: (β → α → β) → β → [α] → β
foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

Thus, writing f as an infix operator ⊕, we have

foldl (⊕) e [x , y, z] = ((e ⊕ x) ⊕ y) ⊕ z

Dually, the higher-order operator foldr iterates over a list, from right to left:

foldr :: (α → β → β) → β → [α] → β
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

Thus, foldr (⊕) e [x , y, z] = x ⊕ (y ⊕ (z ⊕ e)). The crucial fact about foldr is the
following universal property: for a strict function h we have

h = foldr f e ≡ h [] = e ∧ h (x : xs) = f x (h xs)

There is a close relationship between foldl and foldr , captured in part by the
following two theorems. As the names of the theorems suggest, we are not telling
the whole story here.

Theorem 8 (First Duality Theorem [3]). If f is associative with unit e,
then foldl f e xs = foldr f e xs for all finite lists xs.

Theorem 9 (Third Homomorphism Theorem [7]). If both h = foldl f1 e
and h = foldr f2 e, then there is an associative f with unit e such that h =
foldr f e.

From Theorem 8 and Exercise 2, we have

foldl (�) unit = foldr (�) unit

So why don’t we use the arguably more familiar foldr to express arithmetic
coding? The answer lies in the the following lemma, which turns out to be an
essential step in obtaining a program for decoding:

Lemma 10.

foldl (�) int · encodeSyms m = snd · foldl step (m, int)

where

step (m, int) s = (newModel m s , int � encodeSym m s)

6 Richard Bird and Jeremy Gibbons

This lemma shows how two computations, namely turning the sequence of sym-
bols into a sequence of intervals and then combining that sequence of intervals
into a single interval, can be fused into one. Fusion is perhaps the single most im-
portant general idea for achieving efficient computations. There is no equivalent
lemma if we replace foldl by foldr .

Exercise 11. Using the universal property, prove the fusion theorem for foldr :
provided h is a strict function, h e = e ′ and h (f x z) = f ′ x (h x) for every x
and z , we have h · foldr f e = foldr f ′ e ′.

Exercise 12. By defining map as an instance of foldr , prove map fusion:

foldr f e · map g = foldr (f · g) e

Exercise 13. Why don’t the universal property and the fusion theorem for foldr
hold for non-strict h? Does the First Duality Theorem hold for infinite or partial
lists?

Exercise 14. Suppose that (x ⊕ y) � x = y for all x and y. Prove that

foldl (�) (foldr (⊕) x ys) ys = x

for all x and finite lists ys .

Exercise 15. ‘Parallel loops’ may also be fused into one: if

h xs = (foldr f1 e1 xs , foldr f2 e2 xs)

then h = foldr f (e1, e2), where f x (z1, z2) = (f1 x z1, f2 x z2). For example,

average = uncurry div · sumlength

where sumlength xs = (sum xs , length xs), and sumlength can be written with
a single foldr . Parallel loop fusion is sometimes known as the ‘Banana Split
Theorem’ (because, in days of old, folds were often written using “banana”
brackets; see, for example, [4]). Prove the theorem, again using the universal
property of foldr .

Exercise 16. The function foldl can be expressed in terms of foldr :

foldl f = flip (foldr (comp f) id) where comp f x u = u · flip f x

Verify this claim, and hence (from the universal property of foldr) derive the
following universal property of foldl : for h strict in its second argument,

h = foldl f ≡ h e [] = e ∧ h e (x : xs) = h (f e x) xs

Arithmetic coding with folds and unfolds 7

3.1 Unfolds

To describe unfolds first recall the Haskell standard type Maybe:

data Maybe α = Just α | Nothing

The function unfoldr is defined by

unfoldr :: (β → Maybe (α, β)) → β → [α]
unfoldr f b = case f b of

Just (a, b′) → a : unfoldr f b′

Nothing → []

For example, the standard Haskell prelude function enumFromTo is very nearly
given by curry (unfoldr next), where

next (a, b) = if a ≤ b then Just (a, (succ a, b)) else Nothing

(Only ‘very nearly’ because membership of the type class Enum does not actually
imply membership of Ord in Haskell; the comparison is done instead by using
fromEnum and comparing the integers.)

The Haskell Library Report [2] states:

The unfoldr function undoes a foldr operation. . . :

unfoldr f ′ (foldr f z xs) = xs

if the following holds:

f ′ (f x y) = Just (x , y)
f ′ z = Nothing

That’s essentially all the Report says on unfolds! We will have more to say about
them later on.

3.2 Hylomorphisms

One well-known pattern involving folds and unfolds is that of a hylomorphism
[11], namely a function h whose definition takes the form

h = foldr f e · unfoldr g

The two component computations have complementary structures and they can
be fused into one:

h z = case g z of
Nothing → e
Just (x , z ′) → f x (h z ′)

This particular rule is known as deforestation because the intermediate data
structure (in this case a list, but in a more general form of hylomorphism it
could be a tree) is removed.

8 Richard Bird and Jeremy Gibbons

4 Producing bits

Let us now return to arithmetic coding. As we noted above, we would like encod-
ing to return a list of bits rather than a number. To achieve this aim we replace
the function pick :: Interval → Fraction by two functions

type Bit = Int −− 0 and 1 only
toBits :: Interval → [Bit]
fromBits :: [Bit] → Fraction

such that pick = fromBits · toBits . Equivalently, for all intervals int , we require

fromBits (toBits int) within int

The ‘obvious’ choices here are to let toBits (l , r) return the shortest binary
fraction x satisfying l ≤ x < r , and fromBits return the value of the binary
fraction. Thus, fromBits = foldr pack 0, where pack b x = (b + x)/2. However,
as Exercises 25 and 26 explain, we reject the obvious definitions and take instead

fromBits = foldr pack (1/2)
toBits = unfoldr nextBit

where
nextBit :: Interval → Maybe (Bit , Interval)
nextBit (l , r)

| r ≤ 1/2 = Just (0, (2 × l , 2 × r))
| 1/2 ≤ l = Just (1, (2 × l − 1, 2 × r − 1))
| otherwise = Nothing

Exercise 17. Give an equivalent definition of nextBit in terms of narrowing by
non-sub-unit intervals.

We leave it as an exercise to show

foldr pack (1/2) bs = foldr pack 0 (bs ++ [1])

Thus fromBits bs returns the binary fraction obtained by adding a final 1 to
the end of bs . The definition of toBits has a simple reading: if r ≤ 1/2, then the
binary expansion of any fraction x such that l < x < r begins with 0; and if
1/2 ≤ l , the expansion of x begins with 1. In the remaining case l < 1/2 < r the
empty sequence is returned.

Proposition 18. length (toBits (l , r)) ≤ − log2(r − l)

In particular, toBits always yields a finite list given a non-empty interval.

Proof. The function toBits applied to an interval of width greater than a half
yields the empty sequence of bits:

0 ≤ l < r ≤ 1 ∧ 1/2 < r−l ⇒ l < 1/2 < r

Moreover, each iteration of nextBit doubles the width of the interval. So if
1/2n+1 < r−l ≤ 1/2n or, equivalently, n ≤ − log2(r−l) < n+1, then termi-
nation is guaranteed after at most n bits have been produced.

Arithmetic coding with folds and unfolds 9

Proposition 19. fromBits (toBits int) within int

Proof. The function pick = fromBits · toBits is a hylomorphism, so we obtain

pick (l , r)
| r ≤ 1/2 = pick (2 × l , 2 × r)/2
| 1/2 ≤ l = (1 + pick (2 × l − 1, 2 × r − 1))/2
| l < 1/2 < r = 1/2

The proof now follows by appeal to fixpoint induction.

Exercise 20. Show that foldr pack (1/2) bs = foldr pack 0 (bs ++ [1]).

Exercise 21. Show that

(2 × l , 2 × r) = (0, 1/2) � (l , r)
(2 × l − 1, 2 × r − 1) = (1/2, 1) � (l , r)

Exercise 22. Show that

fromBits bs = mean (foldr pack 0 bs , foldr pack 1 bs)
where mean (x , y) = (x + y)/2

Exercise 23. Show that

(foldr pack 0 bs , foldr pack 1 bs) = foldl (�) unit (map encodeBit bs)
where encodeBit b = (b/2, (b+1)/2)

Exercise 24. One might expect toBits (l , r) to yield the shortest binary fraction
within [l ..r), but in fact it does not. What definition does?

Exercise 25. The reason we do not use the shortest binary fraction as the defi-
nition of toBits is that the streaming condition of Section 5.1 fails to hold with
this definition. After studying that section, justify this remark.

Exercise 26. Since we are using intervals that are closed on the left, one might
expect that guard in the second clause of nextBit would be 1/2 < l . However,
with this definition of fromBits , the result of Exercise 42 in Section 7 fails to
hold. After studying that section, justify this remark.

4.1 Summary of first refinement

Drawing together the results of this section, we define

encode1 :: Model → Interval → [Symbol] → [Bit]
encode1 m int = toBits · foldl (�) int · encodeSyms m

The new version of encoding yields a bit sequence rather than a fraction. How-
ever, execution of encode1 still consumes all its input before delivering any out-
put. Formally, encode1 m ss = ⊥ for all partial or infinite lists ss . Can we do
better?

10 Richard Bird and Jeremy Gibbons

5 Streaming

The function encode1 consists of an unfoldr after a foldl . Even under lazy eval-
uation, the foldl consumes all its input before the unfoldr can start producing
output. For efficiency, we would prefer a definition that is capable of yielding
some output as soon as possible.

To this end, we introduce a new higher-order operator stream, which alter-
nates between production and consumption. This function has type

stream :: (state → Maybe (output , state)) →
(state → input → state) →
state → [input] → [output]

and is defined by

stream f g z xs =
case f z of

Just (y, z ′) → y : stream f g z ′ xs
Nothing → case xs of

[] → []
x : xs → stream f g (g z x) xs

The function stream describes a process that alternates between producing out-
put and consuming input. Starting in state z , control is initially passed to the
producer function f , which delivers output until no more can be produced. Con-
trol is then passed to the consumer process g, which consumes the next input x
and delivers a new state. The cycle then continues until the input is exhausted.

Exercise 27. Define a variant stream that alternates between production and
consumption but hands control to the consumer process first.

5.1 The Streaming Theorem

The relationship between stream and folds and unfolds hinges on the following
definition:

Definition 28. The streaming condition for f and g is

f z = Just (y, z ′) ⇒ f (g z x) = Just (y, g z ′ x)

for all z , y, z ′ and x .

The streaming condition states very roughly that f is invariant under g. By
induction we can then conclude that f is invariant under repeated applications
of g; this is the content of the following lemma:

Lemma 29. If the streaming condition holds for f and g, then

f z = Just (y, z ′) ⇒ f (foldl g z xs) = Just (y, foldl g z ′ xs)

for all z , y, z ′ and finite lists xs.

Arithmetic coding with folds and unfolds 11

Proof. The proof is by induction on xs :

Case []: Immediate.
Case x : xs: Assume f z = Just (y, z ′), so by the streaming condition we have

f (g z x) = Just (y, g z ′ x). Now we reason
f (foldl g z (x : xs))

= {definition of foldl}
f (foldl g (g z x) xs)

= {induction}
Just (y, foldl g (g z ′ x) xs)

= {definition of foldl}
Just (y, foldl g z ′ (x : xs))

Now we come to the crunch.

Theorem 30. If the streaming condition holds for f and g, then

unfoldr f (foldl g z xs) = stream f g z xs

for all z and all finite lists xs.

The proof of Theorem 30 uses the following lemma, which states how to prove
that two potentially infinite lists are equal (see [3, §9.3]).

Lemma 31. Define approx by
approx :: Integer → [α] → [α]
approx (n + 1) [] = []
approx (n + 1) (x : xs) = x : approx n xs

Then two arbitrary lists xs and ys are equal iff approx n xs = approx n ys for
all n.

Proof (of Theorem 30). We use a double induction on n and xs to show that,
provided that the streaming condition holds for f and g,

approx n (unfoldr f (foldl g z xs)) = approx n (stream f g z xs)

for all n, z and finite lists xs . The first step is case analysis on n.

Case 0: Immediate since approx 0 xs = ⊥ for any xs .
Case n + 1: In this case we perform an analysis on f z :
Subcase f z = Just (y, z ′): We reason

approx (n + 1) (unfoldr f (foldl g z xs))
= {applying Lemma 29}

approx (n + 1) (y : unfoldr f (foldl g z ′ xs))
= {definition of approx}

y : approx n (unfoldr f (foldl g z ′ xs))
= {induction}

y : approx n (stream f g z ′ xs)
= {definition of approx}

approx (n + 1) (y : stream f g z ′ xs)
= {definition of stream}

approx (n + 1) (stream f g z xs)

12 Richard Bird and Jeremy Gibbons

Subcase f z = Nothing: Now we need a case analysis on xs . The case of the
empty list is immediate since both sides reduce to []. In the remaining case
we reason

approx (n + 1) (unfoldr f (foldl g z (x : xs)))
= {definition of foldl}

approx (n + 1) (unfoldr f (foldl g (g z x) xs))
= {induction}

approx (n + 1) (stream f g (g z x) xs)
= {definition of stream}

approx (n + 1) (stream f g z (x : xs))

This completes the induction and the proof.

Exercise 32. Show that the streaming condition holds for unCons and snoc,
where

unCons [] = Nothing
unCons (x : xs) = Just (x , xs)
snoc x xs = xs ++ [x]

Exercise 33. What happens to the streaming theorem for partial or infinite lists?

Exercise 34. Recall that

nextBit :: Interval → Maybe (Bit , Interval)
nextBit (l , r)

| r ≤ 1/2 = Just (0, (0, 2) � (l , r))
| 1/2 ≤ l = Just (1, (−1, 1) � (l , r))
| l < 1/2 < r = Nothing

Show that streaming condition for nextBit and � follows from associativity of �
(Exercise 2) and the fact that int1 � int2 is contained in int1 (Exercise 1).

5.2 Summary of second refinement

At the end of Section 4.1, we had

encode1 :: Model → Interval → [Symbol] → [Bit]
encode1 m int = unfoldr nextBit · foldl (�) int · encodeSyms m

Since Exercise 34 established the streaming condition for nextBit and �, we can
define

encode2 :: Model → Interval → [Symbol] → [Bit]
encode2 m int = stream nextBit (�) int · encodeSyms m

Although encode1 	= encode2, the two functions are equal on all finite symbol
sequences, which is all we require.

Arithmetic coding with folds and unfolds 13

6 Decoding and stream inversion

The function decode2 :: Model → Interval → [Bit] → [Symbol] corresponding to
encode2 is specified by

ss begins decode2 m int (encode2 m int ss)

for all finite sequences of symbols ss .
To implement decode2 we have somehow to invert streams. We will make use

of a function destream with type

destream :: (state → Maybe (output , state)) →
(state → input → state) →
(state → [output] → input) →
state → [output] → [input]

The definition of destream is

destream f g h z ys =
case f z of

Just (y, z ′) → destream f g h z ′ (ys after y)
Nothing → x : destream f g h (g z x) ys

where x = h z ys

The operator after is partial:

ys after y = if head ys = y then tail ys else ⊥

The function destream is dual to stream: when f z produces something, an
element of the input is consumed; when f z produces nothing, an element of
the output is produced using the helper function h. Note that destream always
produces a partial or infinite list, never a finite one.

The relationship between stream and destream is given by the following the-
orem:

Theorem 35. Suppose the following implication holds for all z , x and xs:

f z = Nothing ⇒ h z (stream f g z (x : xs)) = x

Then, provided stream f g z xs returns a finite list, we have

xs begins destream f g h z (stream f g z xs)

Proof. The proof is by a double induction on xs and n, where n is the length of
stream f g z xs .

Case []: Immediate since [] begins every list.

14 Richard Bird and Jeremy Gibbons

Case x : xs: We first consider the subcase f z = Nothing (which includes the
case n = 0):

destream f g h z (stream f g z (x : xs))
= {definition of destream and h z (stream f g (x : xs)) = x}

x : destream f g h (g z x) (stream f g z (x : xs))
= {definition of stream}

x : destream f g h (g z x) (stream f g (g z x) xs)

Since (x : xs)begins (x : xs ′) if and only if xsbeginsxs ′, an appeal to induction
establishes the case.
In the case f z = Just (y, z ′), we have n 	= 0, and so stream f g z ′ (x : xs)
has length n − 1. We reason

destream f g h z (stream f g z (x : xs))
= {definition of stream}

destream f g h z (y : stream f g z ′ (x : xs))
= {definition of destream}

destream f g h z ′ (stream f g z ′ (x : xs))

An appeal to induction establishes the case, completing the proof.

6.1 Applying the theorem

In order to apply the stream inversion theorem, recall Lemma 10 which states
that foldl (�) int · encodeSyms m = snd · foldl step (m, int) where

step (m, int) s = (newModel m s , int � encodeSym m s)

This identity allows us to fuse encodeSyms into the narrowing process:

encode2 m int = unfoldr nextBitM · foldl step (m, int)

where nextBitM is identical to nextBit except that it propagates the model as
an additional argument:

nextBitM :: (Model , Interval) → Maybe (Bit , (Model , Interval))
nextBitM (m, (l , r))

| r ≤ 1/2 = Just (0, (m, (2 × l , 2 × r)))
| 1/2 ≤ l = Just (1, (m, (2 × l − 1, 2 × r − 1)))
| otherwise = Nothing

Theorem 30 is again applicable and we obtain the following alternative definition
of encode2:

encode2 m int = stream nextBitM step (m, int)

Now we are ready for stream inversion. Observe that encode2 m int returns a
finite bit sequence on all finite symbol sequences, so it remains to determine h.

Arithmetic coding with folds and unfolds 15

Let bs = encode2 m int (s : ss) and x = fromBits bs, so that

x within (int � encodeSym m s)

We can now reason:

x within (int � encodeSym m s)
≡ {with int = (l , r) and encodeSym m s = (p, q)}

l + (r − l) × p ≤ x < l + (r − l) × q
≡ {arithmetic}

p ≤ (x − l)/(r − l) < q
≡ {definition of decodeSym}

s = decodeSym m ((x − l)/(r − l))

Hence we can take

h (m, (l , r)) bs = decodeSym m ((fromBits bs − l)/(r − l))

Putting these pieces together, we therefore obtain

decode2 m int = destream nextBitM step nextSym (m, int)
nextSym (m, (l , r)) bs = decodeSym m ((fromBits bs − l)/(r − l))
step (m, int) s = (newModel m s , int � encodeSym m s)

where nextBitM was defined above.
This is not a very efficient way to compute decode2. Each computation of

fromBits bs requires that the bit sequence bs is traversed in its entirety. Worse,
this happens each time an output symbol is produced. Better is to fuse the
computation of fromBits into destream so that the bit sequence is processed
only once. We can do this fusion with a somewhat more complicated version of
destream.

6.2 A better stream inversion theorem

Replace the previous function destream with a more general one, called unstream,
with type

unstream :: (state → Maybe (output , state)) →
(state → input → state) →
(state → result → input) →
(result → output → result) →
state → result → [input]

With six arguments this seems a complicated function, which is why we didn’t
give it earlier. The definition of unstream is

unstream f g h k z w =
case f z of

Just (y, z ′) → unstream f g h k z ′ (k w y)
Nothing → x : unstream f g h k (g z x) w

where x = h z w

16 Richard Bird and Jeremy Gibbons

This more complicated definition is a generalisation, since destream f g h z
is equivalent to unstream f g h after z . The relationship between stream and
unstream is given by the following theorem, a generalisation of Theorem 35:

Theorem 36. Let process z = foldr (⊕) w · stream f g z . Suppose that

f z = Nothing ⇒ h z (process z (x : xs)) = x

for all z , x and xs. Furthermore, suppose that � satisfies (y ⊕ w) � y = w for
all y and w. Then, provided stream f g z xs returns a finite list, we have

xs begins unstream f g h (�) z (process z xs)

The proof is so similar to the earlier one that we can leave details as an
exercise. The point of the new version is that, since fromBits = foldr pack (1/2)
where pack b x = (b + x)/2, we can define � = unpack , where unpack x b =
2 × x − b. As a consequence, we obtain

decode2 m int bs =
unstream nextBitM step nextSym unpack (m, int) (fromBits bs)

In this version the bit sequence bs is traversed only once. Nevertheless, decode2

is not an incremental algorithm since all of bs has to be inspected before any
output is produced.

Exercise 37. Following the steps of the proof of the first version of stream inver-
sion, prove the second version of stream inversion.

Exercise 38. What substitutions for ⊕ and w in Theorem 36 yield Theorem 35?

7 Interval expansion

The major problem with encode2 and decode2 is that they make use of fractional
arithmetic. In Section 8 we are going to replace fractional arithmetic by arith-
metic with limited-precision integers. In order to do so we need a preparatory
step: interval expansion. Quoting from Howard and Vitter [8]:

The idea is to prevent the current interval from narrowing too much
when the endpoints are close to 1/2 but straddle 1/2. In that case we do
not yet know the next output bit, but we do know that whatever it is, the
following bit will have the opposite value; we merely keep track of that
fact, and expand the current interval about 1/2. This follow-on procedure
may be repeated any number of times, so the current interval is always
strictly longer than 1/4.

For the moment we will just accept the fact that ensuring the width of the
current interval is greater than 1/4 before narrowing is an important step on the
path to limited precision.

Arithmetic coding with folds and unfolds 17

Formally, interval expansion is a data refinement in which an interval (l , r)
is represented by a triple of the form (n, (l ′, r ′)) satisfying

l ′ = scale (n, l) and r ′ = scale (n, r)

where scale (n, x) = 2n × (x − 1/2)+ 1/2, subject to 0 ≤ l ′ < r ′ ≤ 1. In particular,
(0, (l , r)) is one possible representation of (l , r).

A fully-expanded interval for (l , r) is a triple (n, (l ′, r ′)) in which n is as
large as possible. Intervals straddling 1/2 will be fully-expanded immediately
before narrowing. The remainder of this section is devoted to installing this data
refinement. More precisely, with ei denoting an expanded interval and contract ei
the corresponding un-expanded interval, our aim is to provide suitable definitions
that justify the following calculation:

toBits · foldl (�) int
= {assuming int = contract ei}

toBits · foldl (�) (contract ei)
= {fold-fusion (in reverse) for some function enarrow}

toBits · contract · foldl enarrow ei
= {definition of toBits}

unfoldr nextBit · contract · foldl enarrow ei
= {for some suitable definition of nextBits}

concat · unfoldr nextBits · foldl enarrow ei
= {streaming}

concat · stream nextBits enarrow ei

The function enarrow connotes “expand and narrow” and is an operation that
first expands an interval before narrowing it. Given this motivating calculation,
we can then define

encode3 m ei = concat · stream nextBits enarrow ei · encodeSyms m

Arithmetic coding is then implemented by the call encode3 m (0, (0, 1)). Note
that composing concat with stream still gives incremental transmission because
of laziness: the argument to concat does not have to be evaluated fully before
results are produced.

7.1 Defining expand and contract

First, we give a definition of the function expand that expands intervals. Observe
that

0 ≤ 2 × (l−1/2) + 1/2 ≡ 1/4 ≤ l
2 × (r−1/2) + 1/2 ≤ 1 ≡ r ≤ 3/4

Hence we can further expand (n, (l , r)) if 1/4 ≤ l and r ≤ 3/4. This leads to the
definition

expand (n, (l , r))
| 1/4 ≤ l ∧ r ≤ 3/4 = expand (n+1, (2 × l − 1/2, 2 × r − 1/2))
| otherwise = (n, (l , r))

18 Richard Bird and Jeremy Gibbons

The function nextBits , to be defined in a short while, will return Nothing on
intervals that straddle 1/2. Consequently, in encode3 we expand intervals (l , r)
satisfying l < 1/2 < r immediately before narrowing. It follows that narrowing
is applied only when l < 1/4 and 1/2 < r , or l < 1/2 and 3/4 < r ; in either case,
1/4 < r − l , which is the key inequality.

The converse of expand is given by

contract (n, (l , r)) = (rescale (n, l), rescale (n, r))

where rescale (n, x) = (x − 1/2)/2n + 1/2. We leave it as exercises to verify that

contract · expand = contract
contract (n, int1 � int2) = contract (n, int1) � int2

Consequently, defining enarrow by

enarrow ei int2 = (n, int1 � int2)
where (n, int1) = expand ei

we have contract (enarrow ei int) = contract ei � int . An appeal to fold-fusion
therefore gives

contract · foldl enarrow ei = foldl (�) (contract ei)

This identity was used in the motivating calculation above. The remaining step
is to find some suitable definition of nextBits so that

toBits · contract = concat · unfoldr nextBits

and also that nextBits and enarrow satisfy the streaming condition.
The definition of nextBits turns out to be

nextBits (n, (l , r))
| r ≤ 1/2 = Just (bits n 0, (0, (2 × l , 2 × r)))
| 1/2 ≤ l = Just (bits n 1, (0, (2 × l − 1, 2 × r − 1)))
| otherwise = Nothing

where bits n b = b : replicate n (1−b) returns a b followed by a sequence of n
copies of 1−b. The proof that this definition satisfies all our requirements is left
as an exercise.

Exercise 39. Verify that

contract · expand = contract
contract (n, int1 � int2) = contract (n, int1) � int2

Why don’t we have contract · expand = id?

Exercise 40. Prove that

rescale (n, x) ≤ 1/2 ≡ x ≤ 1/2
rescale (n, x) ≥ 1/2 ≡ x ≥ 1/2

Hence contract (n, (l , r)) straddles 1/2 iff (l , r) does.

Arithmetic coding with folds and unfolds 19

Exercise 41. Prove that

2 × rescale (n + 1, x) = rescale (n, x) + 1/2
2 × rescale (n + 1, x) − 1 = rescale (n, x) − 1/2

Exercise 42. Prove by induction on n that

toBits (2 × rescale (n, l), 2 × rescale (n, r)) =
= replicate n 1 ++ toBits (2 × l , 2 × r)

toBits (2 × rescale (n, l) − 1, 2 × rescale (n, r) − 1) =
= replicate n 0 ++ toBits (2 × l − 1, 2 × r − 1)

Exercise 43. Prove that if l < 1/2 < r then

toBits (contract (n, (l , r))) = concat (unfoldr nextBits (n, (l , r)))

Exercise 44. Prove that if r ≤ 1/2 then

toBits (contract (n, (l , r))) = bits n 0 ++ toBits (2 × l , 2 × r)

Similarly, prove that if 1/2 ≤ l then

toBits (contract (n, (l , r))) = bits n 1 ++ toBits (2 × l − 1, 2 × r − 1)

Hence complete the proof of toBits · contract = concat · unfoldr nextBits.

Exercise 45. Verify that the streaming condition holds for nextBits and enarrow .

8 From fractions to integers

We now want to replace fractional arithmetic by arithmetic with limited-precision
integers. In the final version of arithmetic coding, intervals take the form (l , r),
where l and r are integers in the range 0 ≤ l < r ≤ w and w is a fixed power of
two. This pair represents the interval (l/w , r/w).

Intervals in each model m take the form (p, q, d), where p and q are integers
in the range 0 ≤ p < q ≤ d and d is an integer which is fixed for m and called
the denominator for m. This triple represents the interval (p/d , q/d).

8.1 Integer narrowing

The narrowing function is redefined as follows:

(l , r) � (p, q, d) = (l + �(r−l) × p/d�, l + �(r−l) × q/d�)
Equivalently,

(l , r) � (p, q, d) = (l + ((r−l) × p) div d , l + ((r−l) × q) div d)

A reasonable step, you might think, but there are a number of problems with it:

20 Richard Bird and Jeremy Gibbons

– the revised definition of narrowing completely changes the specification: en-
coding will now produce different outputs than before and, in general, the
effectiveness of compression will be reduced;

– worse, � is not associative, and none of the foregoing development applies;
– unless we take steps to avoid it, intervals can collapse to the empty interval

when �(r−l) × p/d� = �(r−l) × q/d�.
The middle point seems the most damaging one, and is perhaps the reason that
writers on arithmetic coding do not attempt to specify what problem arithmetic
coding solves.

8.2 Change of specification

Fortunately, we can recover all of the previous development. Observe that

(l , r) � (p, q, d) = (l/w , r/w) � (p
′
/d , q

′
/d)

where

p′ = d/r−l × �(r−l) × p/d�
q ′ = d/r−l × �(r−l) × q/d�

Hence, provided p′ < q ′, integer narrowing of an interval (l , r) by another interval
(p, q) drawn from a model m can be viewed as fractional narrowing of (l , r) by
the corresponding interval (p′, q ′) drawn from an adjusted model adjust (l , r) m.
Note that p′ ≤ p and q ′ ≤ q, so the effect of this adjustment is that some of the
intervals shuffle down a little, leaving a little headroom at the top (see below for
an example). We do not need to implement adjust ; the important point is by
invoking it at every step all of the previous development remains valid.

It is instructive to illustrate the adjustments made to the model. Consider
Figure 1 in which w = 64 and d = 10. The columns on the left show a given
sequence of models that might arise after processing symbols in the string ABAC.
For example, the first row shows a model in which A is associated with the inter-
val [0.0..0.3), B is associated with [0.3..0.6), and C with [0.6..1.0). The columns
on the right show the corresponding adjusted intervals to three decimal places.
The current intervals immediately before processing the next symbol are shown
in the middle. The output of the integer implementation is 0010010, while that
of the real implementation is 00100, so there is a deterioration in compression
effectiveness even for this short string.

8.3 When intervals collapse

It is left as an exercise to show that

(∀p, q : 0 ≤ p < q ≤ d : �(r−l) × p/d� < �(r−l) × q/d�)
if and only if d ≤ r − l . Hence we have to ensure that the width of each interval
is at least d before narrowing. But interval expansion guarantees that the width

Arithmetic coding with folds and unfolds 21

models A B C adjustments A B C

initial model: 0.0 0.3 0.6 adjust (0, 64): 0.0 0.297 0.594
after A: 0.0 0.4 0.7 adjust (0, 38): 0.0 0.395 0.684
after B: 0.0 0.4 0.8 adjust (30, 52): 0.0 0.364 0.773
after A: 0.0 0.4 0.8 adjust (24, 56): 0.0 0.375 0.781
after C: 0.0 0.5 0.7 adjust (8, 64): 0.0 0.500 0.696

Fig. 1. Model adjustment

of each (expanded) interval is greater than w/4 before narrowing, so interval
collapse is avoided if w/4 ≥ d . That was the whole point of making use of interval
expansion.

Since w × d ≤ w × w/4 = 22×e−2 if w = 2e , we have to ensure that our
limited-precision arithmetic is accurate to 2 × e − 2 bits.

Exercise 46. Prove that

(∀p, q : 0 ≤ p < q ≤ d : �(r−l) × p/d� < �(r−l) × q/d�)
if and only if d ≤ r − l .

Exercise 47. According to the Haskell Report [1], the finite-precision type Int
covers at least the range [−229, 229 − 1]. What are suitable choices for w and d?

8.4 Final version of encode

Gathering together the ingredients of this data refinement, we can now give the
final version of encode:

encode m ei = concat · stream nextBits enarrow ei · encodeSyms m

where

enarrow ei int2 = (n, int1 � int2)
where (n, int1) = expand ei

expand (n, (l , r))
| w/4 ≤ l ∧ r ≤ 3 × w/4 = expand (n+1, (2 × l − w/2, 2 × r − w/2))
| otherwise = (n, (l , r))

nextBits (n, (l , r))
| r ≤ w/2 = Just (bits n 0, (0, (2 × l , 2 × r)))
| w/2 ≤ l = Just (bits n 1, (0, (2 × l − w , 2 × r − w)))
| otherwise = Nothing

Arithmetic coding is now implemented by encode m (0, (0,w)).

Exercise 48. Instead of using semi-open intervals [l ..r) we could use a closed
interval [l ..r − 1]. What modifications are required to the definitions of encode
and decode, and why should such a representation have an advantage over the
semi-open one?

22 Richard Bird and Jeremy Gibbons

Exercise 49. Notwithstanding everything that has gone before, encoding is not
guaranteed to work with any form of limited-precision arithmetic! Why not?

Exercise 50. Imagine a static model of three equiprobable symbols A, B and C,
so that B is assigned the range [1/3..2/3). Suppose a message of a billion B’s is to
be encoded. What is the output? How big does n get in the definition of expand?
What does this relationship reveal about the answer to the previous exercise?

8.5 Decoding in the integer version

Decoding with limited-precision arithmetic is again implemented by appeal to
stream inversion, just as in the previous version. Let us start by showing how
to compute the symbol s from bs = encode m ei (s : ss) under the assumption
that nextBits ei = Nothing, so that ei straddles 1/2 and expand ei delivers
an integer that will not collapse to the empty interval on narrowing. Setting
wfromBits = (w×) · fromBits , we know that x = wfromBits bs is a fraction in
the interval [0..w) satisfying

x within contract (enarrow ei (encodeSym m s))

How can we compute s given x , m, and ei? We need to be able to do this in
order to define the helper function nextSym for unstream.

To determine s , we make use of the following property of floors: for all integers
n and fractions x , we have n ≤ �x� ≡ n ≤ x . Ignorance of this simple rule has
marred practically every published paper on arithmetic coding that we have
read.

We now reason:

x within (contract (enarrow ei (encodeSym m s)))
≡ {setting (n, (l , r)) = expand ei }

x within (contract (n, (l , r) � encodeSym m s))
≡ {setting y = scale (n, x) }

y within ((l , r) � encodeSym m s)
≡ {setting (p, q, d) = encodeSym m s }

l + �(r − l) × p/d� ≤ y < l + �(r − l) × q/d�
≡ {arithmetic}

�(r − l) × p/d� ≤ y − l < �(r − l) × q/d�
≡ {rule of floors, setting k = �y�}

�(r − l) × p/d� ≤ k − l < �(r − l) × q/d�
≡ {arithmetic}

�(r − l) × p/d� < k − l + 1 ≤ �(r − l) × q/d�
≡ {rule of floors}

(r − l) × p/d < k − l + 1 ≤ (r − l) × q/d
≡ {arithmetic}

p ≤ ((k − l + 1) × d − 1)/(r − l) < q
≡ {rule of floors}

p ≤ �((k − l + 1) × d − 1)/(r − l)� < q

Arithmetic coding with folds and unfolds 23

Hence, redefining decodeSym to have type Model → Int → Symbol , we have

nextSym (m, ei) x = decodeSym m t
where t = ((k − l + 1) × denom m − 1) div (r − l)

k = �scale (n, x)�
(n, (l , r)) = expand ei

Armed with this result, we can now tackle the task of inverting encode. First,
as before, we rewrite encode in the form

encode m ei = concat · stream nextBitsM step (m, ei)

where step (m, ei) s = (newModel m s , enarrow ei (encodeSym m s)) and
nextBitsM carries the model as an extra argument:

nextBitsM (m, (n, (l , r)))
| r ≤ w/2 = Just (bits n 0, (m, (0, (2 × l , 2 × r))))
| w/2 ≤ l = Just (bits n 1, (m, (0, (2 × l − w , 2 × r − w))))
| otherwise = Nothing

Now set x = wfromBits (concat (stream nextBitM step (m, ei) (s : ss))). An
appeal to fold-fusion gives

wfromBits = foldr pack (w/2)
where pack b x = (w × b + x)/2

A second appeal to fold-fusion gives

wfromBits · concat = foldr (⊕) (w/2)

where bs ⊕ x = foldr pack x bs. Moreover, defining

x � bs = foldl unpack x bs

where unpack x b = 2 × x − w × b, we have (bs ⊕ x) � bs = x by Exercise 14.
All the ingredients for destreaming are now in place, and we can define

decode m ei bs =
unstream nextBitsM step nextSym (�) (m, ei) (wfromBits bs)

where

nextSym (m, ei) x = decodeSym m t
where t = ((k − l + 1) × denom m − 1) div (r − l)

k = �scale (n, x)�
(n, (l , r)) = expand ei

and

x � bs = foldl unpack x bs
where unpack x b = 2 × x − w × b

The one remaining fly in the ointment is that decode is not incremental, as all
elements of bs are inspected in order to compute wfromBits bs .

24 Richard Bird and Jeremy Gibbons

8.6 A final data refinement

Consider the first invocation of nextSym in the computation decode m ei bs . We
have to compute

k = �2n × (wfromBits bs − w/2) + w/2�
This can be done without inspecting all of bs . We only need to compute the first
e + n bits, where w = 2e . This is the clue to making decode incremental.

Suppose we represent bs not by x = wfromBits bs but by a pair (z , rs) where
z is the binary integer formed from take e bs (assuming bs contains at least e
bits) and rs = drop e bs . Then z = �wfromBits bs�. If bs contains fewer than
e bits, then we can always append a 1 to bs followed by a sufficent number of
0s. To justify this, recall Exercise 20. Let us call this computation buffering and
write (z , rs) = buffer bs .

Given (z , rs) = buffer bs we can now compute k = fscale (n, (z , rs)), where

fscale (n, (z , rs)) = foldl (λ x b → 2 × x + b − w/2) z (take n rs)

The proof is left as an exercise. Hence k can be computed by inspecting only the
first e + n bits of bs .

To install this final refinement we need to show how to compute buffer . There
are two ways to do it and we will need both. The first is to define

buffer bs = (foldl (λ x b → 2 × x + b) 0 cs , rs)
where (cs , rs) = splitAt e (bs ++ 1 : replicate (e − 1) 0)

The definition of z uses the standard method for converting a bit string into a
binary integer. This method is used in the final version of decode.

But we also have to show how to maintain the representation (z , rs) during
the destreaming process. We leave it as an exercise to show that buffer can also
be computed by

buffer = foldr op (w/2, []) bs
op b (z , rs) = (y, r : rs)

where (y, r) = (w × b + z) divMod 2

The point of this alternative is that we have

foldr op (w/2, []) · concat = foldr (⊕) (w/2, [])

where bs ⊕ (x , ds) = foldr op (x , ds) bs . Moreover, we can invert ⊕ by defining
� to be

(z , rs) � bs = foldl unop (z , rs) bs
unop (z , rs) b = (2 × z − w × b + head rs , tail rs)

Now all the ingredients for destreaming are once again in place.

Exercise 51. Show that �scale (n,wfromBits bs)� = fscale (n, buffer bs), where

fscale (n, (z , rs)) = foldl (λ x b → 2 × x + b − w/2) z (take n rs)

Arithmetic coding with folds and unfolds 25

Exercise 52. Show that

buffer = foldr op (w/2, []) bs
op b (z , rs) = (y, r : rs)

where (y, r) = (w × b + z) divMod 2

8.7 Final version of decode

Here is the final version of decode:

decode m ei bs =
unstream nextBitsM step nextSym (�) (m, ei) (buffer bs)

buffer bs = (z , rs)
where z = foldl (λ x b → 2 × x + b) 0 cs

(cs , rs) = splitAt e (bs ++ 1 : replicate (e − 1) 0)
nextSym (m, ei) (z , rs) = decodeSym m t

where t = ((k − l + 1) × denom m − 1) div (r − l)
k = fscale (n, (z , rs))
(n, (l , r)) = expand ei

(z , rs) � bs = foldl unop (z , rs) bs
where unop (z , rs) b = (2 × z − w × b + head rs , tail rs)

fscale (n, (z , rs)) = foldl (λ x b → 2 × x + b − w/2) z (take n rs)

The remaining functions nextBitsM , step, and expand were defined previously.

9 Conclusions

The reader who has followed us up to now will appreciate that there is rather a
lot of arithmetic in arithmetic coding, and that includes the arithmetic of folds
and unfolds as well as numbers. As we said at the start, arithmetic coding is
a simple idea but one that requires care to implement with limited-precision
integer arithmetic. To the best of our knowledge, no previous description of
arithmetic coding has ever tackled the formal basis for why the method works,
let alone providing a formal development of the coding and decoding algorithms.

Perhaps not surprisingly we went through many iterations of the develop-
ment, considering different ways of expressing the concepts of streaming and
stream inversion. The final constructions given above differ markedly from the
versions given in the Summer School in August, 2002. None of these iterations
would have been possible without the availability of a functional perspective,
whose smooth proof theory enabled us to formulate theorems, prove them, and
perhaps discard them, quite quickly. Whether or not the reader has followed all
the details, we hope we have demonstrated that functional programming and
equational reasoning are essential tools of thought for expressing and proving
properties of complicated algorithms, and that the ability to define structured
recursion operators, such as foldl , unfoldr , stream and destream, is critical for
formulating and understanding patterns of computation.

26 Richard Bird and Jeremy Gibbons

References

1. Haskell 98: A Non-Strict, Purely Functional Language. Available online at
www.haskell.org/onlinereport.

2. Standard Libraries for Haskell 98. Available online at
www.haskell.org/onlinelibrary.

3. R. S. Bird. Introduction to Functional Programming using Haskell. International
Series in Computer Science. Prentice Hall, 1998.

4. R. S. Bird and O. de Moor. Algebra of Programming. International Series in
Computer Science. Prentice Hall, 1997.

5. R. M. Fano. Transmission of Information. MIT Press, Cambridge MA, and
Wiley, NY, 1961.

6. J. Gibbons. Origami programming. In The Fun of Programming, J. Gibbons and
O. de Moor, eds, Palgrave, 2003.

7. J. Gibbons. The Third Homomorphism Theorem. J. Functional Prog., Vol 6,
No 4, 657–665, 1996.

8. P. G. Howard and J. S. Vitter. Arithmetic coding for data compression. Proc.
IEEE, Vol 82, No 6, 857–865, 1994.

9. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proc. Inst. Radio Eng. Vol 40, No 9, 1098–1101, Sept. 1952.

10. J. Jiang. Novel design of arithmetic coding for data compression. IEE Proc.
Comput. Dig. Tech., Vol 142, 6 (Nov) 419–424, 1995.

11. E. Meijer, M. Fokkinga and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Functional Programming Languages and
Computer Architecture, Lecture Notes in Computer Science 523, 124–144, 1991.

12. A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding revisited. ACM
Trans. on Inf. Systems Vol 16, No 3, 256–294, July 1998.

13. C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J. Vol
27, 79–423, 1948.

14. I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. C. ACM, Vol 30, No 6, 520–540, June 1987.

