
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Coalgebraic Aspects of
Bidirectional Computation

Faris Abou-Salehb James McKinnaa Jeremy Gibbonsb

a. Laboratory for Foundations of Computer Science, School of Informat-
ics, University of Edinburgh

b. Department of Computer Science, University of Oxford

Abstract We have previously shown that several state-based bx formalisms
can be captured using monadic functional programming, using the state
monad together with possibly other monadic effects, giving rise to struc-
tures we have called monadic bx (mbx). In this paper, we develop a
coalgebraic theory of state-based bx, and relate the resulting coalgebraic
structures (cbx) to mbx. We show that cbx support a notion of composition
coherent with, but conceptually simpler than, our previous mbx definition.
Coalgebraic bisimulation yields a natural notion of behavioural equivalence
on cbx, which respects composition, and essentially includes symmetric
lens equivalence as a special case. Finally, we speculate on the applications
of this coalgebraic perspective to other bx constructions and formalisms.

Keywords bidirectional transformation, lens, monads, effects, bisimulation

1 Introduction

Many scenarios in computer science involve multiple, partially overlapping, repre-
sentations of the same data, such that whenever one representation is modified, the
others must be updated in order to maintain consistency. Such scenarios arise for
example in the context of model-driven software development, databases and string
parsing [CFH+09]. Various formalisms, collectively known as bidirectional transforma-
tions (bx), have been developed to study them, including asymmetric and symmetric
lenses [FGM+07,HPW11], relational bx [Ste10], and triple-graph grammars [SK08].

In recent years, there has been a drive to understand the similarities and differences
between these formalisms [HSST11]; and a few attempts have been made to give a
unified treatment. In previous work [CMS+14,ASCG+15] we outlined a unified theory,
with examples, of various accounts of bx in the literature, in terms of computations
defined monadically using Haskell’s do-notation. The idea is to interpret a bx between
two data sources A and B (subject to some consistency relation R ⊆ A× B) relative
to some monad M representing computational effects, in terms of monadic get and set
operations which allow lookups and updates on both A and B while maintaining R. We

Faris Abou-Saleh, James McKinna, Jeremy Gibbons. Coalgebraic Aspects of Bidirectional Computation.
Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). In Journal of Object
Technology, vol. V, no. N, 2011, pages M:1–0. doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

2 · Abou-Saleh et al.

defined state-based bx with effects in terms of these four operations, subject to several
equations in line with the Plotkin–Power equational theory of state [PP02]. The key
difference is that in a bidirectional context, the sources A and B are interdependent, or
entangled : updating (or ‘setting’) A should in general affect B , and vice versa. Thus
we must abandon some of the Plotkin–Power equations; in particular, one no longer
expects A-updates to commute with B -updates. To distinguish our earlier monadic
account of bx from the coalgebraic treatment to be developed in this paper, we will
refer to them as monadic bx, or simply mbx.

We showed that several well-known bx formalisms may be described by monadic
bx for the particular case of the state monad, MS X = S → (X × S), called State S
in Haskell. We focused attention on the particular case of monadic bx for the
monad transformer counterpart TM

S to MS (called StateT S M in Haskell), where
TM

S X = S → M (X × S) builds on some monad M , such as I/O. We defined
composition t1 # t2 for such mbx with transparent get operations – i.e. gets which are
effect-free and do not modify the state. The definition is in terms of StateT -monad
morphisms derived from lenses (see Section 5), adapting work of Shkaravska [Shk05].
As with symmetric lenses, composition can only be well-behaved up to some notion
of equivalence, due to the different state-spaces involved. The natural choice of
equivalence in a monadic context is defined by monad morphisms, and encodes an
isomorphism between the different state-spaces. We showed that our definition of
composition was associative and had identities up to these state-space isomorphisms.

In this paper, we present a coalgebraic treatment of our earlier work on monadic
bx, inspired by Power and Shkaravska’s work on variable arrays and comodels [PS04]
for the theory of mutable state, defined in terms of the costore comonad S × (−)

S .
This coalgebraic perspective on bx provides a conceptual clarification to the more
high-level, monadic framework of our previous work on monadic bx. Firstly, all our
instances of the earlier formalism have an underlying state-space (in particular, it is
fiendishly subtle to define monadic bx composition enjoying the expected properties
without this restriction, in addition to transparent gets as introduced above). By
restricting attention to such models from the outset, the exposition of our ideas is
simplified; there are natural definitions of bx initialisation and composition.

More importantly, it allows us to improve on our earlier notion of equivalence given
by state-space isomorphism, appealing instead to the theory of coalgebraic bisimilarity
[Rut00]. It is well known that bisimulation (‘observational equivalence’) is a better
tool for reasoning about behaviour than state-space isomorphism (‘implementation
equivalence’). We illustrate this for effectful bx in Examples 3.1 and 3.8. Furthermore,
coalgebraic bisimilarity enjoys a closer fit with the equivalence on symmetric lenses
considered by Hofmann et al. [HPW11]; we show the precise relationship in Proposition
3.9 below. Finally, we have relaxed the set-based setting, and definition of mbx
composition, into a more general categorical treatment.

The technical contributions and structure of this paper are as follows. Firstly,
in Section 2 we motivate a coalgebraic perspective on bx, and identify a suitable
categorical setting for this interpretation. In Section 3, we introduce an equivalence
on coalgebras, namely pointed coalgebraic bisimulation, and demonstrate how this
equivalence relates to that of symmetric lenses, and also allows us to model various bx
scenarios incorporating effects. (Pointedness identifies initial states, with respect to
which coalgebra behaviours are compared.) In Section 4 we give a detailed account of
composition of coalgebraic bx in terms of pullbacks, which is both more direct and
categorically general than our earlier definition [ASCG+15], highlighting subtleties

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 3

in the definitions (such as Remark 4.8). We prove that our coalgebraic notion of
composition is associative, and has identities, up to pointed bisimulation (Theorem
4.10). Finally, in Section 5 we show that coalgebraic bx composition is coherent with
that for monadic bx [ASCG+15].

An extended version of this paper, whose appendix details the routine calculations
outlined in the proof of Theorem 4.10, is available online at http://groups.inf.ed.
ac.uk/bx/cbx-jot-long.pdf.

2 Coalgebraic bx

We begin by introducing coalgebras, motivating and sketching a coalgebraic view of
bidirectional transformations, before the formal definitions in the following section.

2.1 Stateful Systems are Coalgebras

Coalgebras are a natural model of state-based systems in computer science [Rut00].
Typically, such systems exhibit some kind of behaviour observed by a user (or the
ambient environment) as they interact with the system. One often wishes to abstract
away from the internal details of such systems, and concentrate instead on modelling,
and reasoning about, their observable behaviour – taking a ‘black box’ perspective.
Coalgebra provides a high-level, abstract framework for modelling such systems.

This perspective offers several benefits. First of all, it is very concise, largely
specified by a few ingredients. Secondly, it is general; one may apply coalgebraic
methods to a wide class of systems, simply by adjusting these ingredients accordingly.
Thirdly, it provides pre-existing concepts and tools for reasoning about the behaviour of
these systems – such as natural candidate definitions of what it means for two systems
to exhibit ‘the same behaviour’, and formal methods for proving this equivalence.

The key elements of our coalgebraic model are as follows. A behaviour functor FMAB

specifies the kind of behaviour we expect systems to have – their ‘public interface’.
Each system has a hidden state-space X ; then FMAB X describes the possible behaviours
we can observe over that state-space X . A particular system is described by a coalgebra-
structure X → FMAB X indicating the observable behaviour of each internal state. All
of this description is relative to an underlying category C, which provides concrete
meanings to the above symbols – in particular, the kind of objects X under study, and
the morphisms X → Y between them (and hence indirectly the functor FMAB).

Each behaviour functor FMAB comes with a natural notion of behavioural equivalence,
identifying what it means for pairs of states in X and Y (state-spaces of two given
coalgebras) to be indistinguishable to any observer. This correspondence is captured
by coalgebraic bisimulations – pairs of morphisms X ← R → Y , picking out pairs of
indistinguishable states. We ensure the morphisms match equivalent behaviours by
requiring them to be coalgebra morphisms.

We now apply this perspective to the bx formalism studied in our previous work
[ASCG+15]. For simplicity, we consider the effect-free case first, taking M = Id . A
monadic bx between two given data sources A and B , with state-space X , has the
following public interface. In any particular state of the bx, a user may request to
observe or get the current values of A or B ; they may also update the value of either
A or B . Updates moreover should restore the consistency relation R between A and
B , by computing a new bx state in X .

Journal of Object Technology, vol. V, no. N, 2011

http://groups.inf.ed.ac.uk/bx/cbx-jot-long.pdf
http://groups.inf.ed.ac.uk/bx/cbx-jot-long.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

4 · Abou-Saleh et al.

The get operations are described by morphisms X → A and X → B , indicating
for each state X what the observed value of A or B will be. We call these getL and
getR respectively. The updates correspond to functions X × A→ X and X × B → X ,
indicating for each initial state and ‘new’ A or B , what the ‘new’ state X will be. It
is convenient to curry these functions into the form X → XA and X → XB ; we call
these setL and setR respectively.

In practice, during updates some computation may be required to restore con-
sistency to the state X . Such computations may be represented using a monad M
(see Section 2.3). Thus the types of the update functions become X → (MX)

A and
X → (MX)

B ; rather than merely returning a ‘new’ state X , they now return a
computation MX that yields such a state.

The four operations getL, getR, setL, setR may now be combined into a single
function, describing a particular example of such behaviour:

α : X → A× B × (MX)
A × (MX)

B

and the right-hand side describes the behaviour functor FMAB (see Definition 2.3).
Note that in this presentation, the choice of A× B , rather than MA×MB , makes

clear that the get operations are pure functions of the coalgebra state – this is the
essence of “transparent” monadic bx as previously introduced by us [ASCG+15].

2.2 Categorical Prerequisites

Many semantic models of bx are set-theoretic; in our terminology, they are framed in
the category Set, where the objects X are sets, and morphisms X → Y are functions.
However, more refined models such as delta-based bx, are likely to require richer
categories [DXC11,JR13]. Hence, we do not assume a fixed category C, but rather
identify the structure C will require for the ensuing definitions to work. The reader
may consult Moggi [Mog91] and Rutten [Rut00] for more categorical and coalgebraic
detail respectively.

1. We will assume C is a Cartesian closed category – i.e. with finite products
X × Y , and exponentials Y X (generalising from Set to arbitrary categories the
idea of a function-space from X to Y) – on which a strong monad M is defined.
This allows us to make free use of the equational theory of do-notation as the
internal language of the Kleisli category Kl(M) [GH11, for further detail]. Rather
than using pointfree strength and associativity isomorphisms, do-notation is
convenient for representing value-passing between functions using pointwise
syntax.

2. In order to define coalgebraic bx composition in Section 4, we further require
that C have pullbacks, and that M weakly preserve them [Gum01]; we say “M is
wpp”, for short. The following diagrams make this more explicit. Recall that
a pullback of two arrows f : X → B and g : Y → B is an object P and span
of arrows pX : P → X , pY : P → Y making the below-left diagram commute,
such that for any object Q and span cX , cY making the outermost face in the
middle diagram commute, there is a unique arrow h making the whole diagram
commute. Finally, the wpp property (for M) asserts that the span M pX , M pY
forms a weak pullback of Mf and Mg : for any object S and span dX , dY making
the outermost face in the right-hand diagram commute, there is an arrow k , not

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 5

necessarily unique, making the whole diagram commute.

P
pX //

pY

��

X

f

��
Y

g // B

Q cX

��

cY

!!

∃!h
��
P
pX��

pY // X
f��

Y
g // B

S dX

""

dY

!!

∃k
""
MP

MpX��

MpY// MX

Mf��
MY

Mg // MB

3. For technical reasons (in Section 4), we assume that the return of the monad
M is monic, or a mono(morphism) (left-cancellable): return ◦ f = return ◦ g
implies f = g . This allows us to observe the value x wrapped in an effect-free
computation return x . Most computational monads have this property: e.g.
global state, I/O, non-determinism, and exceptions [Mog91]; we are unaware of
natural counterexamples.

4. Lastly, we assume an object I , such that arrows x : I → X represent ‘elements’
x of an object X . Typically, as in Set, I will be the terminal object 1.

Remark 2.1. The wpp condition lets us consider (at least for C = Set) monads M of
computational interest such as (probabilistic) non-determinism [Sok11,Gum09], which
are wpp but do not preserve pullbacks; more generally, we can include I/O, exceptions,
and monoid actions, by appealing to a simple criterion to check that wpp holds for
such M [Gum01, Theorem 2.8].

2.3 Bx as Pointed Coalgebras

We now give a coalgebraic description of bx, i.e. as state-based systems. We begin by
noting that many bx formalisms, such as (a)symmetric lenses and relational bx, often
involve an initialised state. The behaviours of two such bx are compared relative to
their initial states. Hence, to reason about such behaviour, throughout this paper we
concern ourselves with pointed coalgebras with designated initial state. Coalgebras with
the same structure, but different initial states, are considered distinct [AMMS13, for
more general considerations]. Corollary 4.13 makes explicit the categorical structure
of bx represented by such structures.

Definition 2.2. For any endofunctor F on a category C, a pointed F -coalgebra is a
triple (X , α, εα) consisting of: an object X of C, the carrier or state-space; an arrow
α :X → FX , its structure map or simply structure; and an arrow εα : I → X , picking
out a distinguished initial state. We abuse notation, often writing α as a synecdoche
for the pointed coalgebra itself.

Now we define the behaviour functors we use to describe bx coalgebraically; as
anticipated above, we incorporate a monad M into the definition from the outset to
capture effects, although for many example classes, such as symmetric lenses, it suffices
to take M = Id , the identity monad. Here are several example settings, involving
more interesting monads, to which we return in Section 3.2. For simplicity, we assume
the examples are in the category Set; to model such behaviour in other categories C,
one would have to assume structure relevant to the example (for instance, existence of
the greatest fixpoint defined in the case of interactive I/O, and binary coproducts for
failure).

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

6 · Abou-Saleh et al.

• Interactive I/O. In previous work [ASCG+15] we gave an example of an mbx
which notifies the user whenever an update occurred. Extending this example
further, after an update to A or B , in order to restore consistency (as specified
e.g. by a consistency relation R ⊆ A × B) the bx might prompt the user for
a new B or A value respectively until a consistent value is supplied. Such
behaviour may be described in terms of a simplified version of the I/O monad
MX = νY .X + (O × Y) + Y I given by a set O of observable output labels,
and a set of inputs I that the user can provide. Note that the use of the greatest
(ν) fixpoint permits possibly non-terminating I/O interactions.

• Failure. Sometimes it may be simply impossible to propagate an update on A
across to B , or vice versa; there is no way to restore consistency. In this case,
the update request should simply fail; and we may model this with the Maybe
monad MX = 1 + X .

• Non-determinism. There may be more than one way of restoring consistency
between A and B after an update. In this case, rather than prompting the user
at every such instance, it may be preferable for a non-deterministic choice to be
made. We may model this situation by taking the monad M to be the (finitary)
powerset monad.

Definition 2.3. For objects A and B , we define the behaviour functor

FMAB (−) = A× B × (M (−))
A × (M (−))

B
.

By taking projections of a structure map α : X → FMAB X , we recover the bx
operations outlined in Section 2.1: getL : X → A, getR : X → B , setL : X → (MX)

A,
and setR : X → (MX)

B .

Convention 2.4. Given α :X → FMAB X , we write α.getL :X → A, and α.setL :X →
(MX)

A, for the corresponding projections, called ‘left’- or L-operations, and similarly
α.getR : X → B , α.setR : X → (MX)

B for the other projections, called R-operations.
Where α may be inferred, and we wish to draw attention to the carrier X , we also
write x .getL for α.getL x , and similarly for the other L-, R-operations.

To ensure that pointed FMAB -coalgebras provide sensible implementations of reading
and writing to A and B , we impose laws restricting their behaviour. We call such
well-behaved coalgebras coalgebraic bx, or cbx.

Definition 2.5. A coalgebraic bx is a pointed FMAB -coalgebra (X , α :X → FMAB X , εα)
for which the following laws hold at L (writing x .getL for α.getL x , etc.):

(CGetSetL) (α) : x .setL (x .getL) = return x

(CSetGetL) (α) : do {x ′ ← x .setL a; return (x ′, x ′.getL)}
= do {x ′ ← x .setL a; return (x ′, a)}

and the corresponding laws (CSetGetR) and (CGetSetR) hold at R.
We typically refer to a cbx by its structure map, and simply write α : A −�−�X B ,

where we may further omit explicit mention of X .

These laws are the analogues of the (GS), (SG) laws [ASCG+15] which generalise
those for well-behaved lenses [FGM+07, see also Section 5.2 below]. The generalisation

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 7

is that the (CSetGetL) law explicitly returns pairs (x ′, a) of the new state x ′ and
the a that was set (and similarly for the R law); this extra information is required
in the proof of Proposition 5.1 establishing the relationship between cbx and our
earlier mbx formalism. An analogous strengthening (Remark 4.8) is also required to
correctly define cbx composition. The laws also correspond to a subset of the laws for
coalgebras of the costore comonad S × (−)S , but excluding the analogue of ‘Put-Put’
or very-well-behavedness of lenses [GJ12].

Here is a simple example of a cbx, which will provide identities for cbx composition
as defined in Section 4 below. Note that there is a separate identity cbx for each pair
of an object A and initial value e : A, and that the definition is for any choice of M .

Example 2.6. Given (A, e : A), there is a trivial cbx structure ι(e) : A −�−�A A defined
by ει(e) = e; a.getL = a = a.getR; a.setL a ′ = return a ′ = a.setR a ′.

Remark 2.7. Our definition does not make explicit any consistency relation R ⊆ A×B
on the observable A and B values; however, one obtains such a relation from the get
functions applied to all possible states, viz. R = {(a, b) :∃x . getL x = a ∧ getR x = b}.
One may then show that well-behaved cbx do maintain consistency with respect to R.

3 Behavioural Equivalence and Bisimulation

In this section, we introduce the notion of pointed coalgebraic bisimulation, which
defines a behavioural equivalence ≡ for pointed cbx. In Section 3.1 we compare this
equivalence to the established notion of equivalence for symmetric lenses. We then
discuss in Section 3.2 the behavioural equivalences induced for the classes of effectful
cbx described in Section 2.3: interactive I/O, failure, and non-determinism.

We begin with a simple illustration that state-space isomorphism is not adequate
for comparing cbx behaviour, before giving the definitions leading up to bisimulation.

Example 3.1. In Set, take M to be the (finitary) powerset monad, for non-determinism.
Consider the following cbx l1, l2 : Z −�−� Z on the integers. l1 is essentially the identity
cbx of Example 2.6, with state-space X = Z, initial state 0, and operations:

x .getL = x .getR = x x .setL x ′ = x .setR x ′ = return x ′

l2 is similar, but with state-space Y = (Z × B) incorporating a boolean B = {0, 1}.
The initial state is (0, 0), and the operations are:

(x , b).getL = (x , b).getR = x (x , b).setL x ′ = (x , b).setR x ′ = {(x ′, 0), (x ′, 1)}

The set operations overwrite the integer and non-deterministically change the boolean.
Clearly the state-spaces X and Y are not isomorphic, and yet there is no way to
distinguish the behaviour of l1 and l2. We will prove they are bisimilar in Example 3.8.

Definition 3.2. A pointed (F -)coalgebra morphism h between pointed coalgebras
(X , α, εα) and (Y , β, εβ) is a map h :X → Y such that β ◦ h = Fh ◦α and h ◦ εα = εβ.

Remark 3.3. In terms of do notation, h :X → Y being an FMAB -coalgebra morphism
between α and β is equivalent to the following laws (where we again write x .setL for
α.setL x , and so on), and a pair of similar laws for the R-operations:

(CGetPL)(h) : x .getL = (h x).getL
(CSetPL)(h) : do {x ′ ← x .setL a; return (h x ′)}

= do {let y = (h x); y ′ ← y .setL a; return y ′}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

8 · Abou-Saleh et al.

We now present a modest generalisation to C of the standard Set-based definition
of (coalgebraic) bisimulation relations [TP97]. (Since we are concerned only with
the existence of bisimulations between X and Y , we may consider them to be given
non-uniquely by some jointly monic pair, as follows.)

Definition 3.4. A bisimulation between pointed coalgebras α and β is a tuple (ζ, p, q)
of a pointed coalgebra ζ and pointed coalgebra morphisms p : ζ → α, q : ζ → β which
is jointly monic (in C): i.e. p ◦ f = p ◦ f ′ and q ◦ f = q ◦ f ′ implies f = f ′.

Pointed bisimulation is trivially symmetric. It is also transitive, because of our
assumptions on FMAB preserving weak pullbacks [Rut00, Theorem 5.4]. Intuitively, a
pointed bisimulation provides explicit correspondences between pairs of observationally
indistinguishable states of two cbx – at least, states reachable from the initial state.
This is the notion of behavioural equivalence adopted in this paper. In general,
there are other possibilities – for instance, coalgebraic bisimilarity is given by the
largest bisimulation relation (suitably formulated), which identifies as many pairs
of indistinguishable states as possible. Another possibility is so-called observational
equivalence of coalgebras α and β, which requires two coalgebra morphisms into some
coalgebra ζ (i.e. the reverse of Definition 3.4, without joint monicity). However, all
of these notions are equivalent if the behaviour functor, like FMAB , preserves weak
pullbacks, so we do not dwell on this point further.

As a concrete example, Definition 3.4 characterises bisimulation for F IdAB -coalgebras
(i.e. M = Id) in the setting C = Set as follows. Abusing notation, in Set we write
(εα, εβ) for the element of R picked out by the arrow 〈εα, εβ〉.

Proposition 3.5. A pointed F IdAB -bisimulation (ζ, p, q) on a pair of coalgebraic bxs
α, β is equivalent to a relation R ⊆ X × Y such that (εα, εβ) ∈ R, and (x , y) ∈ R
implies, for all a : A and b : B ,

• x .getL = y .getL and x .getR = y .getR;

• (x .setL a, y .setL a) ∈ R, and (x .setR b, y .setR b) ∈ R.

Proof. First, note that in Set, a relation R ⊆ (X ×Y) induces a jointly monic span
p :X ← S → Y : q – simply by taking its projections into X and Y , and taking S = R.
Conversely, such a span induces a relation R ⊆ (X ×Y), where we define (x , y) ∈ R iff
there exists s ∈ S such that p s = x and q s = y . Now consider a pointed bisimulation
(ζ, p, q), and suppose that (x , y) ∈ R, or equivalently, there is some s ∈ S such that
p s = x and q s = y . Definition 3.2 (M = Id) tells us that for all a,

s.getL = (p s).getL = x .getL p (s.setL a) = (p s).setL a = x .setL a
s.getL = (q s).getL = y .getL q (s.setL a) = (q s).setL a = y .setL a

from which we deduce that x .getL = y .getL, and that (x .setL a, y .setL a) ∈ R. The
right-hand operations are similar.

Definition 3.6. We say that two cbx α, α′ are behaviourally equivalent, and write
α ≡ α′, if there exists a pointed coalgebraic bisimulation (ζ, p, q) between α and α′.

The following fact will be useful (e.g. proving Theorem 4.10 identities, associativity).

Remark 3.7. A pointed coalgebra morphism h from α to α′ yields a bisimulation, by
taking (ζ, p, q) = (α, id , h), and hence α ≡ α′.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 9

Example 3.8. Consider the non-deterministic cbx l1, l2 of Example 3.1. We show
that l1 and l2 are bisimilar. By Remark 3.7, it suffices to show that π1 : Z× B→ Z
is a pointed coalgebra morphism from l2 to l1. Firstly, π1 respects initial states:
π1 (0, 0) = 0. Now we appeal to Remark 3.3 and show (CGetPL)(π1), (CSetPL)(π1).
The R-laws are similar.

(CGetPL)(π1) : (x , b).getL = x = x .getL = (π1 (x , b)).getL

(CSetPL)(π1) :
do {(x ′, b′)← x .setL x ′; return (π1 (x ′, b′))}
= [[definitions of l2.setL and projection π1]]
do {(x ′, b′)← {(x ′, 0), (x ′, 1)}; return x ′}
= [[laws of non-determinism]]
return x ′

= [[redundant let]]
do {let x0 = π1 (x , b); return x ′}
= [[definition of l1.setL]]
do {let x0 = π1 (x , b); x0.setL x ′}

3.1 Relationship with Symmetric Lens Equivalence

In this subsection, we describe symmetric lenses (SL) [HPW11] in terms of cbx, and
relate pointed bisimilarity between cbx and symmetric lens (SL-)equivalence [HPW11,
Definition 3.2]. First of all, it is straightforward to describe as a cbx a symmetric lens
between A and B with complement C – given by a pair of functions putr :A×C → B×C ,
putl : B × C → A× C and initial state εC together satisfying two laws: take M = Id
and state-space X = A×C×B , encapsulating the current value of the lens complement
C , as well as those of A and B (cf. [CMS+14, Section 4]). We now define the analogues
of the SL-operations for a cbx between A and B :

x .putL : A→ (B ×X) x .putL a = let x ′ = x .setL a in (x ′.getR, x
′)

x .putR : B → (A×X) x .putR b = let x ′ = x .setR b in (x ′.getL, x
′)

(Note that this is the opposite L-R convention from that of Hofmann et al. [HPW11].)

Proposition 3.9. Taking C = Set, a pointed F IdAB -bisimulation between cbxs α, β is
equivalent to a relation R ⊆ X ×Y such that (εα, εβ) ∈ R, and (x , y) ∈ R implies:

• x .getL = y .getL and x .getR = y .getR;

• for all a : A, x .putL a = (b′, x ′) and y .putL a = (b′, y ′) for some b′ and
(x ′, y ′) ∈ R;

• for all b : B , x .putR b = (a ′, x ′) and y .putR b = (a ′, y ′) for some a ′ and
(x ′, y ′) ∈ R.

Proof. We show that Proposition 3.5 implies the above; the converse is similar,
and we omit it. Suppose (x , y) ∈ R. Proposition 3.5 immediately tells us that
x .getL = y .getL and x .getR = y .getR, giving the first bullet. To show the second
bullet, let x .putL a = (x ′, b1) and y .putL a = (y ′, b2). By definition, x ′ = x .setL a,
b′ = x ′.getL, and y ′ = y .setL a. Proposition 3.5 again tells us that (x ′, y ′) ∈ R, and
b1 = x ′.getL = y ′.getL = b2. The third bullet is exactly symmetric.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

10 · Abou-Saleh et al.

This shows that a bisimulation between cbx is effectively the same as an equivalence
between SLs, whose definition only differs from R in Proposition 3.9 by not mentioning
get operations. In a cbx, we are able to observe the ‘current’ values of A and B
in any given state, via the get functions. This information is implicitly present in
SL-equivalence, where a sequence of putr or putl operations amounts to a sequence
of sets to A and B , but where we cannot observe which values have been set. Here,
the get operations make this information explicit. We say more about the categorical
relationship between cbx and SLs in Corollary 4.14 below.

3.2 Coalgebraic Bisimilarity with Effects

By introducing effects through M , our coalgebraic definition of behavioural equivalence
applies to a wide class of effectful behaviours in a uniform manner, and we illustrate
with the examples anticipated in Section 2.3. As mentioned before, for concreteness we
consider the special case C = Set, although the examples apply in any other categories
with the necessary structure for the definitions.

3.2.1 Interactive I/O

We take MX = νY .X + (O × Y) + Y I , where O is a given set of observable
outputs, and I inputs the user can provide. The components of the disjoint union
induce monadic return : X → MX and algebraic operations out : O ×MX → MX and
in : (I → MX)→ MX (cf. [PP02]). In the context of cbx that exhibit I/O effects in
this way, an operation like setL : X → (MX)

A maps a state x : X and an A-value
a : A to a value m : MX , where m describes some path in an (unbounded) tree of I/O
actions, either terminating eventually and returning a new state in X , or diverging,
depending on the user’s input.

One may characterise pointed bisimulations on such cbx as follows. Intuitively,
behaviourally equivalent states must ‘exhibit the same observable I/O activity’ during
updates setL and setR, and subsequently arrive at behaviourally equivalent states. To
formalise this notion of I/O activity, we need an auxiliary definition (which derives
from the greatest-fixpoint definition of M):

Definition 3.10. With respect to an I/O monad M and a relation R ⊆ X ×Y , the
I/O-equivalence relation ∼R ⊆ MX ×MY induced by R is the greatest fixpoint of
the operation Φ mapping a relation S ⊆ MX ×MY to the relation Φ(S) such that
(m,n) ∈ Φ(S) if and only if any of the following hold:

• m = return x , n = return y, and (x , y) ∈ R for some x , y; or

• m = out (o,m ′) and n = out (o,n ′) for some o : O and (m ′,n ′) ∈ S ; or

• m = in (λi → m(i)) and n = in (λi → n(i)), where (m(i), n(i)) ∈ S for all i : I .

One may now show that a pointed FMAB -bisimulation R on a pair of such cbxs α, β
is equivalent to a relation R ⊆ X ×Y such that (εα, εβ) ∈ R, and (x , y) ∈ R implies

• x .getL = y .getL and x .getR = y .getR;

• for all a : A and b : B , (x .setL a) ∼R (y .setL a) and (x .setR b) ∼R (y .setR b).

Such an equivalence guarantees that, following any sequence of updates in α or β,
the user experiences exactly the same sequence of I/O actions; and when the sequence
is complete, they observe the same values of A and B for either cbx. Thus, pointed
bisimulation asserts that α, β are indistinguishable from the user’s point of view.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 11

3.2.2 Failure

Here we takeMX = 1+X , and write None and Just x for the corresponding components
of the coproduct. This induces a simple equivalence on pairs of cbx, asserting that
sequences of updates to either cbx will succeed or fail in the same way. More formally,
a pointed bisimulation R on a pair of coalgebraic bxs α, β is equivalent to a relation
R ⊆ X ×Y such that (εα, εβ) ∈ R, and (x , y) ∈ R implies for all a : A and b : B ,

• x .getL = y .getL and x .getR = y .getR;

• if x .setL a = Just x ′, then y .setL a = Just y ′ for some y ′ with (x ′, y ′) ∈ R; and
if y .setL a = Just y ′, then x .setL a = Just x ′ for some x ′ with (x ′, y ′) ∈ R;

• analogous clauses, where a and setL are replaced with b and setR.

Note that the second condition implies x .setL a = None if and only if y .setL a = None;
but not conversely, because of the additional requirement that (x ′, y ′) ∈ R.

3.2.3 Non-determinism

Taking M to be the finitary powerset monad, the resulting behavioural equivalence on
cbx comes close to the standard notion of strong bisimulation on labelled transition
systems – and as we will see, shares its excessively fine granularity. A pointed FMAB -
bisimulation R on a pair of cbxs α, β is equivalent to a relation R ⊆ X × Y such that
(εα, εβ) ∈ R, and (x , y) ∈ R implies that for all a : A and b : B ,

• x .getL = y .getL and x .getR = y .getR;

• for all a : A and x ′ ∈ x .setL a, there is some y ′ ∈ y .setL a with (x ′, y ′) ∈ R;

• for all a : A and y ′ ∈ y .setL a, there is some x ′ ∈ x .setL a with (x ′, y ′) ∈ R;

• analogous clauses, replacing (B , b, setR) with (A, a, setL).

In contrast with the case of user I/O, this equivalence may be too fine for comparing
cbx behaviours, as it exposes too much information about when non-determinism occurs.
Here is a prototypical scenario: consider the effect of two successive L-updates. In one
implementation, suppose an update setL a changes the system state from s to t , and a
second update setL a ′ changes it to either u or u ′. Each state-change is only observable
to the user through the values of getL and getR; so suppose u.getR = u ′.getR = b.
(Note that u.getL = u ′.getL = a ′ by (CSetGetL).) This means u and u ′ cannot be
distinguished by their get values.

In a different implementation, suppose setL a instead maps s to one of two states
t ′ or t ′′ (both with the same values of getR and getL as state t above), and then setL a ′

maps these respectively to u and u ′ again. The states called s in both implementations,
although indistinguishable to any user by observing their get values, are not bisimilar.
In such situations, a coarser ‘trace-based’ notion of equivalence [HJS07] may be more
appropriate.

4 Coalgebraic bx Composition

A cbx α : A −�−�X B describes how changes to a data source A are propagated across X
to B , and vice versa. It is then natural to suppose, given another such β : B −�−�Y C ,
that we may propagate these changes to C (and vice versa), raising the question of

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

12 · Abou-Saleh et al.

whether there exists a composite cbx α • β : A −�−�Z C for some Z . Here, we give a
more general, categorical definition of cbx composition than our previous account for
mbx [ASCG+15].

4.1 Defining cbx Composition via Pullbacks

First, we introduce some necessary technical details regarding weak pullback preserving
(wpp) functors. Wpp functors are closed under composition, and we also exploit the
following fact (recall the definitions of Section 2.2):

Lemma 4.1. A wpp functor preserves monomorphisms [PW98, Lemma 4.4].

Remark 4.2. The following technical observation will also be useful for reasoning
about FMAB -coalgebras. As M is wpp (assumption 2 of Section 2.2), so too is FMAB ,
using the fact that A× (−) and (−)

A preserve pullbacks, and hence are wpp. Then by
Lemma 4.1, FMAB also preserves monos.

The following is also useful in proofs, where k x a is a do-block referring to x and a:

Lemma 4.3. (CSetGetL) and (CGetSetL) are equivalent to the ‘continuation’ versions

(CGetSetL) (α) : do {let a = x .getL; x ′ ← x .setL a; k x ′ a }
= do {let a = x .getL; k x a }

(CSetGetL) (α) : do {x ′ ← x .setL a; k x ′ (x ′.getL)}
= do {x ′ ← x .setL a; k x ′ a }

Similarly, there are continuation versions of the coalgebra-morphism laws (CGetPL)(h),
(CSetPL)(h), etc. in Remark 3.3, which we omit. We are now ready to define cbx
composition; we do this in four stages.

(i) Defining a State-space for the Composition of α and β

The state-spaces X ,Y of coalgebraic bx α : A −�−�X B , β : B −�−�Y C both contain
information about B , in addition to A and C respectively. We define the state-space
Z of the composite as consisting of those pairs (x , y) : X ×Y which are ‘B -consistent’,
in that x .getR = y .getL. We must also identify an initial state in Z ; the obvious choice
is the pairing of initial states 〈εα, εβ〉 : I → X × Y from α and β. To lie in Z , the
pair itself must be B -consistent: εα.getR = εβ .getL. We may only compose cbx whose
initial states are B -consistent in this way.

We now give the categorical formulation of these ideas, in terms of pullbacks:

Definition 4.4. Given two pointed cbx α : A −�−�X B and β : B −�−�Y C , we define a
state-space for their composition α•β to be the pullback Pα,β in the below-left diagram.
It is straightforward to show that this also makes the below-right diagram (also used in
Step ((iii)) below) into a pullback, where eα,β is defined to be 〈pα, pβ〉.

Pα,β
pβ //

pα

��

Y

β.getL
��

X
α.getR // B

Pα,β

pα

��

eα,β=〈pα,pβ〉 // X ×Y

α.getR×β.getL
��

X
〈α.getR,α.getR〉 // B × B

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 13

For instance, in the category Set, these definitions may be interpreted as follows:

Pα,β = {(x , y) | x .getR = y .getL} = {(x , y) | (x .getR, y .getL) = (x .getR, x .getR)}

and εα•β is the pair of initial states (εα, εβ), assuming εα.getR = εβ .getL.

Remark 4.5. We note that eα,β is also the equalizer of the parallel pair of arrows
α.getR ◦ π1, β.getL ◦ π2 : X ×Y → B . Hence, eα,β is monic (i.e. left-cancellable), and
thus by Lemma 4.1, so is its image under the wpp functors M and FMAB .

This remark forms a key technique in our proofs about things defined by pullbacks.
To prove an equation, we typically proceed indirectly, by proving its postcomposition
with a mono f (or monos derived from f) which may then be left-cancelled from both
sides to yield the required result. This technique will aid in proving properties of the
composition α • β in Section 4.2. It also allows us to pick out an initial state for Z , by
noting that the arrow 〈εα, εβ〉 : I → X ×Y equalizes the parallel pair of morphisms in
Remark 4.5; universality then gives the required arrow εα•β : I → Z .

(ii) Defining Pair-based Composition α � β
Definition 4.6. (X ×Y , α � β) is an FMAC -coalgebra with L-operations (similarly R):

(x , y).getL = x .getL
(x , y).setL a = do {x ′ ← x .setL a; y ′ ← y .setL (x ′.getR); return (x ′, y ′)}

(iii) Inducing the Coalgebra α • β on the Pullback

We now prove that the set operations of α � β produce B -consistent pairs – even
if the input pairs (x , y) were not B -consistent (because the set operations involve
retrieving a B -value from one cbx, and setting the same value in the other). Note
that this implies α � β will generally fail to be a coalgebraic bx, as it will not satisfy
the coalgebraic bx law (CGetSet): getting and then setting A or C in a B -inconsistent
state will result in a different, B -consistent state – in effect, the B -inconsistent states
are ‘unreachable’ after a set operation – which contradicts the law’s requirement that
the state should not change.

Lemma 4.7. The following equation (†L) holds at L for the setL operation of Defi-
nition 4.6, and a corresponding property (†R) for setR. (The last two occurrences of
x ′.getR may equivalently be replaced with y ′.getL.)

do {(x ′, y ′)← (x , y).setL a; return (x ′.getR, y
′.getL)}

= do {(x ′, y ′)← (x , y).setL a; return (x ′.getR, x
′.getR)} (†L)

Proof. We prove (†L); the argument for (†R) is symmetric.

do {(x ′, y ′)← (x , y).setL a; return (x ′.getR, y
′.getL)}

= [[definition of (x , y).setL]]
do {x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return (x ′.getR, y

′.getL)}
= [[(CSetGetL) (β), where k y ′ b is return (x ′.getR, b) (it doesn’t use y ′)]]
do {x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return (x ′.getR, b)}

= [[inlining of let b = x ′.getR]]
do {x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return (x ′.getR, x

′.getR)}
= [[definition of (x , y).setL]]
do {(x ′, y ′)← (x , y).setL a; return (x ′.getR, x

′.getR)}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

14 · Abou-Saleh et al.

Remark 4.8. In general, this is a stronger constraint than the corresponding equation

do {(x ′, y ′)← (x , y).setL a; return (x ′.getR)}
= do {(x ′, y ′)← (x , y).setL a; return (y ′.getL)} (†∗L)

although it is equivalent if the monad M preserves jointly monic pairs (Definition
3.4). To illustrate the difference, suppose B = {0, 1} and consider a non-deterministic
setting, where M is the (finitary) powerset monad on Set (and indeed, that choice of
M does not preserve jointly monic pairs). In state (x , y), suppose that (setL a) can
land in either of two new states (x1, y1) or (x2, y2), where x2.getR = y1.getL = 0 and
x1.getR = y2.getL = 1. Then (†∗L) holds at (x , y) as both sides give {0, 1}, but (†L)
does not, because the left side gives {(0, 1), (1, 0)} and the right gives {(0, 0), (1, 1)}.
We require the stronger version (†L) to correctly define composition below.

Our goal is to show that the properties (†L) and (†R) together are sufficient to ensure
that the operations of α � β : X ×Y → FMAC (X ×Y), restricted to the B -consistent
pairs Pα,β , induce well-defined operations Pα,β → FMACPα,β on the pullback.

To do this, it is convenient to cast the properties (†L), (†R) in diagrammatic form,
as shown in the left-hand diagram below. (It also incorporates two vacuous assertions,
(x , y).getL = (x , y).getL and similarly at R, which we may safely ignore.) Then, we
precompose this diagram with the equalizer eα,β as shown below-right, defining δ to be
the resulting arrow Pα,β → FMAC X given by the composition FMAC π1 ◦ (α � β) ◦ eα,β .

X ×Y

α�β
��

FMAC (X ×Y)

FMAC (α.getR×β.getL)
��

FMAC π1

vv
FMAC X //

FMAC 〈α.getR,α.getR〉
FMAC (B × B)

Pα,β

δ :=

��

eα,β // X ×Y

α�β
��

FMAC (X ×Y)

FMAC π1

vv
FMAC (α.getR×β.getL)

��
FMAC X //

FMAC 〈α.getR,α.getR〉
FMAC (B × B)

Under the assumption that M is wpp, so is FMAC . Hence, the image under FMAC of the
‘alternative’ pullback characterisation of Pα,β (the right-hand diagram in Definition
4.4) is a weak pullback; it is shown below-left. Now the above-right diagram contains
a cone over the same span of arrows; hence (by definition) we obtain a mediating
morphism Pα,β → FMAC (Pα,β) (not a priori unique) as shown below-right. We take
this to be the coalgebra structure α • β of the composite cbx.

FMACPα,β

FMACpα

��

//
FMAC eα,β

FMAC (X ×Y)

FMAC (α.getR×β.getL)

��
FMAC X //

FMAC 〈α.getR,α.getR〉
FMAC (B × B)

Pα,β

δ

��

eα,β //

α•β

%%

X ×Y

α�β
��

FMACPα,β
FMACpα

yy

//
FMAC eα,β

FMAC (X ×Y)

FMAC (α.getR×β.getL)
��

FMAC X
FMAC 〈α.getR,α.getR〉

// FMAC (B × B)

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 15

Although this does not explicitly define the operations of the composition α • β,
it does relate them to those of α � β via the monic arrow FMAC eα,β (Remark 4.5)
– allowing us to reason in terms of B -consistent pairs (x , y) : X × Y , appealing to
left-cancellability of monos. Moreover, in spite of only weak pullback preservation of
FMAC , the coalgebra structure α • β is canonical: there can be at most one coalgebra
structure α • β such that eα,β is a coalgebra morphism from α • β to α � β. This is a
simple corollary of Lemma 4.11 below.

(iv) Proving the Composition is a Coalgebraic bx

Proposition 4.9. (CGetSet) (α • β) and (CSetGet) (α • β) hold at L and R.

Proof. We focus on the L case (the R case is symmetric). As anticipated in Remark
4.5, we prove the laws post-composed with the monos M eα,β and M (eα,β × id)
respectively; left-cancellation completes the proof. (The laws (CGetPL)(eα,β) and
(CSetPL)(eα,β) are given in Remark 3.3.) Here is (CGetSetL) (α • β) postcomposed
with M eα,β :

do {let a = z .getL; z ′ ← z .setL a; return (eα,β (z ′))}
= [[(CSetPL)(eα,β)]]
do {let a = z .getL; let (x , y) = eα,β (z); (x ′, y ′)← (x , y).setL a; return (x ′, y ′)}

= [[swapping lets, and using (CGetPL)(eα,β)]]
do {let (x , y) = eα,β (z);

let a = (x , y).getL; (x ′, y ′)← (x , y).setL a; return (x ′, y ′)}
= [[definitions of (x , y).getL and (x , y).setL]]
do {let (x , y) = eα,β (z); let a = x .getL;

x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return (x ′, y ′)}
= [[(CGetSetL) (α)]]
do {let (x , y) = eα,β (z); let b = x .getR; y ′ ← y .setL b; return (x , y ′)}

= [[(x , y) = eα,β (z) implies x .getR = y .getL by definition of eα,β]]
do {let (x , y) = eα,β (z); let b = y .getL; y ′ ← y .setL b; return (x , y ′)}

= [[(CGetSetL) (β)]]
do {let (x , y) = eα,β (z); return (x , y)}

= [[inline let; do-laws]]
return (eα,β (z))

(CSetGetL) postcomposed with M (eα,β × id):

do {z ′ ← z .setL (a); return (eα,β (z ′), z ′.getL)}
= [[inlining let; definition of z ′.getL]]
do {z ′ ← z .setL (a); let (x ′, y ′) = eα,β (z ′); return ((x ′, y ′), x ′.getL)}

= [[(CSetPL)(eα,β)]]
do {let (x , y) = eα,β (z); (x ′, y ′)← (x , y).setL a; return ((x ′, y ′), x ′.getL)}

= [[definition of (x , y).setL]]
do {let (x , y) = eα,β (z);

x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return ((x ′, y ′), x ′.getL)}
= [[(CSetGetL) (α)]]
do {let (x , y) = eα,β (z);

x ′ ← x .setL a; let b = x ′.getR; y ′ ← y .setL b; return ((x ′, y ′), a)}
= [[definition of (x , y).setL]]
do {let (x , y) = eα,β (z); (x ′, y ′)← (x , y).setL a; return ((x ′, y ′), a)}

= [[(CSetPL)(eα,β); inline let]]
do {z ′ ← z .setL a; return (eα,β (z ′), a)}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

16 · Abou-Saleh et al.

4.2 Well-behavedness of cbx Composition

Having defined a notion of composition for cbx, we must check that it has the properties
one would expect, in particular that it is associative and has left and right identities.
However, as noted in the Introduction, we cannot expect these properties to hold ‘on
the nose’, but rather only up to some notion of behavioural equivalence. We will now
prove that cbx composition is well-behaved up to the equivalence ≡ introduced in
Section 3 (Definition 3.6). Recall also the identity cbx ι(e) : A −�−� A (Example 2.6).

Theorem 4.10. Coalgebraic bx composition satisfies the following properties (where
α, α′ : A −�−� B , β, β′ : B −�−� C , and γ, γ′ : C −�−� D , and all compositions are assumed
well-defined):

identities: ι(εα.getL) • α ≡ α and α • ι(εα.getR) ≡ α

congruence: if α ≡ α′ and β ≡ β′ then α • β ≡ α′ • β′

associativity: (α • β) • γ ≡ α • (β • γ)

To prove this, we typically need to exhibit a coalgebra morphism from some
coalgebra α to a composition β = ψ • ϕ. As the latter is defined implicitly by the
equalizer eψ,ϕ – which is a monic coalgebra morphism from β to γ = ψ � ϕ – it
is usually easier to reason by instead exhibiting a coalgebra morphism from α into
γ = ψ � ϕ, and then appealing to the following simple lemma:

Lemma 4.11. Let F be wpp, and let a : α → γ ← β : b be a cospan of pointed
F -coalgebra morphisms with b monic. Then any m : α→ β with b ◦m = a is also a
pointed F -coalgebra morphism. If a is monic, then so is m; and for any q with (a, q)
jointly monic, so is (m, q).

Proof. One may show that Fb ◦β ◦m = Fb ◦Fm ◦α by the fact that a, b are coalgebra
morphisms and b ◦m = a. Then using the fact that F preserves the mono b, we may
left-cancel Fb on both sides. Moreover, if m ◦ f = m ◦ f ′, then post-composing with b
(and applying b ◦m = a) we obtain a ◦ f = a ◦ f ′; the result then follows.

Remark 4.12. In the following proof, we will often apply Lemma 4.11 in the situation
where b is given by a equalizer (such as eψ,ϕ, in Remark 4.5) which is also a coalgebra
morphism, and where the coalgebra morphism a also equalizes the relevant parallel
pairs. Then we obtain the arrow m by universality; and the Lemma ensures it is also
a coalgebra morphism, as equalizers are monic.

Proof. The general strategy is to prove that two compositions γ = δ •ϑ and γ′ = δ′ •ϑ′
are ≡-equivalent, by providing a jointly monic pair of pointed coalgebra morphisms
p, q from some ζ into δ � ϑ and δ′ � ϑ′ respectively, which equalize the relevant parallel
pairs. Lemma 4.11 and Remark 4.12 then imply the existence of a jointly monic
pair of pointed coalgebra morphisms m,m ′ into δ • ϑ and δ′ • ϑ′, giving the required
bisimulation. We indicate the key steps (i), (ii), etc. in each proof below.

Identities: We show that ι(εα.getL) • α ≡ α; the other identity is symmetric.
We exhibit the equivalence by taking α itself to be the coalgebra defining
a bisimulation between α and ι(εα.getL) • α. To do this, one shows that
(i) h = 〈α.getL, id〉 : X → A × X is a pointed coalgebra morphism from α
to the composition ι(εα.getL) � α defined on pairs, and (ii) h also equalizes the
parallel pair ι(εα.getL).getR ◦ π1 and α.getL ◦ π2 (characterising the equalizer

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 17

and coalgebra morphism e from ι(εα.getL) •α to ι(εα.getL) �α). By definition of
equalizers, this induces a map p : X → Pα,ι(εα.getL) such that e ◦ p = h. Remark
4.12 now implies that p is a pointed coalgebra morphism from α to ι(εα.getL)•α,
and by Remark 3.7 we obtain the required bisimulation. The only non-trivial
step is proving (CSetPL)(h), which requires appeal to (CSetGetL) (α). As for
pointedness, the initial state of ι(εα.getL) � α is (εα.getL, εα), and this is indeed
h (εα) as required.

Congruence: We show how to prove that right-composition (− • β) is a congruence:
i.e. that α ≡ α′ implies (α •β) ≡ (α′ •β). By symmetry, the same argument will
show left-composition (α′ • −) is a congruence. Then one may use the standard
fact that ‘bisimulations compose (for wpp functors)’: given pointed bisimulations
between γ and δ, and between δ and ε, one may obtain a pointed bisimulation
between γ and ε – provided the behaviour functor FMAC is wpp, which follows
from our assumption that M is wpp. This allows us to deduce that composition
is a congruence in both arguments simultaneously, as required.
So, suppose given a pointed bisimulation between α and α′: an FMAB -coalgebra
(R, %) with a jointly monic pair p, p′ of pointed coalgebra morphisms from %
to α, α′ respectively. One exhibits a bisimulation between α • β and α′ • β as
follows, by first constructing a suitable coalgebra (S , σ), together with a jointly
monic pair (q , q ′) of coalgebra morphisms from σ to the compositions α • β,
α′ • β. To construct σ, let ζ be the equalizer of the following parallel pair – or
equivalently, the pullback of %.getR and β.getL.

S
ζ // R ×Y

%.getR◦π1 //

β.getL◦π2

// B

One may then follow the steps (i)–(iii) in Section 4, where ζ and % play the role
of the equalizer eα,β and β respectively, to construct σ, such that ζ is a coalgebra
morphism from σ to % � β. Even though % is not a coalgebraic bx, it satisfies the
following weaker form (CSetGet−L)(%) of (CSetGetL), and its R-version:

(CSetGet−L)(%) :
do {r ′ ← r .setL a; return r ′.getL}

= [[(CGetPL)(p)]]
do {r ′ ← r .setL a; return p (r ′).getL}

= [[(CSetPL)(p)]]
do {let x = p (r); x ′ ← x .setL a; return x ′.getL}

= [[(CSetGetL) (α)]]
do {let x = p (r); x ′ ← x .setL a; return a }

= [[(CSetPL)(p)]]
do {r ′ ← r .setL a; let x ′ = p (r ′); return a }

= [[redundant let]]
do {r ′ ← r .setL a; return a }

The corresponding continuation version is as follows:

(CSetGet−L)(%) : do {r ′ ← r .setL a; k (r ′.getL)} = {r ′ ← r .setL a; k a }

This then justifies the second reasoning step in Lemma 4.7, where the continuation
k y ′ b is replaced with k b.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

18 · Abou-Saleh et al.

Now, to construct q : S → Pα,β , it is enough to show (i) the composition of the
upper and right edges in the following diagram equalizes the given parallel pair:

S
ζ //

q

��

R ×Y

p×id
��

Pα,β
eα,β // X ×Y

α.getR◦π1 //

β.getL◦π2

// B

(1)

By also showing that (ii) p × id is in fact a coalgebra morphism, we can then
appeal to Lemma 4.11 to show that q itself defines a coalgebra morphism from
σ into the composition α • β. One obtains the coalgebra morphism q ′ from σ to
α′ • β in an analogous way. Finally, from p, p′ being jointly monic, and the fact
that eα,β is an equalizer, we obtain a proof that q , q ′ are jointly monic.

Associativity: We follow the same strategy as we did for proving the identity laws:
we may prove this law by providing a pointed coalgebra morphism p from the
left-hand composition to the right-hand one. We will do this in two stages: first,
we show how to obtain an arrow p0 : P(α•β),γ → X × Pβ,γ making the square in
the following diagram commute; then, by applying Lemma 4.11 and Remark 4.12,
we will show it is a pointed coalgebra morphism from (α • β) • γ to α � (β • γ).

P(α•β),γ
e(α•β),γ //

p0

��

Pα,β × Z

f

��
X × Pβ,γ

id×eβ,γ // X × (Y × Z)
id×(β.getR◦π1) //

id×(γ.getL◦π2)
// X × C

(2)

In this diagram, the arrow f is defined by

f (u, z) = do {let (x , y) = eα,β (u); return (x , (y , z))}

but it may also be expressed as f = assoc ◦ (eα,β × id), where we write assoc
for the associativity isomorphism on products. Note that the functor X × (−),
being a right adjoint, preserves equalizers, and hence (id × eβ,γ) is the equalizer
of the given parallel pair.

Following the proof strategy outlined above, to obtain p0 one must show that:
(i) f ◦e(α•β),γ equalizes the parallel pair in the above diagram, ensuring existence
of an arrow p0 making the square commute; (ii) the equalizer id × eβ,γ is a
pointed coalgebra morphism from α� (β •γ) to α� (β �γ); and (iii) f is a pointed
coalgebra morphism from (α • β) � γ to α � (β � γ). The facts (ii), (iii) allow us
to apply Remark 4.12 to deduce that p0 is a pointed coalgebra morphism.

The final stage of constructing the required arrow p : P(α•β),γ → Pα,(β•γ) is to
show that: (iv) p0 equalizes the parallel pair defining Pα,(β•γ) as shown below.
Thus we obtain p as the mediating morphism into Pα,(β•γ); by Remark 4.12 it is
a coalgebra morphism.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 19

P(α•β),γ

p

��

p0

))
Pα,(β•γ)

eα,(β•γ) // X × Pβ,γ
α.getR◦π1 //

(β•γ).getL◦π2

// B

This well-behavedness of composition allows us to define a category of cbx as
follows. (Note that this is not a typical category of F -coalgebras and morphisms,
for some fixed functor F , but rather a category where the morphisms A → B are
equivalence classes of FMAB -coalgebras.)

Corollary 4.13. There is a category Cbx• of pointed cbx, whose objects are pairs
(A, a) of an object A from C and an arrow a :I → A; and whose arrows (A, a)→ (B , b)
are ≡-equivalence classes [α] of cbx α : A −�−� B satisfying εα.getL = a and εα.getR = b.
(Recall that α ≡ β iff there is a pointed bisimulation between α and β.)

We now describe how this category is related (by specialising C = Set and M = Id)
to the category of symmetric lenses [HPW11]. The point of departure is that cbx
encapsulate additional data, namely initial values εα.getL, εα.getR for A and B . The
difference may be reconciled if one is prepared to extend SLs with such data (and
consider distinct initial-values to give distinct SLs, cf. the comments beginning Section
2.3):

Corollary 4.14. Taking C = Set and M = Id , Cbx• is isomorphic to a subcategory
of SL, the category of SL-equivalence-classes of symmetric lenses; and there is an
isomorphism of categories Cbx• ∼= SL• where SL• is the category of (SL-equivalence-
classes) of SLs additionally equipped with initial left- and right-values.

5 Relating Coalgebraic and Monadic bx

Here, we consider the relationship between our coalgebraic notion of bx, which is
inherently stateful, and our previous account of transparent monadic bx [ASCG+15],
where the get and set operations are restricted to monads of the form StateT X M ,
abbreviated to TM

X , and moreover the get operations neither change the state X
nor introduce M -effects, i.e. getL = λx .return (f x , x) for some f : X → A (likewise
getR). We identified this restriction in order to permit a smooth definition of mbx
composition. We also assume monadic bx have explicit initial states, rather than the
more intricate process of initialising by supplying an initial A- or B -value as in our
earlier account [ASCG+15].

5.1 Translating a Coalgebraic bx into a Monadic bx

Given a cbx α : X → FMAB X , we can define its realisation, or ‘monadic interpretation’,
[[α]] as a transparent mbx with the following operations. (Following conventional
Haskell notation, we overload the symbol () to mean the unit type, as well as its
unique value.)

[[α]].getL : TM
X A

def
= do {x ← get ; return (x .getL)}

[[α]].getR : TM
X B

def
= do {x ← get ; return (x .getR)}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

20 · Abou-Saleh et al.

[[α]].setL : A→ TM
X ()

def
= λa → do {x ← get ; x ′ ← lift (x .setL a); set x ′}

[[α]].setR : B → TM
X ()

def
= λb → do {x ← get ; x ′ ← lift (x .setR b); set x ′}

Here, the standard polymorphic functions associated with TM
X , namely get :∀α .TM

α α,
set : ∀α . α → TM

α (), and the monad morphism lift : ∀α .Mα → TM
X α (the curried

form of the strength of M) are given as follows, and they satisfy the following laws:

get = λa → return (a, a)
set = λa ′ a → return ((), a ′)
lift = λma x → do {a ← ma; return (a, x)}

(GetSet) do {x ← get ; set x } = return ()
(SetGet) do {set x ; x ′ ← get ; return x ′} = do {set x ; return x }

There is also a continuation version of (GetSet), by analogy with (CGetSet):

do {x ← get ; set x ; k x } = do {x ← get ; k x }

Proposition 5.1. [[α]] indeed defines a transparent mbx over TM
X .

Proof. We need to establish the (MGetSet) and (MSetGet) laws for the defined opera-
tions on the mbx [[α]] at L and R:

(MGetSet) do {a ← [[α]].getL; [[α]].setL a } = return ()
(MSetGet) do { [[α]].setL a; [[α]].getL} = do { [[α]].setL a; return a }

We give the argument for L; that for R is entirely analogous.

do {a ← [[α]].getL; [[α]].setL a }
= [[definition of [[α]]]]
do {a ← do {x ← get ; return α.getL (x)};

do {x ← get ; x ′ ← lift (x .setL a); set x ′}}
= [[do-laws]]
do {x ← get ; a ← return (α.getL x); x ′ ← lift (x .setL x a); set x ′}

= [[replace a ← return... with let a = ... and inline]]
do {x ← get ; x ′ ← lift (x .setL x (α.getL x)); set x ′}

= [[(CGetSet)(α)]]
do {x ← get ; x ′ ← lift (return x); set x ′}

= [[lift is a monad morphism, so lift (return x) = return x]]
do {x ← get ; x ′ ← return x ; set x ′}

= [[replace x ′ ← return... with let x ′ = ... and inline]]
do {x ← get ; set x }

= [[(GetSet)]]
return ()

do {[[α]].setL a; [[α]].getL}
= [[definition of [[α]]]]
do {do {x ← get ; x ′ ← lift (x .setL a); set x ′};

do {x ← get ; return α.getL (x)}}
= [[do-laws, alpha-converting x → x ′′ in second do]]
do {x ← get ; x ′ ← lift (x .setL a); set x ′; x ′′ ← get ; return α.getL (x ′′)}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 21

= [[(SetGet); inline resulting let x ′′ = x ′]]
do {x ← get ; x ′ ← lift (x .setL a); set x ′; return α.getL (x ′)}

= [[introduce let]]
do {x ← get ; x ′ ← lift (x .setL a); set x ′; let a ′ = α.getL (x ′); return a ′}

= [[pure lets commute with monadic computations]]
do {x ← get ; x ′ ← lift (x .setL a); let a ′ = α.getL (x ′); set x ′; return a ′}

= [[replace let a ′ = . . with a ′ ← return . .; then lift respects return]]
do {x ← get ; x ′ ← lift (x .setL a); a ′ ← lift (return x ′.getL); set x ′; return a ′}

= [[lift is a monad morphism]]
do {x ← get ; (x ′, a ′)← lift (do {x ′ ← x .setL a; return (x ′, x ′.getL)});

set x ′; return a ′}
= [[(CSetGet)(α)]]
do {x ← get ; (x ′, a ′)← lift (do {x ′ ← x .setL a; return (x ′, a)});

set x ′; return a ′}
= [[do-laws]]
do {x ← get ; x ′ ← lift (x .setL a); set x ′; return a }

= [[definition of [[α]]]]
do {[[α]].setL a; return a }

Lemma 5.2. The translation [[·]] – from cbx for monad M with carrier X , to trans-
parent mbx with an initial state – is surjective; it is also injective, using our initial
assumption that return is monic.

This fully identifies the subset of monadic bx which correspond to coalgebraic bx
– namely, where the monad is StateT X M for some state-space X , there is a given
initial state in X , and the get operations are transparent. Note that the translation
[[·]] is defined on an individual coalgebraic bx, not an equivalence class; we will say a
little more about the respective categories at the end of the next section.

5.2 Composing Stateful Monadic bxs

We will review the method previously given [ASCG+15] for composing transparent
mbx, using monad morphisms induced by lenses on the state-spaces. We show that
this essentially simplifies to step (ii) of our definition in Section 4 above; thus, our
definition may be seen as a more categorical treatment of the set-based monadic bx
definition.

Definition 5.3. An asymmetric lens from source A to view B , written l : A⇒ B , is
given by a pair of maps l = (v , u), where v : A→ B (the view or get mapping) and
u : A× B → A (the update or put mapping). It is well-behaved if it satisfies the first
two laws (VU), (UV) below, and very well-behaved if it also satisfies (UU).

(VU) u (a, (v a)) = a
(UV) v (u (a, b′)) = b′

(UU) u (u (a, b′), b′′) = u (a, b′′)

Lenses have a very well-developed literature [FGM+07,HPW11,CFH+09,HSST11,
among others], which we do not attempt to recap here; see our earlier work [ASCG+15,
Section 2.5] for further discussion of lenses.

We will apply a mild adaptation of a result in Shkaravska’s early work [Shk05].

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

22 · Abou-Saleh et al.

Proposition 5.4. Let l = (v , u) :Z ⇒ X be a lens, and define ϑ (l) to be the following
natural transformation:

ϑ (l) : ∀α .TM
X α→ TM

Z α

ϑ (l) ma
def
= do {z ← get ;

(a ′, x ′)← lift (ma (v z)); z ′ ← lift (u (z , x ′)); set z ′; return a ′}

If l is very well-behaved, then ϑ (l) is a monad morphism.

We apply Prop. 5.4 to the following two lenses, allowing views and updates of the
projections from X ×Y :

l1 = (v1, u1) : (X ×Y)⇒ X l2 = (v2, u2) : (X ×Y)⇒ Y
v1 (x , y) = x v2 (x , y) = y
u1 ((x , y), x ′) = (x ′, y) u2 ((x , y), y ′) = (x , y ′)

This gives us a cospan, left = ϑ (l1) : TM
X

.→ TM
(X×Y)

.← TM
Y : ϑ (l2) = right , of monad

morphisms allowing us to embed computations involving state-space X or Y into
computations on the combined state-space X ×Y .

Now suppose we are given two transparent mbx, from A to B and B to C , with
state-spaces X and Y respectively. Previously [ASCG+15], we used left , right to define
t1 # t2, a composite mbx with state-space X ×Y , as follows:

(t1 # t2).getL = left (t1.getL)
(t1 # t2).getR = right (t2.getR)
(t1 # t2).setL a = do { left (t1.setL a); b ← left (t1.getR); right (t2.setL b)}
(t1 # t2).setR c = do {right (t2.setR c); b ← right (t2.getL); left (t1.setR b)}

We then defined the subset, X onY , of X ×Y given by B -consistent pairs, and argued
that t1 # t2 preserved B -consistency – hence its state-space could be restricted from
X ×Y to X onY . We will use the notation t1 • t2 for the resulting composite mbx.

In the context of coalgebraic bx, we made this part of the argument categorical by
defining X onY to be a pullback, and formalising the move from the pairwise definition
α � β to the full composition α • β by step (iii) of Section 4. Given the one-to-one
correspondence between transparent mbx and cbx given by Lemma 5.2, this may be
considered to be the formalisation of the monadic move from the composite t1 # t2 on
the product state-space to the composite t1 • t2 on the pullback.

This allows us to state our second principal result, namely that the two notions of
composition – coalgebraic bx (as in Definition 4.4) and mbx – may be reconciled by
showing the pairwise definitions coherent:

Theorem 5.5. Coherence of composition: The definitions of monadic and coalgebraic
bx composition on product state-spaces are coherent: [[α]] # [[β]] = [[α � β]]. Hence, the
full definitions (on B-consistent pairs) are also coherent: [[α]] • [[β]] = [[α • β]].

Proof. The operations of the monadic bx [[α]] at the beginning of Section 5.1, and the
computation ϑ (v , u) ma, may be re-written in do notation for the monad M rather
than in StateT X M , as follows:

[[α]].getL = λx → return (x .getL)
[[α]].setL a = λx → do {x ′ ← x .setL a; return ((), x ′)}
ϑ (v , u) ma = λz → do {(a ′, s ′)← ma (v z); let z ′ = u (z , x ′); return (a ′, z ′)}

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 23

Applying ϑ to the lenses l1 and l2 gives the monad morphisms left and right as follows:

left = ϑ (l1) : ∀α .TM
X α→ TM

(X×Y) α

right = ϑ (l2) : ∀α .TM
Y α→ TM

(X×Y) α

left = λmxa (x , y)→ do {(a ′, x ′)← mxa x ; return (a ′, (x ′, y))}
right = λmya (x , y)→ do {(a ′, y ′)← mya y ; return (a ′, (x , y ′))}

This allows us to unpack the operations of the composite [[α]] # [[β]] to show they are
the same as [[α � β]], as follows (we omit the entirely analogous R-operations):

([[α]] # [[β]]).getL (x , y)
= [[definition of #]]

left ([[α]].getL) (x , y)
= [[unpacking left as above]]

do {(a ′, x ′)← [[α]].getL x ; return (a ′, (x ′, y))}
= [[definition of [[α]].getL in terms of monad M]]

do {(a ′, x ′)← return x .getL; return (a ′, (x ′, y))}
= [[definition of [[α � β]].getL]]

do {(a ′, x ′)← [[α � β]].getL x ; return (a ′, (x ′, y))}
= [[repacking left]]

left ([[α � β]].getL) (x , y)
= [[definition of #]]

(α � β).getL (x , y)

([[α]] # [[β]]).setL a ′ (x , y)
= [[definition of #, in monad M rather than StateT (X ×Y) M]]

do {(, (x ′, y ′))← left ([[α]].setL a ′) (x , y);
(b′, (x ′′, y ′′))← left ([[α]].getR) (x ′, y ′); right ([[β]].setL b) (x ′′, y ′′)}

= [[unpacking left and right , inlining y ′ = y]]
do {(, x ′)← [[α]].setL a ′ x ; (b′, x ′′)← [[α]].getR x ′;

(, y ′′)← [[β]].setL b′ y ; 1 return ((), (x ′′, y ′′))}
= [[definition of get and set for [[·]] as given above]]

do {(, x ′)← x .setL a ′; (b′, x ′′)← x ′.getR;
(, y ′′)← y .setL b′; return ((), (x ′′, y ′′))}

= [[definition of α � β in Section 4 ((ii))]]
do {(x ′′, y ′′)← (α � β).setL a ′ (x , y); return ((), (x ′′, y ′′))}

= [[definition of [[·]] on (α � β)]]
[[α � β]].setL a ′ (x , y)

Again, this result concerns individual cbx, and not the ≡-equivalence classes used
to define Cbx•. We now comment on how one may embed the latter into a category
of transparent mbx. Previously [ASCG+15, Theorem 26], we defined an equivalence
on such mbx (∼, say) given by operation-respecting state-space isomorphisms, and
showed that •-composition is associative up to ∼. In line with Corollary 4.13, one
obtains a category Mbx• of ∼-equivalence-classes of transparent mbx, and initial states
as at the start of Section 5.

Translating this into our setting (by reversing [[·]] from Lemma 5.2), one finds that
two transparent mbx are ∼-equivalent iff there is an isomorphism of pointed coalgebra

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

24 · Abou-Saleh et al.

morphisms between their carriers – which is generally finer than ≡. Therefore, we
cannot hope for an equivalence-respecting embedding from Cbx• to Mbx•. However,
we may restrict ≡ to make such an embedding possible:

Corollary 5.6. Let ≡! be the equivalence relation on cbx given by restricting ≡ to
bisimulations whose pointed coalgebra morphisms are isomorphisms; and let Cbx!• be the
category of ≡!-equivalence classes of cbx. Then there is an isomorphism Cbx!•

∼= Mbx•.

6 Conclusions and Further Work

In our search for unifying foundations of the field of bidirectional transformations (bx),
we have investigated a number of approaches, including monadic bx, building on those
of (symmetric) lenses and relational bx.

We have given a coalgebraic account of state-based bx in terms of intuitively simple
building blocks: two data sources A and B ; a state space X ; operations on X to
observe (getL, getR) and update (setL, setR) each data source; an ambient monad M
of additional computational effects; and a collection of laws, entirely analogous to
those in existing bx formalisms. Our definition allows a conceptually more direct, if
technically slightly subtle, treatment of composition than our previous work – the state
space, defined by a pullback, captures the idea of communication across a shared data
source, via the idea of B -consistent pairs. Our proof techniques involved reasoning
about composition by considering operations defined on such pairs.

We defined an equivalence on cbx based on coalgebraic bisimulation, and showed
that composition does indeed define a category, up to equivalence. The notion of
bisimulation improves on existing, more ad-hoc definitions, such as that of symmetric
lens equivalence, and we take this as further evidence for the suitability of our framework
and definitions. We described several concrete instantiations of the general definition
of bisimulation, given by varying the effect monad M . Coarser equivalences may be
suitable for modelling non-deterministic cbx, and could be introduced via alternative
methods such as coinductive trace semantics [HJS07]; but we do not explore this
further here.

We have also investigated the relationship between our coalgebraic formulation
of bx, and the spans of lenses considered by Johnson and Rosebrugh [JR14]. A
coalgebraic bx may be seen as a span of “monadic lenses” or “M -lenses”, generalising
the notion of lens to allow the update operation to have side effects. In recent work
elsewhere [ASCG+16], we have developed a fully-fledged theory of such M -lenses, and
recast our notion of coalgebraic bisimulation in terms of an equivalence ≡b on spans
of M -lenses. We have further shown that this relation is coarser than (an analogue
of) Johnson–Rosebrugh span equivalence. However, in defining equivalence for spans
of lenses, they consider an additional condition, namely that the mediating arrow
between two spans, witnessing equivalence, is a lens in which the get arrow is a split
epi; our definition is subtly different, and accounts for the initialisation of M -lenses via
a create function. We conjectured that this inclusion of relations between our notion
of span equivalence and bisimulation equivalence is strict, but have left investigation
of this to future work. Similarly, given that our notion of span equivalence does not
admit a direct comparison with that of Johnson and Rosebrugh, we leave the precise
connection with their notion also to future work.

Another area to explore is combinatory structure for building larger cbx out of
smaller pieces, in the style of existing work in the lens community. Some examples

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 25

were given previously [ASCG+15] – of which mbx composition was by far the most
challenging to formulate – and we expect the other combinators to apply routinely
for cbx as well, along the same lines as that of Barbosa [Bar03]. One would expect
coalgebraic bisimulation to be a congruence for these combinators; it would be inter-
esting to investigate whether the work of Turi and Plotkin [TP97] can help here. It
would also be interesting to explore whether our logical reasoning can be expressed in
categorical logic, perhaps with reference to effectus theory [CJWW15]. For instance,
B -consistency, in Definition 4.4 and Lemma 4.7 could be expressed in terms of effectful
predicates – suitable arrows X → M (1 + 1) – rather than in terms of pairs (B × B).

By being explicit about the categorical structure used (such as Cartesian closure),
we pave the way for exploration of other categorical settings for reasoning about the
behaviour of bx – such as the category of small categories (Cat), or categories of partial
orders (Cpo); strict order-preserving maps (Cpo⊥) would introduce an interplay of
monoidal closure and Cartesian products. In settings without closed structure, one
might consider categories of components rather than coalgebras [HJ11].

Our next challenge is to adapt our approach to model richer, more intensional
structures, such as delta lenses [DXC11], edit lenses [HPW12] and ordered updates
[Heg04], as opposed to the state-based, extensional bx we have considered, here and
in [ASCG+15]. This would require a more detailed model of coalgebraic behaviour
than the functor FMAB . It is not enough simply to equip the category C with such
delta-structure, e.g. by taking C = Cat (where objects are themselves small categories);
that functor then ‘over-specifies’ the bx operations, e.g. setL must then specify not just
the propagation of deltas on A into deltas on the state-space X (as one would expect),
but also how to simultaneously propagate pairs of A-deltas and X -deltas – which is
unlikely to be desirable. We hope to explore the correct way to model delta-based bx
in future work. We also hope to explore the connections between our work and existing
coalgebraic notions of software components [Bar03], and techniques for composing
coalgebras [Has11].

Acknowledgements We thank the JOT reviewers for their detailed feedback and
suggestions. An extended, unpublished abstract [ASM14] of some of the results here
was presented at CMCS 2014; we thank the participants there for useful feedback.
Our work is supported by the UK EPSRC-funded project A Theory of Least Change
for Bidirectional Transformations [TLC16] (EP/K020218/1, EP/K020919/1); we are
grateful to our colleagues for their support, encouragement and feedback during the
writing of the present paper.

References

[AMMS13] Jirí Adámek, Stefan Milius, Lawrence S. Moss, and Lurdes Sousa. Well-
pointed coalgebras. Logical Methods in Computer Science, 9(3), 2013.
doi:10.2168/LMCS-9(3:2)2013.

[ASCG+15] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna,
and Perdita Stevens. Notions of bidirectional computation and entangled
state monads. In Mathematics of Program Construction, volume 9129
of Lecture Notes in Computer Science, pages 187–214. Springer, June
2015. Extended version available at http://groups.inf.ed.ac.uk/bx/
bx-effects-tr.pdf. doi:10.1007/978-3-319-19797-5_9.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.2168/LMCS-9(3:2)2013
http://groups.inf.ed.ac.uk/bx/bx-effects-tr.pdf
http://groups.inf.ed.ac.uk/bx/bx-effects-tr.pdf
http://dx.doi.org/10.1007/978-3-319-19797-5_9
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

26 · Abou-Saleh et al.

[ASCG+16] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna,
and Perdita Stevens. Reflections on monadic lenses. In A List of
Successes that can Change the World, volume 9600 of Lecture Notes
in Computer Science, pages 1–31. Springer, 04 2016. doi:10.1007/
978-3-319-30936-1_1.

[ASM14] Faris Abou-Saleh and James McKinna. A coalgebraic approach to
bidirectional transformations. In Coalgebraic Methods in Computer
Science. ETAPS, 2014. Talk abstract.

[Bar03] Luís Soares Barbosa. Towards a calculus of state-based software com-
ponents. Journal of Universal Computer Science, 9(8):891–909, 2003.
doi:10.3217/jucs-009-08.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In Theory and Practice of Model Trans-
formations, volume 5563 of Lecture Notes in Computer Science, pages
260–283. Springer-Verlag, 2009. doi:10.1007/978-3-642-02408-5_19.

[CJWW15] Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan.
An introduction to effectus theory. arXiv:1512.05813, 2015.

[CMS+14] James Cheney, James McKinna, Perdita Stevens, Jeremy Gibbons, and
Faris Abou-Saleh. Entangled state monads (extended abstract). In
Terwilliger and Hidaka [TH14].

[DXC11] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state- to
delta-based bidirectional model transformations: The asymmetric case.
Journal of Object Technology, 10:6: 1–25, 2011. doi:10.5381/jot.2011.
10.1.a6.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems, 29(3):17,
2007. doi:10.1145/1232420.1232424.

[GH11] Jeremy Gibbons and Ralf Hinze. Just do it: Simple monadic equational
reasoning. In International Conference on Functional Programming,
pages 2–14. ACM Press, 2011. doi:10.1145/2034773.2034777.

[GJ12] Jeremy Gibbons and Michael Johnson. Relating algebraic and coal-
gebraic descriptions of lenses. Proceedings of the First BX Work-
shop, Electronic Communication of the EASST, 49, 2012. doi:
10.14279/tuj.eceasst.49.726.

[Gum01] H. Peter Gumm. Functors for coalgebras. Algebra Universalis, 45(2-
3):135–147, 2001. doi:10.1007/s00012-001-8156-x.

[Gum09] H. Peter Gumm. Copower functors. Theoretical Computer Science,
410(12):1129–1142, 2009. doi:10.1016/j.tcs.2008.09.057.

[Has11] Ichiro Hasuo. The microcosm principle and compositionality of GSOS-
based component calculi. In Algebra and Coalgebra in Computer Science,
pages 222–236. Springer, 2011. doi:10.1007/978-3-642-22944-2_16.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1007/978-3-319-30936-1_1
http://dx.doi.org/10.1007/978-3-319-30936-1_1
http://dx.doi.org/10.3217/jucs-009-08
http://dx.doi.org/10.1007/978-3-642-02408-5_19
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.5381/jot.2011.10.1.a6
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/2034773.2034777
http://dx.doi.org/10.14279/tuj.eceasst.49.726
http://dx.doi.org/10.14279/tuj.eceasst.49.726
http://dx.doi.org/10.1007/s00012-001-8156-x
http://dx.doi.org/10.1016/j.tcs.2008.09.057
http://dx.doi.org/10.1007/978-3-642-22944-2_16
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 27

[Heg04] Stephen J. Hegner. An order-based theory of updates for closed
database views. Annals of Mathematics and Artificial Intelligence,
40:63–125, 2004. doi:10.1023/A:1026158013113.

[HJ11] Ichiro Hasuo and Bart Jacobs. Traces for coalgebraic components.
Mathematical Structures in Computer Science, 21(02):267–320, 2011.
doi:10.1017/S0960129510000551.

[HJS07] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics
via coinduction. Logical Methods in Computer Science, 3(4), 2007.
doi:10.2168/LMCS-3(4:11)2007.

[HPW11] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric
lenses. In Principles of Programming Languages, pages 371–384. ACM
Press, 2011.

[HPW12] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Edit lenses.
In Principles of Programming Languages, pages 495–508. ACM Press,
2012. doi:10.1145/2103656.2103715.

[HSST11] Zhenjiang Hu, Andy Schurr, Perdita Stevens, and James F. Terwilliger.
Dagstuhl seminar 11031: Bidirectional transformations (BX). SIGMOD
Record, 40(1):35–39, 2011. doi:10.4230/DagRep.1.1.42.

[JR13] Michael Johnson and Robert D. Rosebrugh. Delta lenses and op-
fibrations. Electronic Communication of the EASST, 57, 2013.
doi:10.14279/tuj.eceasst.57.875.

[JR14] Michael Johnson and Robert D. Rosebrugh. Spans of lenses. In Pro-
ceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference
(EDBT/ICDT 2014), Athens, Greece, March 28, 2014., pages 112–118,
2014. URL: http://ceur-ws.org/Vol-1133/paper-18.pdf.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991. doi:10.1016/0890-5401(91)90052-4.

[PP02] Gordon D. Plotkin and John Power. Notions of computation deter-
mine monads. In Foundations of Software Science and Computation
Structures, volume 2303 of Lecture Notes in Computer Science, pages
342–356. Springer-Verlag, 2002. doi:10.1007/3-540-45931-6_24.

[PS04] John Power and Olha Shkaravska. From comodels to coalgebras: State
and arrays. Proceedings of the Workshop on Coalgebraic Methods in
Computer Science, Electronic Notes in Theoretical Computer Science,
106, 2004. doi:10.1016/j.entcs.2004.02.041.

[PW98] John Power and Hiroshi Watanabe. An axiomatics for categories of
coalgebras. Proceedings of the First Workshop on Coalgebraic Methods in
Computer Science, Electronic Notes in Theoretical Computer Science,
11:158–175, 1998. doi:10.1016/S1571-0661(04)00057-X.

[Rut00] Jan Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sci., 249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

[Shk05] Olha Shkaravska. Side-effect monad, its equational theory and ap-
plications. Seminar slides available at: http://www.ioc.ee/~tarmo/
tsem05/shkaravska1512-slides.pdf, 2005.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1023/A:1026158013113
http://dx.doi.org/10.1017/S0960129510000551
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1145/2103656.2103715
http://dx.doi.org/10.4230/DagRep.1.1.42
http://dx.doi.org/10.14279/tuj.eceasst.57.875
http://ceur-ws.org/Vol-1133/paper-18.pdf
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1016/j.entcs.2004.02.041
http://dx.doi.org/10.1016/S1571-0661(04)00057-X
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://www.ioc.ee/~tarmo/tsem05/shkaravska1512-slides.pdf
http://www.ioc.ee/~tarmo/tsem05/shkaravska1512-slides.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

28 · Abou-Saleh et al.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars.
In Graph Transformations, volume 5214 of Lecture Notes in Com-
puter Science, pages 411–425. Springer, 2008. doi:10.1007/
978-3-540-87405-8_28.

[Sok11] Ana Sokolova. Probabilistic systems coalgebraically: A survey. Theoret-
ical Computer Science, 412(38):5095–5110, 2011. doi:10.1016/j.tcs.
2011.05.008.

[Ste10] Perdita Stevens. Bidirectional model transformations in QVT: Semantic
issues and open questions. Software and Systems Modelling, 9(1):7–20,
2010. doi:10.1007/s10270-008-0109-9.

[TH14] James Terwilliger and Soichiro Hidaka, editors. BX Workshop. http:
//ceur-ws.org/Vol-1133/#bx, 2014.

[TLC16] TLCBX Project. A theory of least change for bidirectional trans-
formations. http://www.cs.ox.ac.uk/projects/tlcbx/, http:
//groups.inf.ed.ac.uk/bx/, 2013–2016.

[TP97] Daniele Turi and Gordon Plotkin. Towards a mathematical opera-
tional semantics. In Logic in Computer Science, pages 280–291. IEEE,
Computer Society Press, 1997. doi:10.1109/LICS.1997.614955.

About the authors

Faris Abou-Saleh is a Research Assistant in computing at the
University of Oxford, and a Teaching Assistant in the Depart-
ment of Computer Science and at Oriel College. Contact him
at faris.abou-saleh@cs.ox.ac.uk, or visit http://www.oriel.
ox.ac.uk/people/dr-faris-abou-saleh.

James McKinna is Senior Research Fellow in the Laboratory for
Foundations of Computer Science, School of Informatics, University
of Edinburgh. Contact him at James.McKinna@ed.ac.uk, or visit
http://homepages.inf.ed.ac.uk/jmckinna/.

Journal of Object Technology, vol. V, no. N, 2011

http://dx.doi.org/10.1007/978-3-540-87405-8_28
http://dx.doi.org/10.1007/978-3-540-87405-8_28
http://dx.doi.org/10.1016/j.tcs.2011.05.008
http://dx.doi.org/10.1016/j.tcs.2011.05.008
http://dx.doi.org/10.1007/s10270-008-0109-9
http://ceur-ws.org/Vol-1133/#bx
http://ceur-ws.org/Vol-1133/#bx
http://www.cs.ox.ac.uk/projects/tlcbx/
http://groups.inf.ed.ac.uk/bx/
http://groups.inf.ed.ac.uk/bx/
http://dx.doi.org/10.1109/LICS.1997.614955
mailto:faris.abou-saleh@cs.ox.ac.uk
http://www.oriel.ox.ac.uk/people/dr-faris-abou-saleh
http://www.oriel.ox.ac.uk/people/dr-faris-abou-saleh
mailto:James.McKinna@ed.ac.uk
http://homepages.inf.ed.ac.uk/jmckinna/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Coalgebraic Aspects of Bidirectional Computation · 29

Jeremy Gibbons is Professor of Computing at the University of
Oxford, where he is Director of the part-time professional Software
Engineering Programme. Contact him at jeremy.gibbons@cs.ox.
ac.uk, or visit http://www.cs.ox.ac.uk/jeremy.gibbons/.

Journal of Object Technology, vol. V, no. N, 2011

mailto:jeremy.gibbons@cs.ox.ac.uk
mailto:jeremy.gibbons@cs.ox.ac.uk
http://www.cs.ox.ac.uk/jeremy.gibbons/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Coalgebraic bx
	Stateful Systems are Coalgebras
	Categorical Prerequisites
	Bx as Pointed Coalgebras

	Behavioural Equivalence and Bisimulation
	Relationship with Symmetric Lens Equivalence
	Coalgebraic Bisimilarity with Effects
	Interactive I/O
	Failure
	Non-determinism

	Coalgebraic bx Composition
	Defining cbx Composition via Pullbacks
	Defining a State-space for the Composition of and
	Defining Pair-based Composition
	Inducing the Coalgebra on the Pullback
	Proving the Composition is a Coalgebraic bx

	Well-behavedness of cbx Composition

	Relating Coalgebraic and Monadic bx
	Translating a Coalgebraic bx into a Monadic bx
	Composing Stateful Monadic bxs

	Conclusions and Further Work
	Bibliography
	About the authors
	Appendix: Omitted Details in Proof of Theorem 4.10

