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Abstract
The past decades have witnessed an extensive study of structured
recursion schemes. A general scheme is the hylomorphism, which
captures the essence of divide-and-conquer: a problem is broken into
sub-problems by a coalgebra; sub-problems are solved recursively;
the sub-solutions are combined by an algebra to form a solution. In
this paper we develop a simple toolbox for assembling recursive
coalgebras, which by definition ensure that their hylo equations
have unique solutions, whatever the algebra. Our main tool is the
conjugate rule, a generic rule parametrized by an adjunction and
a conjugate pair of natural transformations. We show that many
basic adjunctions induce useful recursion schemes. In fact, almost
every structured recursion scheme seems to arise as an instance
of the conjugate rule. Further, we adapt our toolbox to the more
expressive setting of parametrically recursive coalgebras, where the
original input is also passed to the algebra. The formal development
is complemented by a series of worked-out examples in Haskell.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—applicative (func-
tional) languages; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—algebraic approaches to se-
mantics

General Terms Languages, Theory, Verification

Keywords recursion schemes, hylomorphisms, adjunctions

1. Introduction
Over forty years ago, Hoare [14] observed that “there are certain
close analogies between the methods used for structuring data and
the methods for structuring a program which processes that data”.
These days, the relationship between data structure and program
structure is expressed in the form of structured recursion schemes,
and are widely used in functional languages such Haskell.

Canonical examples are provided by folds (catamorphisms),
which consume data structures, and unfolds (anamorphisms), which
produce them, solutions h and k of the following recursion equations:

h · in = a · F h out · k = F k · c ,

[Copyright notice will appear here once ’preprint’ option is removed.]

which are shaped by a base functor F. Categorically, these recursion
schemes arise from constructions in which in and out are initial
algebras and final coalgebras respectively. Initiality and finality
each correspond to both existence and uniqueness of solutions to
the equations above, traditionally written h = a and k = c .

Folds and unfolds have been thoroughly studied and are now
well understood and widely used, but they are rather restrictive
patterns of computation. Thus, there have been many generalizations,
extensions, and combinations in an attempt to improve expressivity.
Ultimately, most of these are variations on a single theme, the
hylomorphism [23], which arises as a solution to the equation:

h = a · F h · c .

This generalization comes with a catch: there is no guarantee that
a solution exists for a hylo equation with a given coalgebra c and
algebra a, let alone that such a solution is uniquely determined. A
candidate solution is a · c , but this only works if the carriers of
initial algebras and final coalgebras coincide.

A number of workarounds to the catch have been proposed over
the years. One could work in an algebraically compact category
such as Cpo [23]; then the carriers of initial algebras and final
coalgebras do coincide, but one has to relax uniqueness of solutions
to ordering them (for example, picking the least solution). Similarly,
one could work in a self-dual category such as Rel [4]; again, the
carriers coincide, this time because final coalgebras are exactly the
converses of initial algebras, but again one has to resort to least
solutions and deal with inequalities rather than equalities.

Alternatively, rather than restricting the setting in such ways, we
can instead constrain the programs under consideration. In particular,
we can restrict ourselves to so-called recursive coalgebras [6]—those
that by definition yield unique solutions to the hylo equation, what-
ever the algebra. Dually, we can work with corecursive algebras—
those that yield unique solutions whatever the coalgebra. This is a
trade-off: only certain coalgebras (or dually, algebras) are admissi-
ble, but in return there need be no restriction on the setting, and no
resort to inequalities rather than equalities.

The cost side of the trade-off is mitigated by providing a toolbox
of techniques for assembling the admissible components, rather than
requiring their admissibility to be proved from first principles. For
example, because an initial algebra in is an isomorphism, it has an
inverse in◦, and this inverse turns out to be a recursive coalgebra.
Hylomorphisms with c = in◦ are just folds, so by itself this is not
very interesting; it becomes more interesting when we develop a
powerful theory of constructions on recursive coalgebras, which is
what we set out to do. Our theory is based on adjunctions, and, of
course, it all dualizes nicely to corecursive algebras.

Perhaps surprisingly, the entire theory is based on only two tools,
which we call the rolling rule and the conjugate rule. The former
applies when the base functor shaping the recursion is composed
from two other functors, and allows the two functors to be swapped.

Conjugate Hylomorphisms 1 2014/7/22



The latter allows us to shunt functors between the producer and
consumer parts of the hylo. The conjugate rule is parametrized by
an adjunction and a conjugate pair of natural transformations. In
a sense, it can be considered the mother of all recursion schemes,
as almost every recursion scheme can be framed as an instance of
this rule: folds and unfolds [10, 21, 23], folds with parameters [26],
mutu- and zygomorphisms [8, 20], histo- and futumorphisms [29],
generalized folds [5], recursion schemes from comonads [31], and
adjoint folds [11].

This is not the first time this topic has been visited, and indeed
most of the results in Section 3 appear in Capretta et al. [6], albeit
using different machinery—comonads and distributive laws—and
with substantially longer proofs. We demonstrate that each of their
comonadic schemes also arises by instantiating the conjugate rule
to an adjunction that generates the comonad. Indeed, in many ways
the present work extends the unification of structured recursion
schemes presented in [13], which showed that recursion schemes
from comonads [31] are subsumed by adjoint folds [11]. Rather
pleasingly, the generalization from initial algebras to recursive
coalgebras streamlines many of the proofs. A distinct advantage
of adjunctions over comonads is that the former compose nicely:
we can build advanced recursion schemes out of simple ones by
composing the underlying adjunctions (Section 3.5).

Folds are equivalent to paramorphisms [22], the Squiggol ren-
dering of primitive recursion, where the input is also passed to the
algebra. However, when we generalize initial algebras to recursive
coalgebras this equivalence no longer holds. Practical considerations
suggest that providing the inputs is useful, and this motivates us
to extend the theory to include so-called parametrically recursive
coalgebras. (There is also a dual variation [24] corresponding to
apomorphisms [32], which allow the coalgebra to stop the recursion
early.) Here is where we feel the benefit of a unified approach: we
show that the rolling and the conjugate rule can be generalized to
this more expressive setting, generalizing all of their instances in
one go. (There is only one exception; see Section 5.6.)

In summary, this paper makes the following novel contributions:
• we unify and substantially simplify prior work on structured

recursion schemes;
• we identify two central adjunction-like techniques for proving

the uniqueness of a wide range of recursion equations;
• we generalize these techniques to the more expressive setting of

parametrically recursive coalgebras.
The rest of the paper is structured as follows. Section 2 provides

some background category theory, with an overview of important
adjunctions. In Section 3 we discuss hylomorphisms, and introduce
the two cornerstones of our theory: the rolling rule and the conjugate
rule. We provide all of the proofs, as they serve as templates for
the development in Section 5. We support our claim that almost all
known structured recursion schemes can be expressed as instances
of the conjugate rule. We illustrate the schemes through a number
of Haskell examples as we go. More elaborate examples based on
dynamic programming are given in Section 4. We then extend the
theory in Section 5 to cover parametrically recursive coalgebras; in
particular, we adapt the rolling and the conjugate rule to the new
setting. We follow this with further examples in Section 6. Finally,
Section 7 discusses related work, and Section 8 concludes.

2. Background
This paper assumes a basic knowledge of category theory: the
reader should be familiar with the notions of functors and natural
transformations. In this section we fix the notation and establish the
concepts that will be used in the remainder of the paper. For the
most part this material is standard, and can safely be glossed over
on an initial reading, except perhaps the material on conjugates.

2.1 Algebras and Coalgebras
Algebras and coalgebras form the basis for the categorical descrip-
tion of structured recursion schemes.

Given an endofunctor F : C → C , a so-called base functor, an
F-algebra is a pair (a,A), where a : F A→ A is an arrow and A : C is
an object, which are known respectively as the action and carrier of
the algebra. (We deviate a little from the standard notation (A,a), in
order to have a syntax that distinguishes algebras from coalgebras.)
Since the action determines its carrier, it is often used by itself to
refer to the F-algebra. An F-homomorphism between algebras (a,A)
and (b,B) is an arrow h : A→ B : C such that h · a = b · F h.

F A F B

A B

a

F h

b

h

F-homomorphisms compose, and there is an identity, so F-algebras
and F-homomorphisms form a category, which we call F-Alg(C ).
The initial object of this category, if it exists, is given by (in,µF)
and called the initial F-algebra. Initiality implies that to each
F-algebra, (a,A), there corresponds a unique F-homomorphism,
a : (in,µF)→ (a,A), called a fold. The algebra in is, in fact, an

isomorphism, so µF is a fixed-point of F (in a certain sense, the least
fixed-point); this fact is known as Lambek’s Lemma [18].

Dually, given an endofunctor G : C → C , a G-coalgebra is a pair
(C,c), where C : C is the carrier and c : C→ G C is the action of
the coalgebra. A G-homomorphism between coalgebras (C,c) and
(D,d) is an arrow h : C→ D : C that satisfies G h · c = d · h. Just as
before, a category G-Coalg(C ) can be formed from G-coalgebras
and G-homomorphisms. The final object of this category, if it exists,
is given by (νG,out) and called the final G-coalgebra. The unique
homomorphism to the G-algebra (C,c), called an unfold, is written
c : C→ νG.

Throughout, we use Haskell as a lingua franca for exemplifying
categorical constructions. However, we are careful to distinguish
between inductive and coinductive types, which Haskell conflates.

Example 2.1. The semantics of the inductive datatype Tree defined

data Tree = Empty | Node Tree Z Tree

is given by the initial algebra (in,µTree), where the base functor

data Tree tree = Empty | Node tree Z tree

abstracts away from the recursive occurrences of Tree. The Haskell
rendering of the isomorphism in, the action of the initial algebra,
amounts to a simple renaming of constructors.

The category F-Alg(C ) has more structure than C . The forgetful
or underlying functor UF : F-Alg(C )→ C forgets about the addi-
tional structure: UF (a,A) = A and UF h = h. An analogous functor
can be defined for coalgebras: UG : G-Coalg(C )→ C .

Liftings and coliftings A functor H : F-Alg(C )→ G-Alg(D) is
called a lifting of H : C →D iff H◦UF = UG ◦H. For liftings, the
action on the carrier and on homomorphisms is fixed; the action
on the algebra can be specified using a natural transformation
λ : H◦F←̇G◦H, allowing us to define Hλ as a lifting:

Hλ (a,A) = (H a · λ A,H A) Hλ h = H h . (2.1)

Since we use the action of an algebra to refer to the algebra itself,
we often abbreviate H a · λ A by Hλ a.

Dually, H : F-Coalg(C )→ G-Coalg(D) is a colifting of H :
C →D iff UG ◦H=H◦UF. Given λ : H◦F→̇G◦H we can define
a colifting as follows:

Hλ (C,c) = (H C,λ C · H c) Hλ h = H h . (2.2)
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2.2 Adjunctions
Adjunctions were introduced by Kan [17] and are so pervasive in the
study of category theory that Mac Lane [19, p.vii] noted “Adjoint
functors arise everywhere.” Our work supports this view: adjunctions
provide a unified framework for program transformation.

Given categories C ,D , we say that functors L : C ← D and
R : C →D form an adjunction, written L a R : C ⇀ D or

C D⊥
R

L
,

iff there is a bijection between the sets of arrows

b−c : C (L A,B)∼= D(A,R B) : d−e
that is natural both in A and B. We say that L is a left adjoint for R,
and R a right adjoint for L; the isomorphism b−c is called the left
adjunct, and its inverse d−e the right adjunct.

That the adjuncts b−c and d−e are mutually inverse can be
captured using an equivalence:

f = dge ⇐⇒ bfc= g , (2.3)

for all f : L A→ B : C and g : A→ R B : D . The naturality properties
of the adjuncts are alternatively expressed as fusion laws.

R k · bfc · h = bk · f · L hc (2.4a)
k · dge · L h = dR k · g · he (2.4b)

An alternative definition of adjunctions is based on the natural
transformations ε= dide and η= bidc, which are called the counit
ε : L ◦R →̇ Id and the unit η : Id →̇R ◦L of the adjunction. All in
all, an adjunction consists of six entities: two functors, two adjuncts,
and two units. Each can be defined in terms of the others:

dge= ε B · L g ε= dide L h = dη B · he
bfc= R f · η A η= bidc R k = bk · ε Ac .

(2.5)

Example 2.2. Coproducts and products arise as left and right
adjoints (+) a ∆ a (×) of the diagonal functor ∆ : C → C ×C
defined by ∆ A = (A,A) and ∆ f = (f, f).

C C ×C⊥
∆

(+)

C ×C C⊥
(×)

∆

The bijections express that pairs of arrows with the same target
(respectively, source) are in 1-1 correspondence with arrows from a
coproduct (respectively, to a product). In the case of products, the
left adjunct b(f1, f2)c = f1M f2 is known as the ‘split’ combinator,
and the counit ε= (outl,outr) arises from the projections.

(f1, f2) = (outl,outr) · ∆ g ⇐⇒ f1M f2 = g (2.6a)

Note that the equation on the left lives in a product category. For
products the fusion law (2.4a) specializes to

(k1× k2) · (f1M f2) · h = (k1 · f1 · h)M (k2 · f2 · h) . (2.6b)

Both laws will be frequently used in calculations.

Example 2.3. Perhaps the best-known example of an adjunction is
currying: a function of two arguments can be treated as a function
of the first argument whose values are functions of the second.

C C⊥
(−)P

−×P

The right adjoint of pairing with P is the exponential from P. The
function Λ (pronounce: curry) corresponds to the left adjunct:

Λ : C (A×P,B)∼= C (A,BP) .

In Set, the object BP is the set of total functions from P to B.

Left adjoints preserve initial objects, L 0 ∼= 0. Dually, right
adjoints preserve final objects, R 1 ∼= 1. In general, left adjoints
preserve colimits (LAPC) and right adjoints preserve limits (RAPL).

Example 2.4. Possibly infinite trees with branching structure
determined by G and labels drawn from A constitute the cofree
G-coalgebra CofreeG A, which arises as the right adjoint of the
underlying functor UG.

C G-Coalg(C )⊥
CofreeG

UG

The action of CofreeG A = (G∞ A,tail A) maps a tree to a G-
structure of subtrees. The counit ε = head extracts the label of
the root of a tree, and η (A,a) = a constructs a tree. The bijection
instantiating (2.3) expresses that the tree for a given start state and a
given state-transition function expressed as a coalgebra is uniquely
determined by a mapping from states to observations:

f = head B · UG g ⇐⇒ CofreeG f · a = g , (2.7)

for all f : UG (A,a)→ B and g : (A,a)→ CofreeG B.
Since CofreeG is a right adjoint, final coalgebras arise as a special

case (RAPL): (νG,out)∼= CofreeG 1.
Conversely, cofree coalgebras can be implemented in terms of

final coalgebras: (T B,tail B) with head B : T B→ B is a cofree G-
coalgebra if and only if (TB,headBMtailB) is a final GB-coalgebra
where GB X = B×G X. It suffices to show that h : A→ T B with
head B · h = hd is a G-coalgebra homomorphism if and only if it is a
GB-coalgebra homomorphism. The proof is standard, but instructive:

head B · h = hd ∧ tail B · h = G h · tl
⇐⇒ { M is an isomorphism (2.6a) }

head B · hM tail B · h = hdMG h · tl
⇐⇒ { product fusion (2.6b) }

(head BM tail B) · h = hdMG h · tl
⇐⇒ { definition of GB and product fusion (2.6b) }

(head BM tail B) · h = GB h · (hdM tl)

Note that every GB-coalgebra is of the form hdM tl, since c = outl ·
cMoutr · c. Consequently,

G∞ B∼= ν X . B×G X . (2.8)

This implies that head BM tail B is an isomorphism; we use cons B
to denote its inverse. As an aside, (2.8) motivates the nomenclature:
G∞ B can be seen as the type of generalized streams—‘generalized’
because the ‘tail’ is a G-structure of ‘streams’ rather than just a
single one; we obtain standard streams for G= Id.

Conjugates At the heart of several of our core proofs are conjugate
natural transformations [19]. Just as natural transformations relate
functors, conjugates relate adjoint pairs of functors. Given the
adjunctions L a R : C ⇀ D and L′ a R′ : C ′ ⇀ D ′, and functors
H : C → C ′ and K : D → D ′, the natural transformations σ :
L′ ◦K→̇H◦L and τ : K◦R→̇R′ ◦H are conjugates, written σ a τ,
if one of

bH f · σ Ac′ = τ B · K bfc , (2.9a)

H dge · σ A = dτ B · K ge′ , (2.9b)

holds, for all f : L A→ B : C and g : A→ R B : D . An important
property is that each component uniquely determines the other.

3. Recursive Coalgebras
Hylomorphisms, or hylos for short, are solutions to a recursion
scheme that captures the essence of divide-and-conquer algorithms.
Such algorithms have three phases: first, a problem is broken
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into sub-problems by a coalgebra; second, sub-problems are re-
cursively and independently turned into sub-solutions; and finally,
sub-solutions are combined by an algebra to form a solution. The
recursive call structure of the hylo is determined by the common
base functor of the coalgebra and the algebra. Depending on its
shape, hylomorphisms capture while-programs, binary-subdivision-
schemes etc. In fact, practically any program can be cast into the
hylo form [15]. However, there is no a priori guarantee that a solu-
tion exists for a hylo equation with a given coalgebra and algebra,
let alone that such a solution is uniquely determined.

3.1 Basic Definitions
Hylomorphisms Let F : C → C be an endofunctor, let (a,A) be
an F-algebra, and let (C,c) be an F-coalgebra. An arrow h : A← C
is a hylomorphism (or algebra-from-coalgebra homomorphism),
h : (a,A)� (C,c), if it satisfies

h = a · F h · c . (3.1)

The control functor F governs the recursive call structure. We
use (a,A)� (C,c) or (C,c)� (a,A) to denote the set of all
hylomorphisms that satisfy (3.1).

Example 3.1. The functor (A +−) can be used to model tail
recursion: a loop either terminates producing an A value, or it goes
through another iteration. Tail-recursive programs are captured by

h = (idO id) · (A+h) · c ⇐⇒ h = (idOh) · c ,

where idO id : A+A→ A is the so-called codiagonal.

Unlike algebra or coalgebra homomorphisms, hylomorphisms
do not compose, so they do not form a category. However, they do
compose with algebra and coalgebra homomorphisms.

A′ A C C′

F A′ F A F C F C′

f h

c

g

c′a′

F f

a

F h F g

=

A′ C′

F A′ F C′

f·h·g

c′a′

F (f·h·g)

Thus, the assignment ((C,c),(a,A)) 7→ ((C,c)� (a,A)) can be
turned into a functor of type (F-Coalg(C ))op×F-Alg(C )→ Set.

We are particularly interested in situations where (3.1) has a
unique solution. In general, the algebra and coalgebra work hand-in-
hand to achieve unicity. However, at the extreme, uniqueness can be
shown by focusing on either the coalgebra or the algebra.

Recursive Coalgebras A coalgebra (C,c) is recursive (or algebra-
initial) if for every algebra (a,A) there is a unique hylo (a,A)�
(C,c). We denote such hylos by a � c to emphasize the source
of uniqueness. This notation is reminiscent of that of folds, since
a recursive coalgebra provides a kind of initiality: post-composing
a hylo with any algebra homomorphism h : (a,A)→ (b,B) yields
again a unique hylo, h · a � c = b � c . The full subcategory of
F-Coalg(C ) of recursive coalgebras is denoted F-Rec(C ).

Example 3.2. Lambek’s Lemma states that the action of the initial
algebra (in,µF) has an inverse, which implies

h · in = a · F h ⇐⇒ h = a · F h · in◦ .

Consequently, (µF, in◦) is recursive and a = a � in◦ .

Corecursive Algebras Dually, an algebra (a,A) is corecursive (or
coalgebra-final) if for every coalgebra (C,c) there is a unique hylo
(a,A)� (C,c). We denote such hylos by a � c to emphasize
the source of this uniqueness. The full subcategory of F-Alg(C ) of
corecursive algebras is denoted F-Corec(C ).

For example, the algebras (out◦,νG) and (cons B,G∞ B) are
corecursive (recall that cons B = (head BM tail B)◦).

With these definitions in place, we proceed by describing two
fundamental techniques for establishing uniqueness: Eppendahl’s
Basic Lemma [7], which we call the rolling rule, and a symmetric
version of Proposition 12 of [6], which we call the conjugate rule.
Indeed, we will be careful to emphasize symmetry, even though our
main focus is on recursive coalgebras.

3.2 Rolling Rule
We now consider algebras and coalgebras where two functors
compose to create the base functor. The rolling rule allows us to
swap the underlying functors, and establishes a means of deriving
new recursive coalgebras and corecursive algebras from old ones.
We start with the situation described in the following diagram.

(L◦R)-Alg(C ) (R◦L)-Alg(D)

C D

(L◦R)-Coalg(C ) (R◦L)-Coalg(D)

R

UL◦R UR◦L

R

L

UL◦R

L

UR◦L

(3.2a)

Since the base functors are compositions, the functor L has a trivial
colifting to categories of coalgebras. Recall that we need a natural
transformation of type L◦ (R◦L)→̇ (L◦R)◦L; the identity will do
nicely: L= Lid, and, likewise R= Rid.

The rolling rule establishes an adjunction-like correspondence
between two types of hylomorphisms.

Theorem 3.1 (Rolling Rule). Assuming the data in (3.2a), there is
a bijection between the sets of hylos

L (C,c)� (a,A) ∼= (C,c)� R (a,A) , (3.2b)

natural in (C,c) : (R◦L)-Coalg(D) and (a,A) : (L◦R)-Alg(C ).

Proof. The correspondence is witnessed by the functions b−c and
d−e, defined bxc= R x · c and dye= a · L y. These trivially form a
bijection between fixed-points of db−ce and fixed-points of bd−ec:

x = dbxce ⇐⇒ y = bdyec ,

where y = bxc and x = dye. Unrolling the definitions we obtain

x = a · L (R x) · L c ⇐⇒ y = R a · R (L y) · c ,

which shows that x : L (C,c)� (a,A) and y : (C,c)�R (a,A). The
proof of naturality is straightforward.

The 1-1 correspondence (3.2b) allows us to conclude that L (C,c)
is recursive if (C,c) is. Thus, the colifting L preserves recursiveness,
and, dually, the lifting R preserves corecursiveness.

L : (L◦R)-Rec(C )← (R◦L)-Rec(D) (3.3a)

R : (L◦R)-Corec(C )→ (R◦L)-Corec(D) (3.3b)

3.3 Final Recursive Coalgebras
An important special case of the rolling rule is where we substitute
L,R :=F, Id. We use this to prove the following

Theorem 3.2. The recursive coalgebra (C,c) is final if and only
if c is an isomorphism.

The unique F-coalgebra homomorphism from the recursive
coalgebra (C,c) to the final recursive coalgebra is written c ∗,
which emphasizes that this unfolds into a recursive coalgebra.

Proof. “=⇒”: The inverse of c is the unique coalgebra homomorph-
ism c◦ = F c ∗—using the rolling rule we know that F c is recursive
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if c is recursive (3.3a).

C F C

F C F (F C)

c
F c ∗

c◦

F c

F c◦
F F c ∗

C D

F C F D

c

c◦�d

dc◦

F c◦�d

Now, c◦ · c = id because (C,c) is final. Conversely, c · c◦ = F c◦ ·
F c = id, see diagram on the left above.

“⇐=”: if c is an iso, then c◦ � d is the unique coalgebra
homomorphism to (C,c) from the recursive coalgebra (D,d), see
diagram on the right above. Hence, (C,c) is final.

Corollary 3.3. The final recursive F-coalgebra is (µF, in◦).

Corollary (3.3) is an important result as it allows us to freely mix
folds a as consumers with recursive unfolds c ∗ as producers.

3.4 Conjugate Rule
The rolling rule can only be applied when a pair of functors form
the base functor of the (co)algebra. We can lift this restriction to
simple endo-functors F : C → C and G : D →D when there is an
adjunction between C and D . Given L aR : C ⇀D , and conjugates

σ : L◦G→̇F◦L a τ : G◦R→̇R◦F ,

we have the following situation.

F-Alg(C ) G-Alg(D)

C D

F-Coalg(C ) G-Coalg(D)

Rτ

UF UG

⊥
R

F
L

G

UF

Lσ

UG

(3.4a)

Using the conjugates we colift L to categories of coalgebras (2.2)
and lift R to categories of algebras (2.1).

Like the rolling rule, the conjugate rule establishes an adjunction-
like correspondence between two types of hylomorphism.

Theorem 3.4 (Conjugate Rule). Assuming the data in (3.4a), there
is a bijection between the sets of conjugate hylomorphisms

Lσ (C,c)� (a,A) ∼= (C,c)� Rτ (a,A) , (3.4b)

that is natural in (C,c) : G-Coalg(D) and (a,A) : F-Alg(C ).

Using the conjugates is a natural choice: just as adjoint functors
determine one another (up to ∼=), so too do conjugates. It is this
property that allows us to move between algebras and coalgebras.

Proof. We have to show

x = a · F x · Lσ c ⇐⇒ bxc= Rτ a · G bxc · c , (3.4c)

where b−c is the left adjunct of L a R.

x = a · F x · Lσ c : A← L C
⇐⇒ { definition of colifting (2.2) }

x = a · F x · σ C · L c
⇐⇒ { b−c and d−e are isomorphisms (2.3) }

bxc= ba · F x · σ C · L cc
⇐⇒ { b−c is natural (2.4a) }

bxc= R a · bF x · σ Cc · c
⇐⇒ { σ a τ conjugates (2.9a) }

bxc= R a · τ A · G bxc · c
⇐⇒ { definition of lifting (2.1) }

bxc= Rτ a · G bxc · c : R A← C .

Naturality of (3.4b) is inherited from the underling adjunction.

The 1-1 correspondence (3.4b) between what we call conjugate
hylomorphisms implies that Lσ (C,c) is recursive if (C,c) is. Thus,
Lσ preserves recursiveness; dually, Rτ preserves corecursiveness.

Lσ : F-Rec(C )← G-Rec(D) (3.5a)
Rτ : F-Corec(C )→ G-Corec(D) (3.5b)

Moreover, using our notation for hylos, (3.4c) gives:

b a � Lσ c c= Rτ a � c , (3.6a)

d Rτ a � c e= a � Lσ c . (3.6b)

3.4.1 Data and Control Functors
The conjugate rule involves six entities—four functors and two
natural transformations—which can be a little daunting. When the
adjunction L a R is fixed, what remains is the choice of functors F
and G, and the conjugate σ a τ. Often one of the functors can be
identified as a data functor as it is either part of the input or output
type of a hylo. Then there is a canonical choice for the other functor,
the control functor that governs the recursive call structure.

Focusing on the input, the framework of the conjugate rule can
be instantiated with the data functor G :=D, and the control functor
F :=C= L◦D◦R with the following conjugate pair:

σ= L◦D◦η : L◦D→̇C◦L a τ= η◦D◦R : D◦R→̇R◦C .

The control functor C is obtained by going round in a circle, see
Diagram (3.4a). It is canonical in the following sense: any hylo
equation x = a · C′ x · Lσ′ c with σ′ : L◦D→̇C′ ◦L is equivalent to
one that uses the canonical control functor [13].

For this particular instance the conjugate rule can be simplified:
using (2.5) it is straightforward to show that Rτ a = bac and
C x · Lσ c = L (D bxc · c). Thus, (3.4c) becomes:

x = a · L (D bxc · c) ⇐⇒ bxc= bac ·D bxc · c . (3.7)

Dually, we can focus on the output. Then the roles of F and G
are interchanged: we instantiate the conjugate rule to F,G :=D,C
with the canonical control functor C= R◦D◦L, and conjugates:

σ= ε◦D◦L : L◦C→̇D◦L a τ= R◦D◦ε : C◦R→̇R◦D .

To illustrate the versatility of the conjugate rule we instantiate the
rule to the adjunctions discussed in Section 2.2. Since we focus on
recursive coalgebras, we consider instances of the equation

x = a · F x · Lσ c

A L C

F A F (L C)

x

Lσ ca

F x

, (3.8)

and of the equation that builds on the canonical control functor:

x = a · L (D bxc · c)
A L C

L (D (R A)) L (D C)

x

L ca

L (D bxc)

. (3.9)

We already know that both equations have unique solutions if c is
recursive. We shall see that each of the adjunctions induces a useful
recursion scheme. In fact, almost every structured recursion scheme
seems to arise this way (an obvious exception being schemes that
make use of the rolling rule, but that do not involve adjoint functors).
The reader is invited to dualize.
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3.4.2 Instance: Hylo-shift Law: Id a Id
As a warm-up, consider the adjunction Id a Id. For this trivial case,
a conjugate pair is given by a natural transformation α : G→̇F.

α : Id◦G→̇F◦ Id a α : G◦ Id→̇ Id◦F

Then (3.6a) specializes to the so-called hylo-shift law [23]:

a � α C · c = a · α A � c , (3.10)

which allows us to shift a natural transformation between the algebra
and coalgebra part of a hylomorphism.

3.4.3 Instance: Mutual Recursion: ∆ a (×)
Mutual recursion describes the situation where a number of func-
tions rely on one another in calculating their results.

Example 3.3 (Minimax). An example of mutual recursion is the
minimax algorithm. Consider a two-player game where starting at
the root of a finite tree, the players take it in turn to choose whether
the left or right branch of the tree is taken. The final score is the sum
of all the nodes that have been visited before the final leaf. The task
of one player is to maximize this score, while the other player tries
to minimize it. The two mutually recursive functions are:

maximize,minimize :: Tree→ Z
maximize (Empty) = 0
maximize (Node l v r) = v+(minimize l ‘max‘ minimize r)
minimize (Empty) = 0
minimize (Node l v r) = v+(maximize l ‘min‘ maximize r) .

These functions rely symmetrically on each other’s results before
proceeding to the next step.

Example 3.4 (Perfect trees). Another example of mutual recursion
is where the dependence is asymmetric. Consider the function
perfect, which checks to see whether a tree is perfectly balanced.

perfect :: Tree→ B
perfect (Empty) = True
perfect (Node l v r) = perfect l ∧ perfect r ∧ height l height r
height :: Tree→ Z
height (Empty) = 0
height (Node l v r) = 1+(height l) ‘max‘ (height r)

The calculation of perfect depends on height, but the result of height
is independent of perfect.

In both examples, the mutually recursive functions have the
same source type and both use the coalgebra in◦, which suggests
instantiating the conjugate rule to the adjunction ∆ a (×).

Mutu-hylo When we pick the canonical control functor, we obtain
mutually recursive hylos, or mutu-hylos for short. Given x = (x1,x2)
and a = (a1,a2), Equation (3.9) specializes to

x = a · ∆ (D bxc · c)⇐⇒
{

x1 = a1 ·D (x1M x2) · c : A1← C
x2 = a2 ·D (x1M x2) · c : A2← C .

The algebras a1 : D (A1×A2)→ A1 and a2 : D (A1×A2)→ A2 can
avail themselves of the results of both recursive calls. The coalgebra
has to be the same, and it must be recursive.

A special case of the mutu-hylo is the zygo-hylo, where only one
of the algebras is dependent on both results: a2 :=a′2 ·D outr.

Banana-split Here is an amusing variation of the theme. The
diagonal functor ∆ satisfies a simple property: ∆◦D= (D×D)◦∆.
Let us instantiate the conjugate rule to F,G :=D×D,D with

id : ∆◦D= (D×D)◦∆ a τ : D◦ (×)→̇ (×)◦ (D×D) .

Note that τ=D outlMD outr. Then Equation (3.8) specializes to

x = a · (D×D) x · ∆id c⇐⇒
{

x1 = a1 ·D x1 · c : A1← C
x2 = a2 ·D x2 · c : A2← C .

We obtain a system of two independent functions, which appears
unexciting. However, we can invoke (3.6a), which gives us

a1 � c M a2 � c = a1 ·D outlMa2 ·D outr � c ,

as (×)τ (a1,a2) = a1 · D outlM a2 · D outr. We obtain a general-
ization of the-called banana-split law [4], an important program
optimization that replaces a double recursion by a single one. (The
law is called ‘banana-split’, because the fold brackets look like
bananas and M is pronounced ‘split’.)

3.4.4 Instance: Accumulators: −×P a (−)P

A useful form of recursion is where an additional parameter, an
accumulator, is passed in for use by the algebra.

Example 3.5 (Append). Our first example of recursion with a
parameter is in the definition of cat, which takes two lists and
appends them together by structural induction on the first list.

cat :: ([a], [a ])→ [a ]
cat ([ ], ys) = ys
cat (x : xs,ys) = x : cat (xs,ys)

The second parameter is not changed during the recursion, and is
simply passed through until the base case is reached.

Example 3.6 (Tree flattening). A slightly more elaborate example
is an efficient version of turning a tree of values into a list. The naive
version flattens both subtrees independently and appends the results.
Since appending is of linear complexity in its first argument, the
following variant is more desirable.

flattenCat :: (Tree, [Z])→ [Z]
flattenCat (Empty, xs) = xs
flattenCat (Node l x r,xs) = flattenCat (l,x : flattenCat (r,xs))

The function spawns off two new invocations of itself, but only in
the second does the parameter xs remain unchanged.

The handling of parameters is a case for the curry adjunction.

Varying parameters Using the canonical control functor, Equa-
tion (3.9) specializes to the accu-hylo

x = a · ((D (Λ x) · c)×P) : A← C×P .

This models the situation where the parameter varies during the
recursion; a : D (AP)×P→ A receives a D-structure of curried
variants of x, and can supply each of them with a different argument.

Constant parameters The case where the parameter is passed
unchanged can be modelled using the so-called strength of a functor:

σ : (×P)◦D→̇D◦ (×P) a τ : D◦ (−)P →̇ (−)P ◦D .

The strength σ A : D A×P→D (A×P) broadcasts a value across a
structure. (Every endofunctor on Set has a canonical strength.) For
this data, Equation (3.8) specializes to

x = a ·D x · σ C · (c×P) : A← C×P .

The strength copies the parameter to each of the recursive calls.

3.4.5 Instance: Course-of-Values Recursion: UG a CofreeG
The one remaining adjunction introduced in Section 2.2 that we have
not yet discussed is UG a CofreeG. It turns out that this instance
gives us course-of-values recursion. We postpone a discussion of
interesting programming examples until Section 4, where we look
at various dynamic programming algorithms.
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This instance is more challenging as it involves coalgebras over
coalgebras! Consider the categories involved.

C G-Coalg(C )⊥
CofreeG

F◦G∞

UG

Fλ

The data functor is now a functor over G-Coalg(C ), for example,
the colifting Fλ where λ : F◦G→̇G◦F; the corresponding canonical
control functor is UG ◦Fλ ◦CofreeG = F◦UG ◦CofreeG = F◦G∞.
For this data, Equation (3.9) specializes to

x = a · UG (Fλ bxc · c) : A← UG (C,d)
⇐⇒ { UG ◦Fλ = F◦UG }

x = a · F (UG bxc) · UG c : A← UG (C,d)
⇐⇒ { bxc= CofreeG x · d (2.7) and definition of UG }

x = a · F (G∞ x · d ) · c : A← C ,

where a : F (G∞ A)→ A and c : (C,d)→ Fλ (C,d). The coalge-
bra c lives in Fλ -Coalg(G-Coalg(C )); it is an F-coalgebra that is
simultaneously a G-coalgebra homomorphism. If we wish to apply
this instance of the conjugate rule, we have to ensure that ((C,d),c)
is a recursive Fλ -coalgebra. The following lemma shows that Fλ -
recursiveness is actually a weaker notion than F-recursiveness.

Lemma 3.5. Let D be a full subcategory of G-Coalg(C ), let
Fλ : D →D , and let ((C,d),c) : Fλ -Coalg(D). Then

(C,c) : F-Rec(C ) =⇒ ((C,d),c) : Fλ -Rec(D) .

Proof. We have to show that the equation in h

h = a · F h · c : (A,b)← (C,d) (3.11)

has a unique solution for each Fλ -algebra (a,(A,b)). (An Fλ -
algebra is also known as a λ -bialgebra; Fλ -coalgebras have been
called λ -dicoalgebras [6].) If (C,c) is a recursive F-coalgebra,
we know that (3.11) has a unique solution in C . Since D is a
full subcategory of G-Coalg(C ), it suffices to show that h is a
G-coalgebra homomorphism of type (A,b)← (C,d).

b · h
= { h solves (3.11) }

b · a · F h · c
= { a : Fλ (A,b)→ (A,b) }

G a · λ A · F b · F h · c

G h · d
= { h solves (3.11) }

G a · G (F h) · G c · d
= { c : (C,d)→ Fλ (C,d) }

G a · G (F h) · λ C · F d · c
= { λ is natural }

G a · λ A · F (G h) · F d · c .

Since x = G a · λ A · F x · c has a unique solution as c is recursive,
we can conclude that b · h = G h · d.

Combining the conjugate rule and Lemma 3.5 we obtain

Corollary 3.6. Let ((C,d),c) be a Fλ -coalgebra, then

(C,c) : F-Rec(C ) =⇒ (C,F d · c) : (F◦G∞)-Rec(C ) .

An important special case arises if we identify F and G, setting
F :=G and λ = id : F◦F→̇F◦F. Since a G-coalgebra c : C→ G C
is also a G-coalgebra homomorphism c : (C,c)→ Gid (C,c), the
nested coalgebra ((C,c),c) is a Gid-coalgebra. For this special case
we can further simplify Equation (3.9) to

x = a · G (G∞ x · c ) · c : A← C . (3.12)

Operationally, G c · c = tail C · c builds a table of all reachable
arguments of x, excluding the current one. The hylomorphism x is
then recursively applied to all of these, making the results available
to the algebra a : G (G∞ A) → A. In other words, a can access

the entire computational history, implementing course-of-values
recursion. Incidentally, it may seem somewhat odd that a potentially
infinite structure is used for tabulation, even though we know that c
is recursive; we come back to this point in Section 5.4.

Efficiency Equation (3.12) specifies the notion of course-of-values
recursion. However, it does not serve as a blue-print for an imple-
mentation, as it realizes the naive recursive definition, which typ-
ically leads to an exponential running time. A first step towards
an efficient implementation is to define x in terms of its conjugate:
x = head A · bxc (2.7) where bxc = bac · G bxc · c (3.7). The con-
jugate bxc : (C,c)→ (G∞ A,tail A) builds an entire memo-table
bottom-up using bac= G∞ a · G (tail A) . This is a vast improve-
ment, but we can do better still, avoiding the costly G∞ a. Using the
fact that bxc is a G-coalgebra homomorphism, we reason

bxc= bac · G bxc · c ∧ tail A · bxc= G bxc · c
=⇒ { Leibniz’s law and head A · bac= a (2.7) }

head A · bxc= a · G bxc · c ∧ tail A · bxc= G bxc · c
⇐⇒ { M is an isomorphism (2.6a) }

head A · bxcM tail A · bxc= a · G bxc · cMG bxc · c
⇐⇒ { product fusion (2.6b) }

(head AM tail A) · bxc= (aM id) · G bxc · c
⇐⇒ { head AM tail A is an isomorphism }

bxc= cons A · (aM id) · G bxc · c .

Thus, bxc= cons A · (aM id) � c and consequently

x = head A · cons A · (aM id) � c . (3.13)

This implementation builds an entire memo-table, invoking a exactly
once per node. Note that this does not depend on laziness.

3.5 Combining Adjunctions
Up to now we have considered various recursion schemes in
isolation. Of course, in practice more complex algorithms are
composed by combining different schemes. Consider as an example
two mutually recursive functions, of which one has a parameter.

x1 = a1 ·D (x1MΛ x2) · c
x2 = a2 · (D (x1MΛ x2)×P) · (c×P)

One of the attractive features of adjunctions is that we can easily
combine simple adjunctions to form more complex ones. The
recursion scheme above, for instance, is given by

(Id× (−×P))◦∆ a (×)◦ (Id× (−)P) : C ×C ⇀ C ,

which combines pairing, L1×L2 a R1×R2, and composition of
adjunctions, L2 ◦ L1 a R1 ◦R2. (Do not be confused by the four
occurrences of ×: the formula involves products both in Cat, eg
Id× (−)P, and in C , eg −× P.) Indeed, all of the machinery
introduced for adjoint folds [11] is immediately applicable here.

4. Application: Dynamic Programming I
We now discuss two examples of course-of-values recursion, intro-
duced in Section 3.4.5, via dynamic programming algorithms.

The knapsack problem A classic use of dynamic programming is
to solve the unbounded knapsack problem. The goal is to maximize
the total value of elements that are placed into a knapsack with
a fixed weight capacity c. The elements are represented as a list
of pairs (w,v) where w is the weight and v is the value; elements
are unbounded in multiplicity. The problem can be solved with the
following recursion, where wvs is implicitly provided:

knapsack :: N→ R
knapsack c = maximum0
[v+ knapsack (c−w) | (w,v)← wvs,0<w ∧ w6 c ] .
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The value of a knapsack is determined by finding the item in wvs
that maximizes the total value while also decreasing the capacity
of the knapsack. The function maximum0 returns 0 when given an
empty list, and otherwise returns the maximum value in the list.

Dynamic programming optimizes equations like knapsack by
replacing the recursive calls with look-ups into a memo-table. Since
the guard 0<w ∧ w6 c ensures that the recursive calls are always
on smaller arguments, this fits perfectly into the framework of
Equation (3.12). The base functor is G :=Nat defined

data Nat nat = Zero | Succ nat ,

and c is simply the final recursive coalgebra in◦ : N→ Nat N. The
memo-table Nat∞ can be seen as the type of non-empty colists.
The coalgebra Nat in◦ · in◦ of (3.12) generates the colist of all
predecessors in decreasing order, for example, for 3 we obtain
the colist Succ (Cons 2 (Succ (Cons 1 (Succ (Cons 0 Zero))))). To
retrieve values from the memo-table we use

lookup∞ :: (N,Nat∞ v)→Maybe v
lookup∞ (0, Cons a ) = Just a
lookup∞ (n+1,Cons a (Zero)) = Nothing
lookup∞ (n+1,Cons a (Succ as)) = lookup∞ (n,as) .

Table look-up amounts to an accu-hylo where the memo-table is the
accumulator and the recursive coalgebra is in◦ : N→ Nat N.

From the specification of knapsack we extract an algebra (named
the same to emphasise their relationship, but in a different font)
knapsack by making a case distinction on the structure of the
naturals, and replacing boundary guards with pattern matching.

knapsack ::Nat (Nat∞ R)→ R
knapsack (Zero) = 0
knapsack (Succ table) = maximum0
[v+u | (w,v)← wvs,Just u← [lookup∞ (w−1, table)]]

The effect of lookup∞ (i, table) is to return the result that was
computed i + 1 ‘steps before’ the current point of call. Thus,
the key difference to the specification is that recursive calls with
absolute indexing, knapsack i, are replaced by relative table look-
ups, lookup∞ (c−1− i, table) where c is the current input. The call
knapsack (c−w) is turned into lookup∞ (c−1− (c−w), table) =
lookup∞ (w− 1, table), which works out nicely as the original
input c is actually not available to the algebra!

Now, if we capture Equation (3.13) as a higher-order function

dyna :: (Functor f)⇒ (f (f∞ a)→ a)→ (c→ f c)→ (c→ a)
dyna a c = head · h where h = cons · (aM id) · fmap h · c ,

then the efficient implementation of knapsack is a breeze.

knapsack = dyna knapsack in◦

From now on we just present the algebra and omit this obvious step.

Catalan numbers The Catalan numbers determine how many
distinct well-formed arrangements can be made with a given number
of pairs of matching parentheses, and are given by a simple recursive
equation:

catalan :: N→ N
catalan 0 = 1
catalan (n+1) = sum [catalan i∗ catalan (n− i) | i← [0 . .n]] .

This works by summing the results of splitting the parentheses
at all possible points, and multiplying the results of independent
solutions—an operation technically known as a convolution.

This is an instructive example since it illustrates a deficiency of
the recursion scheme: the upper bound for i depends on the input
parameter, but the input is not available to the algebra. We present a
work-around here, and approach the problem in a more principled
way in Section 5. The basic idea is to store the arguments in the

memo-table: we use (NatN)∞, where FC is defined in Haskell

type fc x = (c, f x) .

Instead of the coalgebra in◦ we use idM in◦ : N→NatN N. We show
in Section 5 that idM in◦ is indeed recursive. The algebra catalan
can then be written as follows:

catalan ::NatN ((NatN)∞ N)→ N
catalan (n,Zero) = 1
catalan (n,Succ table) = sum (zipWith (∗) xs (reverse xs))

where xs = take∞ (n, table) .

The key here is that the algebra knows about the current depth of
its application, which is held in n. Thus, the appropriate number
of values can be extracted from the memo-table, and convolved to
form a solution. The function take∞ :: (N,(Natc)∞ v)→ [v ], which
accomplishes the first step, has a straightforward implementation.

We have shown that the examples can be implemented using
course-of-values recursion, but there are some remaining issues. In
particular, the lack of an absolute reference point in the recursion
has made the expression of the algorithms somewhat inelegant.
In knapsack, we were fortunate that the indexing was essentially
relative to begin with, but this is not always the case. The root of the
problem lies in the fact that the original argument of the hylo is not
available to the algebra. The next section introduces a cure, which
will also allow us to replace infinite by finite memo-tables.

5. Para-recursive Coalgebras
As we have seen, hylos are restrictive, since in that the algebra can
in general not access the argument of the hylo. It can reconstruct the
argument only in the special case that the coalgebra has a left inverse.
And indeed, for initial algebras, folds and so-called paramorphisms
are interdefinable [22]. For practical considerations, we ensure that
inputs can always be reconstructed and focus on coalgebras of the
form idM c, as these have the trivial left inverse outl.

5.1 Basic Definitions
Para-hylomorphisms (“have your cake and eat it too”) Recall
that FC X = C×F X. Let (a,A) be an FC-algebra, and let (C,c) be
an F-coalgebra. An arrow h : A← C is a para-hylomorphism, or
para-hylo for short, if it satisfies

h = a · (idMF h · c) (⇐⇒ h = a · FC h · (idM c)) . (5.1)

The argument is passed both to the coalgebra c and the algebra a.
(This is closely related to Haskell’s @-patterns.) But note the
asymmetry: c is a standard F-coalgebra, whereas a is an FC-algebra.

Para-recursive coalgebras The F-coalgebra (C,c) is parametri-
cally recursive, or para-recursive for short, if Equation (5.1) has a
unique solution for each FC-algebra (a,A). In other words, (C,c) is a
para-recursive F-coalgebra if and only if (C, idMc) is a recursive FC-
coalgebra. The full subcategory of F-Coalg(C ) of para-recursive
coalgebras is denoted F-PRec(C ).

A coalgebra that is para-recursive is also recursive—this is a
simple application of the hylo-shift law (3.10) with outr : FC →̇F.
The converse holds if c has a left inverse. Then the para-hylo is
equivalent to a zygo-hylo. Consequently, the recursive coalgebra
(µF, in◦) is also para-recursive.

Apo-hylomorphisms (“stop’n’go”) Dualizing the notion of para-
hylos, we replace the product in the source type of the algebra by
a coproduct in the target type of the coalgebra. This allows the
coalgebra to stop the recursion early (cf Example 3.1). Dual to FC
we define FA X = A+F X. Let (a,A) be an F-algebra, and let (C,c)
be an FA-coalgebra. An arrow h : A← C is an apo-hylomorphism,
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or apo-hylo for short, if it satisfies

h = (idOa · F h) · c (⇐⇒ h = (idOa) · FA h · c) (5.2)

Apo-corecursive algebras The F-algebra (a,A) is apo-corecursive
(aka completely iterative), if Equation (5.2) has a unique solution
for each FA-coalgebra (C,c).

Next we adapt the rolling and conjugate rules to the new set-
ting. Recall that both rules capture perfectly symmetric situations,
showing that certain coliftings preserve recursiveness and, dually,
certain liftings preserve corecursiveness. Now the symmetry is bro-
ken, in that we need two separate proofs. For reasons of space, we
concentrate on para-recursive coalgebras.

5.2 Para-Rolling Rule
Our goal is to show that x = a · (idML (R x) · L c) : A← L C, where
a : L C×L (R A)→ A and c : C→ R (L C), has a unique solution
if c is para-recursive. We take the same approach as in Section 3.2
and write the right-hand side of the equation as a composition of
two transformations: x = dbxce where

bxc= R x · c dye= a · (idML y) . (5.3)

Clearly, solutions of x= dbxce are in 1-1 correspondence to solutions
of y = bdyec. However, it is not immediate that the latter equation is
actually a para-hylo equation. Let’s calculate.

y = bdyec
⇐⇒ { definition of b−c and d−e (5.3) }

y = R (a · (idML y)) · c
⇐⇒ { assumption: R is zippable, see (5.4) below }

y = R a · zip · (R idMR (L y)) · c
⇐⇒ { product fusion (2.6b) }

y = R a · zip · (c× id) · (idMR (L y) · c)
The last equation is indeed a para-hylo equation. However, we
have to assume that R-structures are zippable: that there exists
a natural transformation zip : R A×R B →̇R (A× B) such that
zip · (idM id) = R (idM id). Because of naturality this implies

zip · (R fMR g) = R (fMg) . (5.4)

Most but not all functors are zippable, for instance, Id, P+, and P×
are zippable but + is not. We have established

Theorem 5.1. Assume the data in (3.2a). If R is zippable, then

L : (L◦R)-PRec(C )← (R◦L)-PRec(D) . (5.5)

5.3 Final and Cofree Para-recursive Coalgebras
Theorem 5.2. The para-recursive coalgebra (C,c) is final if and
only if c is an isomorphism.

Proof. The proof is exactly the same as for recursive coalgebras
(Theorem 3.2), except that the para-rolling rule is used to show that
F c is para-recursive if c is (Id is trivially zippable).

Corollary 5.3. The final para-recursive F-coalgebra is (µF, in◦).

Just as final coalgebras can be generalized to cofree coalgebras,
final para-recursive coalgebras can be generalized to cofree para-
recursive coalgebras, which we write Cofree∗ B = (G∗ B,tail∗ B).
The functor Cofree∗ arises as the right adjoint of the forgetful functor
U∗ : G-PRec(C )→ C .

C G-PRec(C )⊥
Cofree∗

U∗

We have characterized G∞ as the type of possibly infinite trees whose
branching structure is determined by G. Roughly speaking, G∗ is

the finite counterpart of G∞. So the counit ε = head∗ extracts the
root label of a tree, and η (A,a) = a ∗ constructs a finite tree.

G∗ B∼= µ X . B×G X G∞ B∼= ν X . B×G X

The proof of the isomorphism on the left is almost the same as the
one for the isomorphism on the right (Example 2.4). We prove that
(T B,tail∗ B) with head∗ B : T B→ B is a cofree para-recursive
G-coalgebra if and only if (T B,head∗ BM tail∗ B) is a final para-
recursive GB-coalgebra. It suffices to show that h : A→ T B with
head∗ B · h = hd is a G-coalgebra homomorphism if and only if it
is a GB-coalgebra homomorphism.

head∗ · h = hd ∧ tail∗ · h = G h · tl
⇐⇒ { see Example 2.4 }

(head∗M tail∗) · h = GA h · (hdM tl)

As the arrows now range over a sub-category, there is one additional
proof obligation: we have to show that tl is a para-recursive G-
coalgebra if and only if hdM tl is a para-recursive GB-coalgebra.

Lemma 5.4. Let f : C→ D and let (C,c) be an F-coalgebra. Then

(C,c) : F-PRec(C ) ⇐⇒ (C, fM c) : FD-PRec(C ) . (5.6)

Proof. “=⇒”: First of all, note that FC = (C×−)◦F and

(FD)C = (C×−)◦ (D×−)◦F∼= ((C×D)×−)◦F= FC×D .

The isomorphism is witnessed by α : (X× Y)× Z ∼= X× (Y× Z),
which is natural in Z, that is, α : FC×D →̇ (FD)C. The proof then
amounts to a simple application of the hylo-shift law (3.10) with
α · ((idM f)× id) : (FD)C ←̇FC×D ←̇FC.

“⇐=”: Again, we apply the hylo-shift law (3.10), this time with
C×outr : FC ←̇ (FD)C.

The characterization of G∗ implies that head∗ BM tail∗ B is an
isomorphism; we use cons∗ B to denote its inverse.

5.4 Course-of-Values Recursion Revisited: U∗ a Cofree∗
When we discussed course-of-values recursion in Section 3.4.5
we noted the oddity that a potentially infinite structure is used for
tabulation, even though only recursive coalgebras are involved. The
oddity turned into a nuisance for the examples in Section 4, as many
desirable functions such as reverse cannot be written for coinductive
types. Using G∗ we can remedy the problem. As usual, let us first
consider the categories involved.

C G-PRec(C )⊥
Cofree∗

F◦G∗
U∗

Fλ

The data functor is now a functor over G-PRec(C ). Coliftings Fλ

do not automatically preserve para-recursiveness, so this entails a
proof obligation for the user of the scheme (see also below). The
rest is, however, routine. Equation (3.9) specializes to

x = a · F (G∗ x · d ∗) · c : A← C ,

where a : F (G∗ A)→ A and c : (C,d)→ Fλ (C,d). As an instance
of the conjugate rule, Lemma 3.5 is applicable, and we record

Theorem 5.5. Let ((C,d),c) be an Fλ -coalgebra, then

(C,c) : F-Rec(C ) =⇒ (C,F d ∗ · c) : (F◦G∗)-Rec(C ) .

The special case where we identify F and G also works out nicely.
The para-rolling rule instantiated to L,R :=G, Id implies that Gid
preserves para-recursiveness. Consequently,

x = a · G (G∗ x · c ∗) · c : A← C (5.7)
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has a unique solution if c : C→ G C is para-recursive. The coalge-
bra c has to be para-recursive, because it is used as an argument of
− ∗. The algebra a : G (G∗ A)→ A now receives a G-structure of

finite memo-tables that record the entire computational history.

5.5 Para-Conjugate Rule
Right adjoints preserve limits, in particular, binary products. Recall
that the functor R preserves products if R (B1×B2) with R outl and
R outr is a product of R B1 and R B2. This implies that there is a
natural isomorphism ι : R B1×R B2 ∼= R (B1×B2) such that

ι · (bf1cM bf2c) = bf1M f2c , (5.8)

for all fi : A→ R Bi. Because of RAPL the conjugate rule can be
adapted without further ado.

Theorem 5.6. Assume the data in (3.4a). Then

Lσ : F-PRec(C )← G-PRec(D) . (5.9)

Proof. Adopting the calculation for Theorem 3.4 we reason

x = a · (idMF x · Lσ c) : A← L C
⇐⇒ { definition of colifting (2.2) }

x = a · (idMF x · σ C · L c)
⇐⇒ { b−c and d−e are isomorphisms (2.3) }

bxc= ba · (idMF x · σ C · L c)c
⇐⇒ { b−c is natural (2.4a) }

bxc= R a · bidMF x · σ C · L cc
⇐⇒ { R preserves products (5.8) }

bxc= R a · ι · (bidcM bF x · σ C · L cc)
⇐⇒ { b−c is natural (2.4a) }

bxc= R a · ι · (bidcM bF x · σ Cc · c)
⇐⇒ { σ a τ conjugates (2.9b) }

bxc= R a · ι · (bidcMτ A · G bxc · c)
⇐⇒ { product fusion (2.6b) }

bxc= R a · ι · (bidc×τ A) · (idMG bxc · c) : R A← C .

The proof works by pushing b−c to work on the hylo x.

The conjugate rule allows for a unified treatment of most if not all
recursion schemes. Now we feel the benefit of this unified approach:
using the para-conjugate rule, generalizing the different schemes to
para-hylos is a piece of cake. Table 1 summarizes our findings. There
is only one exception: course-of-values recursion. This particular
instance of the conjugate rule relates hylos in the ambient category
to hylos in the category of coalgebras. However, for para-hylos we
need products, but these do not necessarily exist in categories of
coalgebras. Fortunately, there is an easy way out. We postpone the
treatment of course-of-values recursion until Section 5.6 and first
turn our attention to the easy cases.

In their most general form, the recursion schemes build on the
canonical control functor. For the induced conjugate pair L◦D◦η a
η◦D◦R, the para-hylo equation becomes

x = a · (idML (D bxc · c)) : A← L C ,

where a : CC A→ A and c : C→ D C. Unravelling the definitions,
C = L ◦D ◦R and FC X = C×F X, the algebra a is assigned the
impressive type L C× L (D (R A))→ A. The entries in Table 1
specialize the equation above to various adjunctions. There is a
slight twist for accumulators: we use outlM . . . instead of idM . . .,
otherwise a would receive P twice. (This is a cosmetic change.)

5.6 Course-of-Values Recursion Re-Revisited
It remains to show that

x = a · (idMG (G∞ x · c ) · c) : A← C (5.10)

has a unique solution if c is para-recursive. The idea for the proof
is inspired by the treatment of Catalan numbers in Section 4: we
integrate the arguments of x into the memo-table using (GC)∞.

To convert between different types of memo-tables we make
use of a natural transformation that changes the base functor. Let
α : F→̇G, then α∞ : F∞ →̇G∞ is given by

α∞ = cons · (id×α◦α∞) · (headM tail) .

Since cons is corecursive, α∞ is uniquely defined. (If all the
necessary cofree coalgebras exist, (−)∞ : C C → C C can be turned
into a higher-order functor, whose action on arrows is given by α∞.)
The transformation enjoys an attractive property, termed functor
fusion:

α∞ C · c = α C · c . (5.11)
The proof is left as the obligatory exercise to the reader. Using
functor fusion we can rewrite Equation (5.10) into the standard form
for course-of-values recursion (3.12).

x = a · GC (G∞ x · c ) · (idM c)
⇐⇒ { functor fusion (5.11) and outr · (fMg) = g }

x = a · GC (G∞ x · outr∞ · idM c ) · (idM c)
⇐⇒ { outr∞ : (GC)∞ →̇G∞ is natural }

x = a · GC (outr∞ · (GC)∞ x · idM c ) · (idM c)
⇐⇒ { GC is a functor }

x = a · GC outr∞ · GC ((GC)∞ x · idM c ) · (idM c)

The results of Section 3.4.5 imply that the latter equation has a
unique solution if idM c is recursive, that is, if c is para-recursive.

As an aside, the algebra a · GC outr∞ discards a lot of useful
information. Noting that (GC)∞ A ∼= G∞ (C×A), the algebra has
type C×G (G∞ (C×A))→ A: it receives the original argument and
a memo-table that pairs each prior argument with its result, which
has potentially useful applications.

Using an entirely analogous argument we can also show that the
variant that uses a finite memo-table

x = a · (idMG (G∗ x · c ∗) · c) : A← C

has a unique solution if c is para-recursive. Only the reason why
the equations are uniquely defined changes: we essentially replace
the statement “. . . is unique as the algebra a is corecursive” by “. . .
is unique as the coalgebra c is para-recursive”. Consider the base
transformer α∗ : F∗ →̇G∗ given by

α∗ = cons∗ · (id×α◦α∗) · (head∗M tail∗) .

This equation uniquely defines α∗ as tail∗ is para-recursive. Using
the analogue of functor fusion, α∗ C · c ∗ = α C · c ∗, we have

x = a · GC (G∗ x · c ∗) · (idM c)
⇐⇒ { see above }

x = a · GC outr∗ · GC ((GC)∗ x · idM c ∗) · (idM c) .

Note that idMc is used as an argument to − ∗. By Lemma (5.4) we
know that idM c is para-recursive if c is.

6. Application: Dynamic Programming II
Catalan numbers revisited We have laboured hard to make the
implementation of dynamic programming algorithms simpler, and
now we can reap the rewards. For the Catalan numbers we replace
Nat∞, the type of non-empty colists, by Nat∗, the type of non-empty
lists. Since Nat∗ is an inductive type, we can actually convert memo-
tables into standard non-empty lists.

nelist ::Nat∗ v→ [v]
nelist (Cons∗ a (Zero)) = [a]
nelist (Cons∗ a (Succ as)) = a : nelist as
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recursion scheme adjunction conjugates para-hylo equation algebra

(hylo-shift law) Id a Id α a α x = a · (idMD x · α C · c) : A← C a : C×D A→ A

mutual recursion ∆ a (×) ccf x1= a1 · (idMD (x1M x2) · c) : A1← C
x2= a2 · (idMD (x1M x2) · c) : A2← C

a1: C×D (A1×A2)→ A1
a2: C×D (A1×A2)→ A2

accumulator −×P a (−)P ccf x = a · (outlM ((D (Λ x) · c)×P)) : A← C×P a : C×D (AP)×P→ A

course-of-values (§5.6) UD a CofreeD ccf x = a · (idMD (D∞ x · c ) · c) : A← C a : C×D (D∞ A)→ A

finite memo-table (§5.6) U∗ a Cofree∗ ccf x = a · (idMD (D∗ x · c ∗) · c) : A← C a : C×D (D∗ A)→ A

Table 1. Different types of para-hylos building on the canonical control functor (ccf); the coalgebra is c : C→D C in each case.

This allows us to frame catalan as an instance of (5.7), where the
coalgebra is simply in◦ : N→ Nat N, and the algebra implements a
convolution. Using the hylo-shift law with Nat◦nelist the algebra
can actually work directly on lists.

catalan ::Nat [N ]→ N
catalan (Zero) = 1
catalan (Succ xs) = sum (zipWith (∗) xs (reverse xs))

Chain matrix multiplication In chain matrix multiplication we
must find the minimum number of scalar operations required to
multiply a chain of matrices A0 . . . An, where each matrix Ak has
dimensions given by ak × ak+1. Multiplying a p× q matrix by
a q× r matrix yields a p× r matrix, costing (we assume) pqr
scalar operations. Matrix multiplication is associative, of course, but
different parenthesisations can lead to different costs.

The recurrence equation that solves this problem works by
considering all the different splits, and minimizing the combined
cost:

chain :: (N,N)→ N
chain (i, j) | i j = 0

| i< j = minimum [ai ∗ak+1 ∗aj+1 +
chain (i,k)+ chain (k+1, j) | k← [i . . j−1]] .

The final answer for this is held in chain (0,n−1), where n is the
number of matrices that are being multiplied.

This is quite unlike previous examples, since the input type is not
immediately inductive. To work around this, we can show that it is
isomorphic to an inductive type. Some bounds checking reveals that
the domain of chain is actually a subset of (N,N), since the function
is only defined when 0 6 i 6 j. Thus, the algebra needs access to
only a triangle of previous values that can be represented as a set
of pairs T = {(i, j) | 0 6 i 6 j}. It is easy to show that there is an
isomorphism tri : N∼= T : tri◦ between the set of triangle pairs and
the natural numbers, and this gives us that (tin,T) is initial, where
tin = tri · in · Nat tri◦. Thus, the coalgebra tin◦ is corecursive, and
with appropriate choice of tri, can be given by:

tin◦ :: T→ Nat T
tin◦ (0,0) = Zero
tin◦ (i, j) | i j = Succ (0, j−1)

| otherwise = Succ (i+1, j) .

Here we record an efficient version of tri◦ that is based on the
formula for triangle numbers, T (n) = ∑

n
i=1 i = n(n+1)/2:

tri◦ :: T→ N
tri◦ (i, j) = j∗ (j+1) ‘div‘ 2+ j− i .

The definition of the algebra chain requires particular attention to
the relative indices: the base case is straightforward, but when i< j

we must calculate the offset carefully.

chain :: (T,Nat (Nat∗ N))→ N
chain ((i, j),Zero) = 0
chain ((i, j),Succ table)
| i j = 0
| i< j = minimum [ai ∗ak+1 ∗aj+1 +u+ v | k← [i . . j−1],

Just u← [extract (i,k)],Just v← [extract (k+1, j)]]
where extract (r,s) = lookup∗ (tri◦ (i, j)− tri◦ (r,s)−1, table)

This definition closely mirrors the specification given by chain,
except that rather than being recalculated, results are now extracted
from the lookup table using lookup∗ :: (N,Nat∗ a) → Maybe a,
which, like its coinductive counterpart, is an accu-hylo. Although
we are certain to have a unique solution, not all proof obligations
are discharged: naturally, the correctness relies on whether the
appropriate elements are indexed in the intermediate table.

The two examples have shown that the arguments provided to the
algebra by para-recursive coalgebras are particularly convenient for
dynamic programming algorithms with tricky indices.

7. Related Work
Recursive coalgebras The study of recursive coalgebras goes
back to the work of Osius [25] on categorical set theory, where he
showed that every well-founded coalgebra of the powerset functor
is recursive. Taylor [27] generalized this result to set functors that
preserve inverse images. Adámek et al. [1] further demonstrated
that for finitary set functors preserving inverse images, recursive
coalgebras are equivalent to both parametrically recursive coalgebras
and to the existence of homomorphisms into the initial algebra.
Completely iterative algebras are dual to parametrically recursive
coalgebras, and were investigated by Milius [24], where we can
glean the dual of some of the technical material in Section 5.
Backhouse and Doornbos [2] worked on reductivity of recursive
relational coalgebras, including applications to hylo equations.

Rolling rule The origins of the rolling rule can be traced back at
least to the work of Freyd [9] on algebraically complete categories,
which was later extended by Backhouse et al. [3] to form the
categorical fixed-point calculus. However, they only considered
algebras and algebra-homomorphisms. Eppendahl [7] analyzed
Freyd’s proof of the Iterated Square Lemma and noticed that an
adjunction-like correspondence formed a core part of the proof. (He
calls the correspondence a pro-adjunction, as hylomorphisms form
a profunctor.) He further generalized (a weak form of) the Square
Lemma to recursive coalgebras.

Conjugate rule An early instance of the conjugate rule can be
found in the work of Bird and Paterson [5]. In order to show that
generalized folds are uniquely defined, they discuss conditions to
ensure that the equation x · L in = Ψ x (or equivalently, x = Ψ x ·
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L in◦) uniquely defines x. Two solutions are provided to this problem,
the second of which requires L to have a right adjoint.

Technically our work is closest to the seminal paper by Capretta
et al. [6] on using recursive coalgebras as a tool for structured
recursion, which is essentially a generalization of results in [28, 29,
31]. Ironically, they introduce the conjugate rule, but do not use it
to full effect, relying on comonads and distributive laws instead.
We apply the conjugate rule more liberally, leading to substantially
shorter proofs. We can do so because we use adjunctions rather than
comonads as our building blocks: adjunctions are a more flexible
concept as they can be easily composed.

Capretta et al. instantiate their theory to two main examples: the
product comonad, which gives rise to zygo-hylos, and the cofree
comonad, which gives rise to course-of-values recursion. We saw in
Section 3.4.3 that zygo-hylos are a special case of mutual recursion
from the adjunction ∆ a (×). Section 3.4.5 demonstrated that course-
of-values recursion arises out of the adjunction UG a CofreeG,
based on Fλ -recursiveness, which is more general. They also dis-
cuss the so-called co-solution theorem, which corresponds to our
development of para-recursive course-of-values recursion in Sec-
tion 5.6. Similarly, the work of Uustalu and Vene [30] discusses the
comonad G∗, which we covered in detail in Section 5.4. As an aside,
zygo-hylos precisely fall out of the adjunction UZ a PZ : C ⇀ C ↓Z,
between C and the slice category C ↓ Z, where the pairing func-
tor PZ is right adjoint to the forgetful functor UZ. In fact, whatever
the comonad N, we can apply the machinery of the Eilenberg–Moore
construction and use the adjunction UN a CofreeN : C ⇀ CN to in-
tegrate the ensuing comonadic recursion scheme into our framework.
Such an approach mimics the techniques of Hinze et al. [13], which
further shows that our theory based on adjunctions subsumes the
use of comonads, but not the other way round.

For brevity, we have not shown all interesting adjunctions. For
example, natural hylomorphisms between parametric datatypes arise
from the adjunction (−◦P) a RanP between pre-composition and
the right Kan extension, covering generalized folds [5].

Recursion schemes In this paper we have paid particular attention
to course-of-values recursion, which was first captured as histomor-
phisms [29]. This scheme was identified as an instance of comonadic
recursion in [31]. The adaption of histomorphisms for use in dy-
namic programming was worked out in detail by [16], although
in an algebraically compact setting. This was later modified to the
setting of recursive coalgebras in [12]. Both of these works focus
on the efficiency of these schemes.

8. Conclusion
We believe that this work is a significant step towards a unifying
theory of datatype-generic programming. It is quite amazing that all
of the well-studied structured recursion schemes can be framed as
instances of a single construction, conjugate hylomorphisms, aptly
justifying the title “mother of all structured recursion schemes”.
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