
Folding Domain-Specific Languages:
Deep and Shallow Embeddings

Jeremy Gibbons
www.cs.ox.ac.uk/jeremy.gibbons

University of Oxford

October 2013

Abstract

A domain-specific language can be implemented by embedding within a
general-purpose host language. This embedding may be deep or shallow, de-
pending on whether terms in the language construct syntactic or semantic
representations. The deep and shallow styles are closely related, and inti-
mately connected to folds; in this paper, we explore that connection.

1 Introduction

General-purpose programming languages (GPLs) are great for generality. But this
very generality can count against them: it may take a lot of programming to estab-
lish a suitable context for a particular domain; and the programmer may end up
being spoilt for choice with the options available to her—especially if she is a domain
specialist rather than primarily a software engineer. This tension motivates many
years of work on techniques to support domain-specific languages (DSLs) such as
VHDL, SQL and PostScript: languages specialized for a particular domain, incor-
porating the contextual assumptions of that domain and guiding the programmer
specifically towards programs suitable for that domain.

There are two main approaches to DSLs. Standalone DSLs provide their own
custom syntax and semantics, and standard compilation techniques are used to
translate or interpret programs written in the DSL for execution. Standalone DSLs
can be designed for maximal convenience to their intended users. But the exercise
can be a significant undertaking for the implementer, involving an entirely separate
ecosystem—compiler, editor, debugger, and so on—and typically also much reinven-
tion of standard language features such as variables, definitions, and conditionals.

The alternative approach is to embed the DSL within a host GPL, essentially
as a collection of definitions written in the host language. All the existing facilities
and infrastructure of the host environment can be appropriated for the DSL, and
familiarity with the syntactic conventions and tools for the host language can be

1



carried over to the DSL. Whereas the standalone approach is the most common
one within object-oriented circles [5], the embedded approach is typically favoured
by functional programmers [11]. It seems that core FP features such as algebraic
datatypes and higher-order functions are extremely helpful in defining embedded
DSLs; conversely, it has been said that language-oriented tasks such as DSLs are
the killer application for FP.

Amongst embedded DSLs, there are two further refinements. With a deep em-
bedding, terms in the DSL are implemented simply to construct an abstract syntax
tree (AST); this tree is subsequently transformed for optimization and traversed for
evaluation. With a shallow embedding, terms in the DSL are implemented directly as
the values to which they evaluate, bypassing the intermediate AST and its traversal.
The deep and shallow embeddings are closely related, and intimately connected to
folds; the purpose of this paper is to explore that connection.

2 Expressions

Consider a very simple language of arithmetic expressions, involving integer con-
stants and addition. As a deeply embedded DSL, this can be captured by the
following algebraic datatype:

data Expr :: ∗ where
Val :: Integer → Expr
Add :: Expr → Expr → Expr

(We have used Haskell’s ‘generalized algebraic datatype’ notation, in order to make
the types of the constructors Val and Add explicit; but we are not using the gen-
erality of GADTs here, and the old-fashioned way would have worked too.) The
expression 3 + 4 is represented by the term Add (Val 3) (Val 4) in the DSL. Ob-
servations of terms in the DSL are defined as functions over the algebraic datatype;
for example, here is how to evaluate an expression:

eval :: Expr → Integer
eval (Val n) = n
eval (Add x y) = eval x + eval y

A shallow embedding eschews the algebraic datatype, which records the abstract
syntax of the language; instead, the language is defined directly in terms of its
semantics. For example, if the semantics is to be evaluation, then we could define:

type Expr = Integer

val :: Integer → Expr
val n = n

add :: Expr → Expr → Expr
add x y = x + y

2



One might see the deep and shallow embeddings as duals, in a variety of senses.
For one sense, the language constructs Val and Add in the deep embedding do none
of the work, leaving this entirely to the observation function eval ; in contrast, in the
shallow embedding, the language constructs val and add do all the work, and the
observer (of type Expr → Integer) is simply the identity function and so is omitted.

For a second sense, it is trivial to add a second observer to the deep embedding—
just define another function alongside eval—but awkward to add new constructs:
doing so entails revisiting the definitions of all exisiting observers to add an addi-
tional clause. In contrast, adding a construct to the shallow embedding is trivial—
alongside val and add—but introducing an additional observer entails completely
revising the semantics by changing the definitions of all existing constructs. This
tension is precisely the conflict of forces addressed by the Visitor design pattern
in object-oriented programming [6].

The types of val and add in the shallow embedding coincide with those of Val and
Add in the deep embedding; moreover, the definitions of val and add in the shallow
embedding correspond to the ‘actions’ in each clause of the definition of the observer
in the deep embedding. The shallow embedding presents a compositional semantics
for the language, since the semantics of a composite term is explicitly composed from
the semantics of its components. Indeed, it is only such compositional semantics that
can be captured in a shallow embedding; it is possible to define a more sophisticated
non-compositional semantics as an interpretation of a deep embedding, but not
possible to represent that semantics directly via a shallow embedding. In other
words, shallow embeddings correspond to folds over the abstract syntax captured by
a deep embedding.

Note that we do not claim duality in the categorical sense of reversing arrows.
Similarly, deep and shallow embeddings have been called the ‘initial’ and ‘final’
approaches [3], but only in an informal sense; in fact, the two approaches both
correspond to initial algebras, and neither to final coalgebras.

3 Folds

Folds are the natural pattern of computation induced by algebraic datatypes. We
consider here just polynomial algebraic datatypes, namely those with one or more
constructors, each constructor taking zero or more arguments to the datatype being
defined, and each argument either having a fixed type independent of the datatype,
or being a recursive occurrence of the datatype itself. For example, the polynomial
algebraic datatype Expr above has two constructors; Val takes one argument, of
the fixed type Integer ; Add takes two arguments, both recursive occurrences. Thus,
we rule out contravariant recursion, polymorphic datatypes, higher kinds, and other
such esoterica.

The general case is captured by a shape, an instance of the Functor type class:

class Functor f where
fmap :: (a → b)→ (f a → f b)

3



For Expr , the shape is as follows:

data ExprF :: ∗ → ∗ where
ValF :: Integer → ExprF a
AddF :: a → a → ExprF a

instance Functor ExprF where
fmap f (ValF n) = ValF n
fmap f (AddF x y) = AddF (f x ) (f y)

For a given functor such as ExprF expressing a language shape, the deeply embedded
DSL of that shape is the so-called initial algebra of the functor:

data Deep :: (∗ → ∗)→ ∗ where
In :: Functor f ⇒ f (Deep f )→ Deep f

type Expr = Deep ExprF

Compositional interpretations are precisely the folds for these initial algebras, mor-
phisms to other algebras for the functor f :

type Algebra f a = f a → a

fold :: Functor f ⇒ Algebra f a → Deep f → a
fold phi (In x ) = phi (fmap (fold phi) x )

For example, eval is a fold for the deeply embedded DSL of shape ExprF :

evalAlg :: Algebra ExprF Integer
evalAlg (ValF n) = n
evalAlg (AddF x y) = x + y

eval :: Expr → Integer
eval = fold evalAlg

The shallow embedding is simply the algebra, such as evalAlg . So an observation
function for the deep embedding, such as eval , is precisely a fold using the shallow
embedding as the algebra. This insight is very revealing: we know a lot about folds,
and this tells us a lot about embedded DSLs. We discuss these consequences next.

3.1 Multiple interpretations

As mentioned above, the deep embedding smoothly supports additional observa-
tions. For example, suppose that we also wanted to print expressions as strings; no
problem—we can just define another observation function print .

print :: Expr → String
print (Val n) = show n
print (Add x y) = paren (print x ++ "+" ++ print y)

4



where we define for later reuse

paren s = "(" ++ s ++ ")"

But what about a shallow embedding? With this approach, expressions can only
have a single semantics, so how do we accommodate both evaluation and printing?
It’s not difficult; we simply make the semantics a pair, providing both interpretations
simultaneously, so that the observation functions eval and print become projections
rather than just the identity function.

type Expr = (Integer , String)

val :: Integer → Expr
val n = (n, show n)

add :: Expr → Expr → Expr
add x y = (eval x + eval y , paren (print x ++ "+" ++ print y))

eval :: Expr → Integer
eval = fst

print :: Expr → String
print = snd

Of course, this works best under lazy evaluation: if only one of the two interpreta-
tions on an expression is needed, only that one is evaluated.

Seen from the fold perspective, this step is no surprise: the ‘banana split law’
[4] tells us that tupling two independent folds gives another fold, so multiple inter-
pretations can be provided in the shallow embedding nearly as easily as in the deep
embedding.

3.2 Strengthening the invariant

A shallow embedding supports only compositional interpretations, whereas a deep
embedding provides full access to the AST and hence also non-compositional manip-
ulations. Here, ‘compositionality’ of an interpretation means that the interpretation
of a whole may be determined from the interpretations of its parts; it is both a
valuable property for reasoning and a significant limitation to expressivity.

For example, recall the print interpretation above, which produces a fully paren-
thesized string; suppose one wanted a slightly more sophisticated rendering instead,
using parentheses only where necessary to capture the structure of the expression.
(Of course, addition is associative, so the parenthesization of an expression makes no
difference to its value; but value isn’t everything.) The function mprint ‘minimally
prints’ an expression, only parenthesizing subexpressions, and then only if they are
Adds rather than Vals:

mprint (Add (Val 3) (Add (Val 4) (Val 5))) = "3+(4+5)"

We have:

5



mprint :: Expr → String
mprint (Val n) = show n
mprint (Add x y) = pprint x ++ "+" ++ pprint y
where

pprint e = (if isAdd e then paren else id) (mprint e)

isAdd (Val ) = False
isAdd (Add ) = True

This is a non-compositional interpretation of the abstract syntax, because mprint
depends on isAdd of subexpressions as well as their recursive image under mprint .
(True, you can reconstruct isAdd e from mprint e, if you try hard enough. But in
general, one interpretation might depend on a second that is not derivable from the
first, as for example the average of a list depends on both its sum and its length,
neither of which is derivable from the other.)

What can we do about such non-compositional interpretations in the shallow
embedding? Again, fold theory comes to the rescue: mprint and isVal together
form a mutumorphism [4]—that is, two mutually dependent folds—and the tuple of
these two functions again forms a fold. (In fact, this is a special case, a zygomorphism
[4], since the dependency is only one-way; and a particularly simple example of a
zygomorphism at that, because isVal is a trivial non-recursive fold. Simpler still, in
the banana split above, neither of the two folds depends on the other.)

type Expr = (String ,Bool)

val :: Integer → Expr
val n = (show n,False)

add :: Expr → Expr → Expr
add x y = (pprint x ++ "+" ++ pprint y ,True)
where

pprint e = (if isAdd e then paren else id) (mprint e)

mprint :: Expr → String
mprint = fst

isAdd :: Expr → Bool
isAdd = snd

Tupling functions in this way is analogous to strengthening the invariant of an
imperative loop to record additional information [12], and is a standard trick in
program calculation [10]. For example, when solving the ‘maximum segment sum’
problem [1] as a loop, one strengthens the invariant that s is the maximum segment
sum seen so far:

s = (max j , k : 0 6 j 6 k < n : (sum i : j 6 i < k : a [i ])) (∗)

by adding the conjunct that t is the maximum suffix sum seen so far:

t = (max j : 0 6 j < n : (sum i : j 6 i < n : a [i ])) (∗∗)

6



Conjoining the main invariant (∗) with the auxilliary invariant (∗∗) is analogous
to tupling the ‘maximum segment sum’ function with the ‘maximum suffix sum’
function.

3.3 Context-sensitivity

Another way of achieving minimal parenthesization is to print expressions differently
depending on their context: Add subexpressions that are themselves arguments in
enclosing expressions should be parenthesized, but outermost Add expressions and
all Val expressions should not. More generally, expressions might be constructed
from many different operators with different precedences, and an inner expression
should be parenthesized iff it has lower precedence than the enclosing operator.

This too can be achieved using standard fold techniques. We use an accumulating
parameter to carry the context into a subexpression:

mprint :: Expr → String
mprint e = cprint False e

cprint :: Bool → Expr → String
cprint (Val n) = show n
cprint b (Add x y) = (if b then paren else id) (cprint True x ++ "+" ++ cprint True y)

Now, cprint is not a fold, because cprint b of an Add expression depends on a
different function cprint True of its children; but flip cprint is a fold, yielding a
result of type Bool → String , so we can use this as the semantics in a shallow
embedding.

type Expr = Bool → String

val :: Integer → Expr
val n = show n

add :: Expr → Expr → Expr
add x y b = (if b then paren else id) (x True ++ "+" ++ y True)

mprint :: Expr → String
mprint e = e False

A similar technique could be used for eval , if we wanted to introduce variable ref-
erences and ‘let’ expressions into the language; the interpretation would be as func-
tions from environments to values, extending the environment as ‘let’ bindings are
encountered.

3.4 Generic interpretation

We have seen that it is not difficult to provide multiple interpretations with a shallow
embedding, by constructing a tuple as the semantics of an expression and projecting
the desired interpretation from the tuple. But this is still a bit clumsy: it entails

7



revising existing code each time a new interpretation is added, and ten-tuples are
never pleasant to work with.

But as we have also seen, all compositional interpretations conform to a common
pattern—they are folds. So we can provide a shallow embedding in terms of a single
generic interpretation; that interpretation is a higher-order value, representing the
fold.

type Expr = ∀a . Algebra ExprF a → a

val :: Integer → Expr
val n phi = phi (ValF n)

add :: Expr → Expr → Expr
add x y phi = phi (AddF (x phi) (y phi))

That this encoding is generic is evidenced by the fact that it can be instantiated to
yield evaluation and printing (and, of course, any other fold):

eval :: Expr → Integer
eval e = e evalAlg

print :: Expr → String
print e = e printAlg
where

printAlg :: Algebra ExprF String
printAlg (ValF n) = show n
printAlg (AddF x y) = paren (x ++ "+" ++ y)

In fact, the shallow embedding provides a universal generic interpretation as the
Church encoding [2, 8] of the AST.

4 Discussion

The essential observation made here—that shallow embeddings correspond to folds
over the abstract syntax captured by a deep embedding—is surely not new. For
example, it was probably known to Reynolds [14], who contrasted deep embeddings
(‘user defined types’) and shallow (‘procedural data structures’), and observed that
the former were free algebras; but he didn’t explicitly discuss anything correspond-
ing to folds. It is also implicit in the finally tagless approach [3], which uses a
shallow embedding and observes that ‘this representation makes it trivial to im-
plement a primitive recursive function over object terms’, providing an interface
that such functions should implement; but this comment is made rather in passing,
and their focus is mainly on taglessness. (The observation is more explicit in Kise-
lyov’s lecture notes on the finally tagless approach [13], which go into more detail
on compositionality.)

Nevertheless, the observation seems not to be widely appreciated. And it makes
a nice application of folds: many results about folds evidently have interesting state-
ments about shallow embeddings as corollaries. The three generalizations of folds

8



(banana split, mutumorphisms, and accumulating parameters) exploited in Sec-
tion 3 are all special cases of adjoint fold [9]; perhaps other adjoint folds yield more
interesting insights about shallow embeddings?

Acknowledgements

This paper arose from ideas discussed at the Summer School on Domain Specific
Languages in Cluj-Napoca in July 2013, and I thank the organizers for the invitation
to lecture there. Nick Wu, Pedro Magalhaes, and Ralf Hinze in the Algebra of
Programming group at Oxford made helpful comments, for which I am grateful.
This is an earlier and shorter draft of a paper that was eventually published at
ICFP 2014 [7].

References

[1] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[2] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-
programs on term algebras. Theoretical Computer Science, 39:135–154, 1985.

[3] Jacques Carette, Oleg Kiselyov, and Chung chieh Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages. Jour-
nal of Functional Programming, 19(5):509–543, 2009.

[4] Maarten M. Fokkinga. Tupling and mutumorphisms. The Squiggolist, 1(4):81–
82, June 1990.

[5] Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2011.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[7] Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: Deep and
shallow embeddings. In International Conference on Functional Programming,
September 2014.

[8] Ralf Hinze. Church numerals, twice! Journal of Functional Programming,
15(1), 2005.

[9] Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Unifying structured recursion
schemes. In ICFP, 2013.

[10] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Formal derivation of ef-
ficient parallel programs by construction of list homomorphisms. ACM Trans-
actions on Programming Languages and Systems, 19(3):444–461, 1997.

9



[11] Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4), 1996.

[12] Anne Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall,
1990.

[13] Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gibbons, editor,
Generic and Indexed Programming, volume 7470 of Lecture Notes in Computer
Science, pages 130–174. Springer, 2012.

[14] John Reynolds. User-defined types and procedural data structures as comple-
mentary approaches to data abstraction. In Stephen A. Schuman, editor, New
Directions in Algorithmic Languages, pages 157–168, 1975.

10


