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Abstract. 1 Algorithmics is the study and practice of taking a high-level
description of a program’s purpose and, from it, producing an executable
program of acceptable efficiency. Each step in that process is justified by
rigorous, careful reasoning at the moment it is taken; and the repertoire
of steps allowed by that rigour, at each stage, guides the development of
the algorithm itself.

IFIP’s Working Group 2.1 [i] has always been concerned with Algo-
rithmics: both the design of its notations and the laws that enable its
calculations. ALGOL 60 had already shown that orthogonality, simplic-
ity and rigour in a programming language improves the quality of its
programs.

Our Group’s title “Algorithmic Languages and Calculi” describes our
activities: the discovery of precise but more general rules of calculational
reasoning for the many new styles of programming that have developed
over the 60 years since IFIP’s founding. As our contribution to the birth-
day celebrations, we outline how we have tried to contribute during those
decades to the rigorous and reliable design of computer programs of all
kinds — to Algorithmics.
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1 Introduction

WG2.1 is one of the the first Working Groups of IFIP, and the oldest extant: it
was founded at the request of TC2, which had begun its own very first meeting
only two days before [ii]. Initially the “IFIP Working Group 2.1 on ALGOL”, it
is now known as the

IFIP Working Group 2.1 on Algorithmic Languages and Calculi. [iii]

The Group has always focused on methods for systematic program construc-
tion; and our goal is to make the methods steadily more powerful and more
general. For example, the formalisation of the inductive assertion method [iv]
led to a logical method based on pre- and postconditions [v], and then to a
strongly calculational goal-directed method [vi]. Generalising programs to spe-
cial cases of specifications [vii] led to the Mathematics of Program Construction.

1 Roman-numbered references like [i] in this abstract refer to details given in §10.
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And a program-algebraic approach evolved from that: the “Laws of Program-
ming” [viii].

Mathematics (of program construction or otherwise) can be carried out with
pencil and paper. For programs, however, there are more significant advantages
in automation than for mathematics generally; thus the Group has always paid
attention to program transformation systems [ix] — but their design should be
based on the ‘by hand’ calculations that preceded them.

Language design, including the advancement of ALGOL, remained a main
interest for many years, focussing for a period specifically on a more advanced
language called “Abstracto”. 2 Abstracto generalised what ‘programming’ lan-
guages actually should be: rather than just for programming or writing exe-
cutable code, they should also be able to describe algorithms in an abstract way.
They should allow expressing (initially vague) ideas about an algorithm’s high-
level structure and, after transformations adding details, reach a level from which
the final step to ‘real’ programming-language code is simple enough to minimise
the risk of transcription errors. In sum, Abstracto was supposed to support and
codify our Algorithmics activity: but our activity itself outgrew that.

ALGOL 60 and 68 were languages more oriented to programmers’ thoughts
than to computers’ hardware. In their ‘successor’ Abstracto, we wanted [xi]

. . . a programming language some of whose features we know:

1. It is very high level, whatever that means.
2. It is suitable for expressing initial thoughts on construction of a program.
3. It need not be (and probably is not) executable. . .

(1)

Abstracto was to be an algorithmic language: one for describing the algorithmic
steps in a computation, not just the input-output relation or similar behavioural
specification. But it was still intended to be a ‘tool of thought’, rather than
primarily an implementation language.

But the Abstracto approach was itself soon abstracted by abandoning the
imperative ALGOL-like language structures, switching to a more functional pre-
sentation [xii] in which there was an algebra of programs themselves, rather than
say an algebra of statements about programs. The framework for this became
known as the “Bird–Meertens Formalism”, a very concise notation in which al-
gorithmic strategies can be expressed and transformed (§2). That exposed many
general algorithmic patterns and calculational laws about them that had, until
then, been obscured by the earlier imperative control structures.

A similar abstracting approach was applied to data structures in the form of
a hierarchy –the Boom hierarchy– leading from sets through multisets (bags) and
lists to (binary) trees [xiii] (§2.3, §3). The insight was that all these structures had
a common pattern of constructors (an empty structure, a singleton constructor,

2 The name is said to have come from the Latin phrase in abstracto, used in class by
a lecturer [x] who said that he would first present an algorithm ‘in abstracto’ before
developing it in ALGOL 60. At the end of the class, a student asked whether he
could “learn more about this Abstracto programming language”.
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and a binary combiner). 3 They were distinguished from each other not by the
signatures of their operations, but rather by the algebraic laws imposed on the
constructors: the fewer laws, the more structure in the generated elements.

A further abstraction was to allow the constructors to vary, i.e. to have an
even more general approach in which one could say rigorously “Sum the integers
in a structure, no matter what its shape.” and then reason effectively about it,
for example that “Square all the integers in a structure, and then add them
up.” is the same as “Sum the squares of all the integers in that structure.” This
led to generic programming (§3). Genericity was achieved by using elementary
concepts from algebra and category theory — functors, initial and final algebras,
and the various kinds of morphisms on them [xiv](§4). Programs taking advan-
tage of this are called “polytypic”, i.e. allowing many kinds of type structures,
in the same way that polymorphic programs allow many kinds of type values
within a single class of structures.

Unfortunately, the kind of specification that most polytypic languages sup-
port in their type signatures is very limited. Type theory [xv] however showed
how any specification expressible in predicate logic could serve as the type of a
program. That enables programmers to capture arbitrary invariants and speci-
fications of their programs, such as balanced trees or sorted lists, simply as part
of the program’s type. Since types are checked at compile-time, any type-correct
program will never violate those specifications at runtime. This is supported by
dependently typed programming languages (§5).

Besides the activities around data structures there was also a branch of work
dealing with the task of mimicking imperative structures, as, e.g., necessary to
describe interaction with the environment, in a purely functional context. Mon-
ads, applicative functors, and algebraic effects have provided a mathematically
solid account that could be formulated in a way that allowed program-algebraic
calculation after all (§6).

The investigations into data structures and generic algorithms on them were
mainly carried out around (quotients of) tree-like structures. However, there are
numerous more general (graph-like) structures which are not easily represented
in that framework. As these should be approachable by calculations as well, our
activities have therefore also dealt with relational or relationally based struc-
tures, which is their natural mathematical representation. Abstracting relations
to algebraic structures such as Kleene algebras provides notions well suited for
describing not only data structures but also control structures of various kinds
(§7). This approach also links nicely to the predicate transformer approaches [vi]
and the “Laws of Programming” [viii].

Systematic program construction benefits greatly from program construction
systems — tools to support the work of the program constructor. This work in-
volves reasoning about programs, which can be shallow and tedious; automated
tools are less error-prone than humans at such activities. Moreover, programs
are usually much longer than formal expressions in other contexts, such as in

3 Compare the empty set {}, the singleton set {x} and set union with the empty list
[ ], the one-element list [x] and list concatenation.
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First we proceed with the easy part, (Si). Where 
the refinements are given here in two steps, a 
trained algorlthmician would immediately jump to 
the final version, much like a mathematician is 
used to do. From (e) we obtain 

z,x,y := z',x',y" I z%x',y': z'.x'Y'=x Y. 

By using the unit list u = i,X,Y in (h), this sim- 
plifies to 

z,x,y := i,X,Y I E: true. 

This gives us the final, concrete expression, since 
now rule (i) is applicable: 

z,x,y := i,X,Y. 

As to ($2), this fits (f) with the assertion 
z.xY=X Y for p and y#O for b. For the mapping 0 we 
can. simply take the identity, since the "goal" is 
to get y to 0. We thus refine ($2) to 

*(y#0 --> z,x,y := z',x',y" I z',x;y': 
z.xY = X Y & y@0 ~ z'.x'Y'=X Y & y'<y). 

Using (g), this may again be refined to 

*(y#0 --> z,x,y := z',x;y" I z',x',y',r: 
z "= z-x r & x'= x-x & y=2y'+r & 

(r=0 v r=l)). 

If operations / and % are available, satisfying y = 
2(y/2)+(y%2) and (y%2=0 v y%2=i), the use of the 
unit list u = ZZ,x.x,y/2,y%2 in (d) of Lemma 2, 
where ZZ is shorthand for (y%2=0-->z 0y%2=l-->z.x), 
allows to simplify this to 

*(y#0 --> z,x,y := ZZ,x.x,y/2). 

Here (i) has also been applied. It has now been 
shown that 

z:=[true ~ z=X Y] < 
z,x,y := I,X,Y; 
*(y#0 --> z,x,y := ZZ,x.x,y/2). 

(Note that we may use "<" rather than "<*" since 
the right-hand side is concrete.) 

This proof is admittedly quite lengthy (and 
boring) for the feat it performs. But this would 
also be the case for attempts to determine an inde- 
finite integral, say, by following the rules from 
the calculus book step for step and displaying all 
intermediate results. A more appropriate proof 
might read: "this concretization is obtained by 
keeping z.xY=X Y invariant". 
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Fig. 1. Abstracto 84 [xx]

traditional mathematics; so tool support is also a convenience. Finally, a system
can record the development history, producing automatically the software doc-
umentation that allows a replay, upon a change of specification, or an audit if
something goes wrong. The Group has always worked on design and engineering
of transformation systems in parallel with the work on the underlying transfor-
mation calculi; our survey therefore concludes with a more detailed account of
corresponding tool support (§8).

Generally, the Group’s pattern has always been to expand the concepts that
enable rigorous construction of correct programs, then streamline their applica-
tion, and finally simplify their presentation. And then. . . expand again.

As the trajectory in this section has described (with the benefit of hind-
sight) the Group has always had diverse interests that arise from our program-
calculational ‘mindset’ applied to other computer-science interest areas and even
real-world contemporary problems [xvi].

2 From ALGOL, via Abstracto. . . to Squiggol

2.1 Abstracto: the first move towards algorithmics

After the completion of the Revised Report on ALGOL 68 [xix], the Group set
up a Future Work subcommittee to decide how to progress. This subcommit-
tee in turn organised two public conferences on New Directions in Algorithmic
Languages [xi], after which the Group focussed again on specific topics. The
Chair highlighted two foci: programming languages for beginners [xvii], and “Ab-
stracto”. The first led to the development of the beginner’s language ABC and
hence eventually to Python [xviii]; the other was Abstracto, and was

. . . not a specification language as such since it is still concerned with how to
do things and not just what is to be done, but [allowing] the expression of the
‘how’ in the simplest and most abstract possible way. [xi]

A representative example of Abstracto is shown in Figure 1. It is part of the
development of a ‘fast exponentiation’ algorithm: given natural numbers X and
Y , compute z = XY using only O(log2 Y ) iterations. The program on the left
shows a ‘while’ loop, with invariant z × xy = XY , variant y, and guard y 6= 0.
The program on the right factors out r = y mod 2, refining the nondeterminism
in the first program to a deterministic loop. Thus our vision for Abstracto was
as a kind of ‘refinement calculus’ for imperative programs. [xxi]
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brings us closer to the ideal of "Algorithmics" aimed at. This is expressed in 
the following quote from a paper by BIRD [ 3], describing a new technique of 
program transformation: "The manipulations described in the present paper 
mirror very closely the style of derivation of mathematical formulas." There 
are several impediments to the application of this method. In the first place, 
the more usual algorithmic notations in programming languages suffer from 
verbosity. This makes manipulating an algorithmic description a cumbersome 
and tiring process. To quote [3] again: "As the length of the derivations tes-
tify, we still lack a convenient shorthand with which to describe programs." 
Furthermore, most programming languages have unnecessarily baroque seman-
tics. In general, transformations are applicable only under certain conditions; 
checking these applicability conditions is all too often far from simple. The 
asymmetry of " => " makes these transformations also less general than is usual 
in mathematics. The requirement that the initial form be a program already 
(and "evidently correct'', at that), is not always trivial to satisfy. In this 
respect, the method is a step backwards, compared to Dijkstra's and Wirth's 
approach. Finally, there is a very important issue: which are the correctness-
preserving transformations? Can we give a "catalogue" of transformations? 
Before going deeper into that question, it is instructive to give an example. 

Take the following problem. We want to find the oldest inhabitant of the 
Netherlands (disregarding the problem of there being two or more such 
creatures). The data needed to find this out are kept by the Dutch municipali-
ties. Every inhabitant is registered at exactly one municipality. It is (theoreti-
cally) possible to lump all municipal registrations together into one gigantic 
data base, and then to scan this data base for the oldest person registered, as 
expressed in figure 2a in "pidgin ALGOL". 

input dm, mr; 
gdb := 0; 
formEdmdo 

gdb: = gdb U mr[m] 
endfor; 
aoi := -oo; 
for iEgdb do 

if i·age > aoi then 
oi, aoi: = i, i·age 

endif 
endfor; 
output oi. 

FIGURE 2a. Program A for determining the oldest inhabitant 

A different possibility is to determine the oldest inhabitant for each munici-
pality first. The oldest person in the set bf local Methuselahs thus obtained is 
the person sought. This is expressed in figure 2b. 

Replacing (possibly within another program) program A by program B is 
then a transformation. Were there no inhabitants of the Netherlands, both 

=⇒
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input dm, mr; 
slm := 0; 
for medm do 

aim:= -oo; 
for i E mr[m] do 

if i·age > aim then 
Im, aim : = i, i·age 

end.if 
endfor; 
slm := slm U {Im} 

endfor; 
aoi := -oo; 
for ieslm do 

if i· age > aoi then 
oi, aoi: = i, i·age 

end.if 
endfor; 
output oi. 

FIGURE 2b. Program B for determining the oldest inhabitant 

L. Meertens 

programs would have an undefined result. This is generally not seen as affect-
ing the applicability of the transformation B. But if-assuming at least 
one inhabitant in the country-some municipality had no registered inhabit-
ants, then program A would have a defined result, whereas the outcome of B 
might be undefined. (The problem is that in the line "slm : = slm U {Im}" the 
variable Im has no defined value if the empty municipality is the first one to be 
selected by ''for m E dm do".) So the transformation A B has the following 
applicability condition: 

(Vmedm: mr[m] = 0)V(Vmedm: mr[m]-:/:- 0). 

We happen to know that for the given application this condition is satisfied, 
but it is easy to think of applications of this transformation where it is less 
obvious and has to be checked. Overlooking such conditions that are only 
exceptionally not satisfied is a typical source of programming errors. Note 
that a human interpreter of the original descriptions in natural language would 
almost certainly handle exceptional cases reasonably. 

How large must a catalogue of transformations be before it is reasonable to 
expect it to contain this transformation? Obviously, unmanageably large. It is 
possible to have a manageable catalogue, and to require proofs of other 
transformations that are not in the catalogue. But how do you prove such a 
transformation? Hopefully, again with transformations, otherwise the practi-
tioner of Transformational Programming needs two proof techniques instead 
of one. But what transformations will gradually transform A into B? 

Fig. 2. The oldest inhabitant, in Abstracto [138]

2.2 The Bird–Meertens Formalism (BMF): a higher-level approach

Although the Abstracto approach was successful, in the sense that it could be
used to solve the various challenge problems that the Group worked on, after
some time it was realised that the transformation steps needed were too low
level — and so a key insight was to lift the reasoning to a higher level [xxii],
namely to abandon the imperative ALGOL-like style and the corresponding
refinement-oriented approach of Abstracto, and to switch instead to a more
algebraic, functional presentation.

1.11 Application 

Let us give one application of Horner's rule. There is a famous problem, 
called the max"imum segment sum (mss) problem, which is to compute the 
maximum of the sums of all segments of a given sequence of numbers, posi-
tive, negative or zero. In symbols 

mss = i/· +1'· segs 

Direct evaluation of the right-hand side of this equation requires D( n 3 ) steps 
on a list of length n. There are D( n2 ) segments and each can be summed 
in D( n) steps, giving D( n3 ) steps in all. Using Horner's rule it is easy to 
calculate an O( n) algorithm: 

mss :::;:  definition  
i/· +1'· segs  

=  defini tion of segs 

i/· +1'· *1· tails. ·inits 
map and reduce promotion 
i/· (i/· +1'· tails). ·inits 

=  Horner's rule with a@ b = (a + b) i 0 
i I . @ fo •. inits 
accumulation lemma 
i I . @lfo 

Horner's rule is applicable because + distributes through 1, and 0 = id+. 
The result is a linear time algorithm. 

An interesting variation ofthe problem is not so well-known. It is to compute 
the maximum segment product. In symbols 

msp = i/· xl' . segs 

Since X does not distribute through 1 for negative numbers, the previous 
derivation does not work. However, we do have 

(aib)xc = (axc)i(bxc) ifc;;'O 
(a i b) x c = (a xc) I (b xc) if c " 0 

where 1takes the minimum of its two arguments. A similar pair of equations 
holds for (a 1 b) X c. These facts are enough to ensure that, with suitable 
cunning, Horner's rule can be made to work. The idea is to define EEl by 

(a], bel) <ll (,,>, 1>,) = (a, I ,,>, bel i 1>,) 

14 

Fig. 3. The Maximum Segment Sum problem [xxiv]

It made a big difference. Consider for example the two programs in Figure 2
[xx], where the problem is to find the (assumed unique) oldest inhabitant of the
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Netherlands. The data is given by a collection dm of Dutch municipalities, and an
array mr [−] of municipal registers of individuals, one register per municipality.
The program on the left combines all the municipal registers into one national
register; the program on the right finds the oldest inhabitant of each munici-
pality, and then findest the oldest among those ‘local Methuselahs’. Provided
that no municipality uninhabited, the two programs have equivalent behaviour.
However, one cannot reasonably expect that precise transformation, from the
one to the other, to be present in any catalogue of transformations. Instead, the
development should proceed by a series of simpler steps that, because of their
simplicity, can feasibly be collected in a smaller and more manageable catalogue
of general-purpose transformations.

The equivalent higher-level transformation is this one: [xxii]

Algorithmics 297 

As another example, consider young Gauss's "transformation". This may be 
expressed as 

input a, b, n; 
sum, t := 0, a; 
for i from 1 to n do => sum, t: = sum+t, t +b 
endfor; 
output sum 

input a, b, n; 
output (n /2) x (2Xa +(n- l)Xb) 

Again, this is an unlikely transformation to be catalogued. Now compare this 
to the mathematical derivation: 

+(i - l)b} = j- (a +(i - l)b} + (a +(i - l)b}] 

l +(i - l)b} + {a +(n -i)b)] = {2a +(n - l)b} = 
tn{2a +(n -l)b}. 

It is usual in presenting such derivations to omit obvious intermediate steps, 
and this one is no exception. For example, the first step has the pattern 
S = t<S+S); a complete derivation would have S = IS = <-!·2)S = 
-!(2S) = t(S+S). Nevertheless, the only step that possibly requires looking 
twice to check it is the substitution of n + I - i for one of the two summation 
variables i. 

In what follows, an attempt is made to sketch an "algorithmic language" to 
overcome the drawbacks mentioned. To give a taste of what will be presented 
there, here, in that language, is the "transformation" A ==;. B of the oldest-
inhabitant problem: 

iagel +/mr•dm = i0ge/(i0g.,/mr) •dm. 
Comparing this with figure 2a and 2b should explain my complaint about the 
verbosity of algorithmic languages. And yet that pidgin is a terse language 
when compared to those mountains of human achievement, from FORTRAN to 

Note also the reinstatement of the symmetric "= ", which will be 
explained in Section 6. 

The emphasis on the similarity with Mathematics creates a clear difference 
with much of the work in the area of Transformational Programming, such as 
that of the Munich CIP group (BAUER et al. [2]). In that work, the emphasis 
is on creating a tool for mechanical aid in, and the verification of, program 
development. The prerequisite of mechanical verifiability puts its stamp on a 
language. Note that the language of Mathematics has not been developed with 
any regard to mechanical verifiability; the only important factor has been the 
sustenance offered in reasoning and in manipulation of formulae. In this 
respect, the approach of, e.g., BIRD [ 3] is much more closely related, even if its 
framework is different. To quote that paper once more: "[ ... ]we did not start 

Its left-hand side takes the oldest in the union of the registers of each of the mu-
nicipalities, and the right-hand side takes the oldest among those local Methuse-
lahs. The “⊕/” reduces a collection using binary operator ⊕; the “+” is binary
union; the “↑f” chooses which of two arguments has the greater f -value; the “g∗”
maps function g over a collection; and finally, function composition is indicated

Let us calculate!

by juxtaposition. The functional presentation
is clearly an order of magnitude shorter than
the Abstracto one. It is also easier to see what
form the small general-purpose transformation
steps should take — simple equations such as
“reduce promotion” (⊕/ +/ = ⊕/ ⊕/∗) and
“map fusion” (f∗ g∗ = (f g)∗) [xxiii]. The nota-
tion evolved further through the 1980’s [xxiv],
and came to be known as “Squiggol”. It was
later given the more respectable name “Bird–
Meertens Formalism” [xxv], and inspired the
Group’s further efforts in rigorous, concise pro-
gram development.

Another example of concise calculation is given in Fig. 3.

2.3 The Boom Hierarchy of data structures

The operators and transformation rules of Squiggol/BMF apply equally to lists,
bags, and sets. And those three datatypes are conceptually linked by their com-
mon signature of constructors (an empty structure, a singleton constructor, and
a binary combination) but satisfying different laws (associativity, commutativ-
ity, and idempotence of the binary combination, with the empty structure as a
unit). Moreover, the core operations (maps, filters, and reductions) are homo-
morphisms over this algebraic structure.

Crucially, each datatype is the free algebra on that common signature, with
a given set of equations, generated from a domain of individual elements; that



Algorithmics 7

is, there exists a unique homomorphism from the datatype to any other algebra
of the same kind. For example, writing “[ ]” for the empty structure, “[x]” for a
singleton, “++” for the binary combination, and given a binary operator ⊕ with
unit e, the three equations

⊕/[ ] = e
⊕/[a] = a
⊕/(x++ y) = ⊕/x ⊕ ⊕/y

determine the reduction operator ⊕/ uniquely: provided that ⊕ is associative,
these three equations have as their unique solution the aggregation function from
lists. But if we add the assumption that ⊕ is also commutative, then there is a
unique function from bags; and if we add idempotence, then there is a unique
function from sets.

If out of curiosity we assert no equations of the binary operator alone, only
that the empty structure is its unit, then we obtain a fourth member of the
family, a peculiar sort of binary tree. The four members form a hierarchy, by
adding the three equations one by one to this tree type. The resulting hierarchy
of data structures was called the “Boom” hierarchy [xiii]. Its connections to the
Eindhoven quantifier notation [xxvi] greatly simplified the body of operators and
laws needed for a useful theory.

3 Generic programming: function follows form

The Boom hierarchy is an example of how we can use algebras and homomor-
phisms to describe a collection of datatypes, together with a number of basic
operations on those datatypes. In the case of the Boom hierarchy, the construc-
tors of the algebra are fixed, and the laws the operators satisfy vary. Another
axis along which we can abstract is the constructors of a datatype: we realised
that concepts from category theory can be used to describe a large collection
of datatypes as initial algebras or final coalgebras of a functor [xiv]. The ac-
tion of the initial algebra represents the constructors of the datatype modelled
by the initial algebra. And it has the attractive property that any homomor-
phism on the functor algebra induces a unique function from the initial algebra.
Such a function was called a catamorphism [xxvii]. A catamorphism captures
the canonical recursive form on a datatype represented by an initial algebra.
In the functional programming world, a catamorphism is called a fold, and in
object-oriented programming languages the concept corresponds closely to visi-
tors. Typical examples are functions like map, applying an argument function to
all elements in a value of a datatype, and size, returning the number of elements
in a value of a (container) datatype. Catamorphisms satisfy a nice fusion prop-
erty, which is the basis of many laws in programming calculi. This work started
a line of research on datatype-generic programming [xxviii], capturing various
forms of recursion as morphisms, more about which in §4.

The program calculus thus developed could be used to calculate solutions
to many software problems. As a spin-off, the theory described programs that
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Fig. 4. A PolyP program to flatten a container to a list [xxix]

could be implemented in a standard, but different, way on datatypes that can
be described as initial functor-algebras. No general-purpose programming lan-
guage supported such typed, generic functions, so these functions had to be
implemented over and again for different datatypes.

Using the structure of polynomial functors, the language PolyP was designed
that extended the lazy, higher-order functional programming language Haskell
[xxix]. In PolyP, a generic function is defined by means of induction on the
structure of functors. Using this programming language it was possible to define
not only the recursive combinators from the program calculus, such as folds
and unfolds, but also to write generic programs for unification, term rewriting,
pattern matching, etc. Fig. 4 shows an example of a polytypic program.

PolyP supported the definition of generic functions on datatypes that can be
described as initial functor-algebras but do not involve mutual recursion. While
sufficient for proof-of-concept demonstration purposes, this last restriction was
a severe limitation on practical applicability. Generic programming is particu-
larly attractive in situations with large datatypes, such as the abstract syntax
of programming languages, and such datatypes are usually mutually recursive.
Generic Haskell was developed to support generic functions on sets of mutually
recursive datatypes [xxx]. Generic functions defined in Generic Haskell can be
applied to values of almost any datatype definable in Haskell. Fig. 5 shows how
a generic equality function is implemented in Generic Haskell.

The approach of defining generic functions in Generic Haskell can also be
used to define type-indexed (or generic) datatypes. A type-indexed datatype is
a data type that is constructed in a generic way from an argument data type.
For example, in the case of digital searching, we have to define a search tree type
by induction on the structure of the type of search keys. Generic Haskell also
supports the possibility of defining type-indexed datatypes [xxxi]. The func-
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Fig. 5. A Generic Haskell program for equality [xxx]

tional programming language Haskell now supports a light-weight variant of
type-indexed datatypes through type families.

The fixed-point structure of datatypes is lost in Generic Haskell, however,
and with it the capability of defining the generic fold function. It was then dis-
covered how to obtain a fixed-point representation of possibly mutually recursive
datatypes, bringing the generic fold function back into the fold [xxxii]. Thus we
can define the fold function for the abstract syntax of a programming language,
bringing generic programming within reach of compiler writers.

Meanwhile, Haskell –or, more precisely, compilers supporting various Haskell
extensions– evolved considerably since PolyP and Generic Haskell were devel-
oped. With respect to types, GHC, the Glasgow Haskell Compiler, now supports
multiple-parameter type classes, generalised algebraic datatypes (gadts), type
families, etc. Using these extensions, it is now possible to define generic functions
in Haskell itself, using a library for generic programming. Since 2000, tens of such
libraries have been developed world-wide [xxxiii]. Since –from a generic program-
ming perspective– the expressiveness of these libraries is almost the same as the
special-purpose language extensions, and since such libraries are much easier
to develop, maintain, and ship, these libraries make generic programming more
generally available. Indeed, these libraries have found their way to a wider audi-
ence: for example, Scrap Your Boilerplate has been downloaded almost 300,000
times, and Generic Deriving almost 100,000 times [xxxiii].

4 Morphisms: suddenly they are everywhere

In §3 we identified catamorphisms as a canonical recursive form on a datatype
represented by an initial algebra: in functional-programming parlance, a fold.
From there, however, further work [xxxiv] led to a rich research agenda concerned
with capturing the pattern of many other useful recursive functions that did not
quite fit that scheme, that were not quite ‘catamorphic’. Indeed, it gave rise to
a whole zoo of morphisms: mutumorphisms, zygomorphisms, histomorphisms,
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generalised folds, and generic accumulations [xxxv]. Just as with catamorphisms,
those recursion schemes attracted attention because they made termination or
progress manifest (no need to prove or check it) and they enjoyed many use-
ful and general calculational properties — which would otherwise have to be
established afresh for each new application.

4.1 Diversification

Where while-loops are governed by a predicate on the current state, and for loops
by an incrementing counter, structured recursion schemes such as catamorphisms
take a more restricted approach where it is the structure of the input data itself
that controls the flow of execution (“function follows form”).

As a simple example, consider how a list of integers is summed up: a catamor-
phism simply recurses over the structure of the list. No for-loop index variable,
and no predicate: when the list is empty the sum is zero, and when the list
contains at least one number it should be added to the sum of the residual list.
While-loops could easily encode such tasks, but their extra expressive power is
also their weakness: we know that it is not always tractable to analyse loops
in general. With catamorphisms, the analysis is much simpler — the recursion
scheme is simply induction over a datatype.

The analogy with induction goes further. Number theorists have long stud-
ied computable functions on natural numbers, and an important class are the
primitive recursive functions, which provide the recursive step with the original
argument as well as the result of recursing on that argument. Such functions are
an instance of the paramorphism [xxxvi], which is an interchangeable variation
on the catamorphism.

Further still, an attractive variant of induction is strong induction, where
the inductive step can rely on all the previous steps. Its parallel as a recursion
scheme is the histomorphism and, just as strong induction and induction are
interchangeable, histomorphisms are encodable as catamorphisms. The utility of
these schemes –the point of it all– is however to make it convenient to describe
programs that would otherwise be difficult to express, and to derive others from
them. In the case of histomorphisms (strong recursion), for example, it is the
essence of simple dynamic programming programs such as the knapsack prob-
lem, or counting the number of possible bracketings, that was captured. More
complex dynamic programming problems, such as the multiplication of a chain of
matrices, requires a slightly more nuanced recursion scheme, the dynamorphism,
where an intermediate data structure is generated.

We recall that the exploitation of various forms of duality revolutionalised
the field of physics; algorithmics similarly benefits from an important form of
input-output duality. Each recursion scheme features a dual scheme: while one
focuses on consuming the input, the other emphasizes producing the output. To
illustrate, consider how insertion sort deconstructs a list by extracting numbers
one at a time (input), inserting them appropriately into a sorted list (output).
Whereas the deconstruction of the original list is another catamorphism, the
construction of the sorted list exemplifies an anamorphism — it is the dual
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situation. Thus expressing insertion sort in terms of recursion schemes allows us
to dualize the algorithm to obtain another sorting algorithm for free: selection
sort. This works by constructing a sorted list (an anamorphism), and at each step
performs a selection that deconstructs the unsorted list to extract the smallest
element (a paramorphism).

Another way to understand a catamorphism is that it applies a strategy that
takes subsolutions and conquers them (with a so-called algebra) to provide a
final solution. Dually, an anamorphism applies a strategy that takes a problem
and splits it up into subproblems (with a so-called coalgebra). Those can be
understood as the two components of a divide-and-conquer strategy, and the
combination is known as a hylomorphism, depicted in the diagram below:

problem solution

Sub problem Sub solution

hylomorphism

program

solve problem

conqueralgebradivide coalgebra

Sub program

solve sub-problems recursively

Catamorphisms are then the special case of this diagram where the dividing step
simply deconstructs a data structure, and anamorphisms the special case where
the conquering step constructs a data structure.

4.2 Unification

The multitude of generalisations of catamorphisms and their duals is bewildering.
Many of them were defined as adaptations of catamorphisms, but in most

cases showing that those corresponded directly to catamorphisms required care-
ful calculation. And with so many different variations, a natural question is
whether there is some underlying commonality that unifies them all. Indeed
there is.

The unification was achieved by borrowing some slightly more sophisticated
machinery from category theory. A first attempt was to use comonads, which
allow access to contextual information [xxxvii], to organise the structure of re-
cursive calls. Another attempt used adjunctions instead as the common thread
[xxxviii]. That resulted in so-called “adjoint” folds, which show how a catamor-
phism in one category can give rise to a different recursion scheme in another.
Although the two methods were initially thought to be disjoint, later work re-
vealed recursion schemes from comonads to be a special case of adjoint folds
with an appropriate distributive law.

Each of these two unifications of recursion schemes treated generalizations of
catamorphisms separately to their dual counterparts of anamorphisms. But both
are special cases of hylomorphisms; and so the next step was to generalise all
inductive and coinductive recursion schemes within the single unifying theme of
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conjugate hylomorphisms — or ‘the mother of all recursion schemes’. Naturally,
the Group named it the mamamorphism. This time, the more sophisticated cat-
egorical techniques were used to extend the work on adjoint folds with conjugate
distributive laws to connect pairs of adjunctions.

All in all, the unifying work on recursion schemes benefitted greatly from the
unifying power of category theory — which is what category theory is for.

5 Dependent types: types you can depend on

Datatype-generic programming explores how to define functions and datatypes
by induction over the structure of algebraic types. This line of research within
the Group sparked further interest in the exploration of how to use static type in-
formation in the constructon of programs. In particular, emerging programming
languages with dependent types offered new opportunities for program verifica-
tion, program transformation, program calculation and type-directed program
development.

5.1 What are dependent types?

The idea of programming with dependent types dates back at least as far as
the 1970’s, when it became increasingly clear that there was a deep connection
between constructive mathematics and computer programming [xxxix]. In the
late 20th century, a number of new programming languages emerged, explor-
ing these ideas [xl]. Those languages, and their implementations, enabled the
further exploration of the possibilities that statically typed languages with de-
pendent types offered. Each of them adopted the Curry-Howard correspondence
[xli], connecting programming languages and mathematical logic, as the guiding
principle of program language design. The terms of each language correspond to
both programs and proofs; a type can equally well be read as a specification or
a proposition. To ensure the logic underlying a language’s type system is sound,
all functions must be total, disallowing partial incomplete pattern matching and
diverging functions. The benefit of this disciplined approach to software devel-
opment is that these languages provide a unified setting for both programming
and program verification. Given the strong traditions of program calculation and
functional programming within the Group, for instance, using the Bird–Meertens
Formalism to perform equational reasoning about Haskell programs, there was
a clear interest in these new languages. Furthermore, the richer language of al-
gebraic data types offered the ability to enforce invariants during a program’s
construction.

5.2 Dependent types in WG2.1

At the beginning of the 21st century, the relation between dependently typed pro-
gramming and datatype generic programming was clearly emerging [xlii] leading
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to several influential PhD theses on this topic. The interest in dependent types
from members of the Group dates back to the late 80’s [xliii].

The new languages based on type theory reinvigorated some of the past
research that members of the Group have done on the derivation of correct pro-
grams. Following the Agda tutorial at Meeting #63 [xliv], the work on relational
program calculation, for example, was shown to be possible within dependently
typed languages. Similarly, the refinement calculus, used to derive a program
from its specification, could be embedded in a proof assistant, enabling pen and
paper proofs to be machine-checked. Program calculation in the style of Dijk-
stra using predicate transformer semantics could be modelled using type theory,
rather than the traditional impredicative set theory. Types and proof assistants
based on type theory became a central tool in the calculation of correct pro-
grams [xlv].

At that point, an influx of new members broadened the Group’s interest to
novel application areas for dependently typed programming [xlvi], such as sci-
entific computation, decision problems, and even the study of climate change.
Combinator parsing, previously studied in the context of functional program-
ming (see §6.2), was implemented in a total language with dependent types
[xlvii].

The new languages with dependent types also enabled new opportunities to
exploit static type information to guide program development [xlviii] — in the
same spirit as the research on datatype generic programming. Types can be read
as a (partial) specification. The discovery of a type-correct program can arise
from a dialogue with the type checker, helping establish a program’s correctness
as it is written. There are numerous domain-specific languages and data types
designed to enforce certain correctness properties by construction.

Dependently typed programming languages marry constructive logic and pro-
gramming in a manner unfamiliar to most programmers. To ensure that the type
system is sound, all programs must be total. Yet any mainstream language relies
on numerous effects, such as general recursion, mutable state, concurrency, or
exceptions, each of which break the promise of totality. To address this, there
has been a line of research on how to incorporate effects in dependently typed
program languages [xlix]. This, in turn, led to renewed interest from the Group
on how to program safely and robustly in the presence of arbitary side-effects in
any language, resulting in the study of algebraic effects (see §6).

6 Computational effects: beyond the functional

When the Group switched to a purely functional presentation of programs [xxii],
that is from Abstracto to Squiggol (§2), at first this also meant doing away with
a group of programming-language features known collectively as “effects”.

6.1 Effects and monads

Effects cover all behavioural aspects of a computational function that go beyond
the input-output behaviour of mathematical functions. It includes interaction



14 IFIP WG2.1

of a program with its environment (the file system and operating system, other
processes, human operators, distant servers, . . . ), mechanisms for structuring the
internal control flow (partiality and exceptions, backtracking, nondeterminism
and probability, delimited control, . . . ), and implicit dataflows (mutable state
and global variables).

While some of these effects are indeed symptoms of a low-level imperative
encoding, such as local mutable state, others are essential in real-world programs
that interact with the environment. And they can be important for structuring
programs compositionally: examples are exceptions and backtracking.

Fortunately, it turned out that useful effects need not be abandoned in a
purely functional setting [l] — the ‘doing away with’ was only temporary. Effects
can after all be modelled with pure functions. Here are some examples:

a→ b a pure function
a→ 1 + b a partial function
a→ e+ b a function with exceptions e
a→ b+ a nondeterministic function
a→ b∗ . . . which might also fail
a→ b× o∗ a function that sends os to its environment
a→ µx.((i→ x) + b) a function that reads is from its environment
a→ (s→ (b× s)) a function with implicit state s

...

(where b+ denotes non-empty sequences of bs, and b∗ possibly empty sequences).
It turned out that all those different types of functions with effects are ‘Kleisli’

arrows for appropriately structured monads [li]. The utility of the monad was
that it handled calculation, in particular composition, of the types above in a
single unified way. Whereas two functions of types a→ b and b→ c are easily
composed to make a single function of type a→ c, it is not clear at first how to
compose a→ e+b and b→ e+c to a→ e+c, or for that matter a→ b+ and b→ c+

to a→ c+. And even when the (in retrospect) obvious definitions are adopted,
one for each, the challenge is then to see those definitions as instances of a single
generalised composition. That’s what Kleisli composition achieves.

6.2 Functions too weak, monads too strong:
Applicative functors? Just right.

Once monads had brought effects back in the purview of purely functional rea-
soning, the Group turned its attention to reasoning about such programs —
‘effectful’ programs. One fruitful example has been the study of recursive de-
scent parsers [lii]. They lend themselves to a combinator style of programming.
Moreover, the combinators fall neatly out of the observation that the datatype
of parsers that return a parsed value is another monad, a combination of implicit
state and nondeterminism with failure: the Kleisli arrows are of the form

a→ (Σ∗ → (b×Σ∗)∗)
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where the alphabet of symbols is Σ or, in verse [liii],

A parser for things
is a function from strings
to lists of pairs
of things and strings.

But the monadic presentation makes static analysis difficult: the interface allows
earlier inputs to determine the parser used for later inputs, which is both more
expressive than necessary (because few applications require such configurable
syntax) and too expressive to analyse (because the later parser is not statically
available). A weaker interface for effects turns out to be nearly as expressive,
and much more amenable to analysis. The essence of this weaker interface was
abstracted as an ‘applicative functor’, and has served as the foundation of sig-
nificant subsequent work [liv].

6.3 Algebraic effects and handlers

But how to reason about effectful programs, such as applicative parsers, nonde-
terministic functions, and programs that perform I/O? A first step is to treat the
effectful operations as an abstract datatype, provide a purely functional specifi-
cation of that data abstraction, prove the program correct with respect to the
algebraic specification, but run the program against the ‘real’ implementation
that incurs actual effects such as I/O. In fact, one could consider the algebraic
specification as the interface in the first place, and incorporate its axioms into
traditional equational reasoning; it is then the responsibility of the implementer
of the effect to satisfy the axioms. This approach is cleanly formalized in the
notion of algebraic effects and handlers, whereby a pure functional program as-
sembles a term describing the effects to be performed, and a complementary
environment handles the term, by analogy with handling an exception [lv]. In
fact, that term is a value of a type captured as the free monad on the signature
of the effect operations, a datatype-generic notion (see §3).

7 Lifting the game: A purely algebraic view
of algorithms and languages

The systematic construction of algorithms –or, more generally, of computer
programs– needs languages that are precise, effective, and that allow calcula-
tional reasoning. Previous sections showed how the Group discovered the striking
similarities between derivations from quite different areas, such as path problems
and regular languages [lvi]. Using algebra in its purest form, i.e. starting with
a collection of postulated axioms and carrying out (program) derivations based
on those laws alone, therefore enables an extremely abstract treatment: those
derivations are then valid in any programming model that satisfies the axioms.

Calculi based on the algebra of binary relations [lvii] were prime candidates
for that, since they allow a natural treatment of directed graphs — and they
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semiring (program interpretation) relation algebra

+ (nondeterministic) choice ∪ union
· sequential composition ; relational composition
≤ refinement ⊆ subset
0 abort ∅ empty relation
1 skip I identity relation

Fig. 6. Operators of semirings and relation algebras

abstract and unify data structures (e.g. trees), transition systems and many more
concepts.

Also, relations are intimately connected with predicates and hence can be
used to describe (by pre- and postconditions) and calculate input-output be-
haviour. In particular, they cover principles of algorithm design such as dynamic
programming, greedy algorithms etc. [lvi]

Relation Algebras make relations, i.e. sets of argument-value pairs, ‘first-class
citizens’ by viewing them as algebraic elements subject to operators that treat
them as a whole without looking at their internal structure. The ‘point-free’ ap-
proach that this enables often admits considerable concision. The basic relational
operators (Fig. 6, right) are simply set union, intersection and complement, sup-
plemented by sequential composition.

Although a relation-algebraic approach already allows the unified treatment
of different instances of graph problems [lviii], replacing sets of pairs (single
relations) by other entities yields further models of the same algebraic signature,
known as (idempotent) semirings. Fig. 6 (left) shows the operators common to
semirings.

And those structures have applications in programming languages, algo-
rithms, logic and software engineering:

– Classical logic is a well known simple semiring, in which choice corresponds to
disjunction, composition to conjunction, 0 to false and 1 to true.To subsume
classical logic fully, however, one requires negation — i.e. a Boolean algebra.

– When elements of a semiring are interpreted as (arbitrary) programs, the
basic operators represent nondetermistic choice and sequential composition;
0 corresponds to the program abort and 1 to skip. Equations such as 1 · x =
x = x · 1 and 0 · x = 0 = x · 0 form the basis of algebraic reasoning,
including program transformations. The equations describe the facts that
any program x composed with skip is identical to the program itself, and
that any program composed with abort is identical to abort. This allows the
expression of programs and specifications in the same framework. A program
P satisfies a specification S if P ≤ S, where ≤ expresses refinement, which is
the canonical order available in every idempotent semiring. (In other styles of
program calculation, that would be written S v P .) This simple formulation
of program correctness enables a wide range of methods for calculational
program derivation and program verification [lix].
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– Using partial maps as algebraic elements allows treating data structures with
pointers. This usage was inspired by Squiggol (§2) [lx].

– When the underlying structure reflects the memory cells (heaps), the alge-
braic framework provides an abstract version of separation logic [lxi].

– When the algebraic elements are interpreted as sets of sets or sets of lists it is
possible to derive aspects of feature-oriented software development, including
the formal characterisation of product families and of feature interactions
[lxii].

– Graphs are often equipped with edge labels representing weights, capacities
or probabilities; likewise automata and labelled transition systems carry ex-
tra edge information in addition to source and target. Those can be treated
by generalising Boolean matrices to matrices over other algebras. For classi-
cal graph algorithms, such as shortest-path algorithms, the max-plus algebra
and the min-plus algebra are useful as underlying structure — here, min/max
play the roles of (biased) choice, and plus is the operator for sequential com-
position (that is, adding path lengths/costs).

– Probabilistic aspects can be represented by matrices with real values between
0 and 1, and fit into the very same algebraic framework. Applications include
calculational derivations of fuzzy algorithms.

– Fundamental concepts of programming-language semantics, including con-
current programs and termination, can be handled algebraically as well. Be-
yond the areas mentioned above, the Group has also applied this algebra in
several areas, included object-oriented programming, data processing, game
analysis and routing in mobile networks [lxii].

But semirings can be extended: and those extensions are used to capture addi-
tional concepts from data structures, program logics and program transforma-
tion. Here are some examples.

Kleene algebras, generalising the algebra of regular expressions, offer the ad-
ditional operator ∗ of arbitrary finite iteration. Algebraically, the loop while
p do x becomes (p · x)∗ · ¬p, which is the least fixed point of the function
λy. if p then x · y else skip [lxiii].

Here p is a specific element, called a test, representing a predicate on the state
space. The set of tests offers a negation operator ¬ and hence forms a Boolean
algebra [lxiv]. In the interpretation where algebraic elements are programs, a
test p corresponds to an assert statement. For tests p, q and program element x
the inequation p · x ≤ x · q algebraically expresses the Hoare triple {p}x{q} [lxi].

Furthermore, in certain Kleene algebras, known as quantales, the principle
of fixed-point fusion [lxv] is a theorem, i.e. it can be derived from the axioms.
This illustrates once again the powers of ‘algebraic unification’. Fusion, shown
in §§ 2,3 to be an extremely practical law for transforming functional programs,
is now available for many other kinds of program too. Examples include merging
of programs with the same loop structure, or ‘deforestation’, i.e. avoiding the
generation of a large intermediate data structure that afterwards is ‘consumed’
again, in favour of ‘generation and consumption on the fly’. This is also known
as “virtual” data structures [lxvi].
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Omega algebras [lxvii], which offer an operator ω for infinite iteration, al-
low the description and analysis of systems or programs with potentially never-
ending behaviour, such as operating systems.

In algebras with finite and infinite behaviour, some algebraic laws of sequen-
tial composition need to be adapted by separating the finite and the infinite
traces of a program x into the disjoint sets finx and infx. While the above law
x ·1 = x still holds for all elements, the property x ·0 = 0 no longer holds when x
contains infinite traces; it weakens to (finx) · 0 = 0. The intuitive explanation is
that infinite traces do not terminate, and therefore a possible successor, includ-
ing abort, can never be ‘executed’. Therefore the while-loop now has the more
general behaviour

(p · x)∗ · ¬p = (p · finx)∗ · (¬p+ p · infx) ,

which means that after a finitely many finite traces from x the loop either ter-
minates by not satisfying the test p any longer, or an infinite trace from x takes
over, leading to overall non-termination. When x is purely finite, i.e., satisfies
infx = 0, this reduces to the expression given previously.

Like the operators of semirings, the operators of finite and infinite iterations
(and many of their combinations) satisfy a common set of laws, and thus algebra
helps to unify their treatment including the derivation of program transforma-
tions and refinement theorems. Applications range from termination in classical
programs, via protocols, to dynamic and hybrid systems [lxvii].

Omega algebras are also used to develop a unified framework for various
logics, including the temporal logics LTL, CTL and CTL∗, neighbourhood logic
and separation logic [lxi].

To sum up: algebraic characterisations have helped to express (and prove)
new notions and results and to unify concepts and identify the above-mentioned
similarities. The Group has developed a coherent view on algorithms and lan-
guages from an algebraic perspective, and applies the same algebraic techniques
to tackle modern technology, including the analysis of protocols and quantum
computing. All the algebras in question provide a first-order equational calcu-
lus, which makes them ideal to be supported by automated theorem provers
and interactive proof assistants [lxviii] [xliv]. As a consequence, they are well
suited for developing tools that support program derivations and refinement in
a (semi-)automated style.

8 System support: the right tool for the job

Calculational program construction derives a program from a formal specifica-
tion by manageable, controlled steps that –because they are calculated– guaran-
tee that the final product meets its initial specification. As we have seen, this
methodology has been practised by many Group members, and many others
too [lxix]. And it applies to many programming styles, including both functional
and imperative. For the former one uses mostly equational reasoning, applying
the defining equations of functions together with laws of the underlying data
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structures. For the latter, inequations deploying a refinement relation are com-
mon [lxx]. A frequent synonym for “calculation rules” is “transformation rules”.

A breakthrough occurred when the Group raised the level of reasoning (§2):
from manipulations of imperative code (Abstracto) to algebraic abstractions of
functional control patterns (Squiggol). This made it possible to compact deriva-
tions of several pages in traditional approaches down to one page or even less.
A similar observation concerns the general theme of ‘algebraicisation’ (see §7).

8.1 System support

Of course, calculational program construction can be done with pencil and paper,
and initially it should be so: that encourages a simplicity and elegance in its
methods. Ultimately, if the method proves to be useful, there are a number of
good reasons for introducing system support:

– By its very nature, program transformation leads to frequent rewritings of
program fragments; such clerical work should be automatic. And, by its very
nature, a system does this mechanical activity better than a human can.

– The system can record the applicability conditions and help in reducing them
to simpler forms, ideally all the way to “true”.

– And, as mentioned in §1, the system can construct a development history,
again a clerical task. This history serves as detailed software documentation,
since it reflects every design decision that enters into the final program.
Thus, if a line of development turns out to be a blind alley, the history can
be used for backtracking to try out alternative design decisions. Moreover,
it is the key aid to software maintenance: when the specification has to be
modified (because of new requirements), one can try to ‘replay’ a recorded
development accordingly.

Thus the Group gave considerable attention to program transformation sys-
tems [ix] once the methods they automated were sufficiently mature. In the
remainder of this section we take a brief look at one of them: it touches on sev-
eral areas within the Group, and several Group members were involved in it and
in follow-on projects.

8.2 An example: the project CIP

The project CIP (Computer-aided, Intuition-guided Programming) at TU Mu-
nich ran roughly through the period 1977–1990.

The wide-spectrum language CIP-L. The CIP approach was based on a
particular ‘life cycle of transformational program development’, roughly charac-
terised by the following levels [lxxi]:

1. formal problem specification (usually descriptive, not (yet) executable, pos-
sibly non-deterministic);



20 IFIP WG2.1

2. recursive functional program;
3. efficiency-improved functional program;
4. deterministic, tail-recursive solution;
5. efficient procedural or machine-oriented program.

However, not all of these levels need occur: a development may start below
Level 1 and end above Level 5; and it may skip some of the intermediate levels.

The language CIP-L was however especially designed to cover all five levels
[lxxii]. Since transformations usually do not change a program as a whole, only
small portions of it, it was mandatory to design one integrated wide-spectrum
language rather separate languages for each level. In particular, the language in-
cluded assertion constructs at all levels, thus allowing the incorporation of pre-
and postconditions uniformly for functions and statements — so it is also con-
nected to the refinement calculi that were developed around the same time [lxx].
CIP-L was partly inspired by Abstracto (§2.1); in a sense, it tried to present a
model of a possible concrete instance of Abstracto.

The transformation system CIP-S. The purpose of CIP-S was the transfor-
mational development of programs and program schemes. In addition to book-
keeping tasks, that included the manipulation of concrete programs, the deriva-
tion of new transformation rules within the system, and support for the verifi-
cation of side conditions of transformation rules [lxxiii].

In keeping with the overall CIP methodology, the kernel of the system was
itself formally specified: starting from that specification, all routines were devel-
oped to Pascal-level CIP-L using an earlier prototype system. The results were
embedded into an appropriate user environment, yielding a first operational ver-
sion of CIP-S around 1990. In conjunction with a compiler for a substantial
executable subset of CIP-L, the CIP-S system has been successfully used in
education. The transformational approach was continued by the Group.

Experiences. There is an extensive body of case studies using the CIP method-
ology. They concern mostly small and medium-sized algorithms, e.g., sorting and
parsing [lxxiv]. The formal development of CIP-S itself showed that the method
is suitable for larger software projects too.

9 Summary; but no conclusion

This is not a ‘conclusion’. And this article is not a history. It is a description of
a goal, a justification of its importance, and a summary of the trajectory that
has led, and still leads to progress towards that goal. And what we especially
enjoy about that trajectory we have followed, right from the start 60 years ago,
is that it has always been the same one:

Let us calculate! (§2 p6)

Why is that goal so important?
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Writing programs using a careful process of walk-throughs and reviews is
(alone) not enough; “growing” programs [lxxv] in a top-down way is (alone) not
enough; proving your program correct afterwards is (alone) not enough. We have
always believed that maintaining correctness from the very top, and then ‘all the
way down’ is what we all should be aiming for.

But will we ever get there? No, we will not.

During the 1970’s, an array-out-of-bounds error in a high-level program
would typically lead to a core dump, an inch-high stack of paper that was exam-
ined at just one spot, an “Ah, yes!” and then the whole thing just thrown away.
Thirty years of progress brought us to ‘Interactive Development Environments’
and the internet, where sometimes the programmer was not even sure where the
just-corrected version of a program had been ‘deployed’, nor exactly whether it
contained the fix (because of caching). Error messages from a remote server in
some far-away city flicked up out of the window, too quickly to be read, and
could not be scrolled back. And twenty more years bring us up-to-date, with
‘intelligent’ aquarium thermometers that can be hacked from half a world away
and used to raid a company’s private database. Plus ça change. . .

The one constant through all of this is people, their tolerance for impedi-
ments to getting their work done and their perseverance in spite of them. The
technology we are trying to control, to approach rigorously, is always sitting on
that boundary, just beyond our reach: we will never calculate far enough.

Thus, however good we become at calculating, and convincing others to do
so, there will always be economic forces that promote and propagate computer
applications that we cannot develop by careful walk-throughs, or grow top-down,
or prove correct. . . or calculate. This ‘catching up’ factor is what drives all the
IFIP working groups — we constantly extend our methods improve the impact
of computers generally, to make them safer and increase their reliability, as their
use becomes ever more ambitious and spreads ever more widely.

We are not so much ‘pushing’ as ‘being pulled’. There is the excitement.
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10 Detailed attributions and citations

[i] Contributors —
Many members of WG2.1, past and present, contributed to this article. Among
those who provided text and comments were Richard Bird, Jeremy Gibbons, Ralf Hinze,
Peter Höfner, Johan Jeuring, Lambert Meertens, Bernhard Möller, Carroll Morgan,
Tom Schrijvers, Wouter Swierstra and Nicolas Wu.

[ii] The founding of IFIP —
It was established on 23 March 1962 [161, 26].

[iii] Change of name —
At Meeting #39 in Chamrousse in January 1989, Formal Resolution 2 was to
recommend to TC2 that the Group’s name be changed to “WG2.1 on ALGOL:
Algorithmic Languages and Calculi”. But TC2 rejected the recommendation, as
reported at Meeting #40. At Meeting #41 in Burton in May 1990, it was reported
that TC2 suggested instead simply “Algorithmic Languages and Calculi”, and
this suggestion was accepted by the Group. TC2 approved the change, which was
reported at Meeting #42 in Louvain-la-Neuve in January 1991.

[iv] Assigning meanings to programs —
This was Floyd’s association of predicates with flowchart arcs [71].

[v] An axiomatic basis for computer programming —
This was Hoare’s logic for partial correctness [96].

[vi] A Discipline of Programming —
This was Dijkstra’s calculus of weakest preconditions [66].

[vii] Predicative programming —
This generalisation was the work of Hoare and Hehner [97, 88, 89].

[viii] Laws of Programming —
This work was presented by a number of authors, including Hoare, at Oxford’s
Programming Research Group [98].

[ix] Program-transformation systems —
Systems designed and implemented by Group members include the Argonne TAMPR
(Transformation-Assisted Multiple Program Realization) System [43, 42, 41], ARIES
(Acquisition of Requirements and Incremental Evolution of Specifications) [114],
(R)APTS (Rutgers Abstract Program Transformation System) [165], KIDS (Kestrel
Interactive Development System) [188], POPART (Producer of Parsers And Re-
lated Tools) [205, 204], ZAP [68, 69], and the Munich CIP (Computer-aided,
Intuition-guided Programming) project [21, 23, 151]. Comparisons of various trans-
formation systems are presented in [173, 70].

[x] The name “Abstracto” —
The lecturer who made that remark was Leo Geurts [74, p57]; he added that “in
abstracto” was Dutch [sic!] for “in the abstract”.

[xi] Criteria for Abstracto —
These criteria for Abstracto were proposed by Robert Dewar, who was the Group’s
chairman at the time [65]. His letter was written in July 1977 [65], in advance of
Meeting #23 of the Group in Oxford in December of that year. The New Direc-
tions in Algorithmic Languages conferences were in 1975 and 1976, the work of a
subcommittee chaired by Robert Dewar and with proceedings [184, 185] edited by
Stephen Schuman.
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[xii] Abstracting Abstracto —
This landmark step was suggested and developed by Richard Bird and Lambert
Meertens.

[xiii] The Boom Hierarchy —
The Boom hierarchy was introduced by Hendrik Boom [38], and thus namesd
“Boom” (by others) — another pun, since Hendrik is Dutch, and “boom” is Dutch
for tree. Backhouse [11] presents a detailed study of the Boom Hierarchy, and
compares it to the quantifier notation introduced by Edsger Dijkstra and colleagues
at Eindhoven.

[xiv] The appeal to category theory —
The introduction of concepts from category theory was due to Grant Malcolm
[127], based on the work of Hagino [87].

[xv] The connection between type structure and data structure —
This observation was made by Martin Löf [131], and later by many others, including
by Roland Backhouse in his work on type theory [13].

[xvi] The Group’s diverse interests —
Our methods have been applied to separation logic [56], pointer structures [144, 34],
database queries [148, 80], geographic information systems [147], climate change
[111, 109, 39], scientific computation [110], planning [36] and logistics [175], and
domain-specific languages for parsing/pretty printing/program calculation.

[xvii] Beginner’s programming languages —
Beginner’s programming languages designed and implemented by Group members
include Peter King’s MABEL, Kees Koster’s ELAN, and Lambert Meertens’ ABC
[75].

[xviii] Inspiration for Python —
ABC ’s influence on Python [179] can be seen at Guido van Rossum’s biographical
page, and at the ABC and Python pages on Wikipedia:

https://gvanrossum.github.io/bio.html

https://en.wikipedia.org/wiki/ABC_(programming_language)

https://en.wikipedia.org/wiki/Python_(programming_language)

[xix] Revised Report on ALGOL 68 —
ALGOL 68 was designed by WG2.1 at the direction of TC2. On December 20, 1968,
the language was formally adopted by the Group, and subsequently approved for
publication by the General Assembly of IFIP.

[xx] Example of Abstracto —
This example is from Lambert Meertens [137].

[xxi] Refinement calculus —
The ‘Abstracto vision’ was Lambert Meertens’. It was developed in much greater
depth by Ralph Back (independently) [9, 10] and, later, by Carroll Morgan [153,
155]. When Morgan asked Meertens why he had not pursued the refinement cal-
culus further, Meertens’ reply was “It didn’t work.”

[xxii] Higher-level reasoning —
Meertens became disillusioned with Abstracto’s low-level transformations, as de-
scribed in [139]. It was Richard Bird who provided the key insight needed to lift
the reasoning to a higher level [30]. Examples are given in [138].

[xxiii] Program transformations —
These examples, and many others, were described by Bird [30].

https://gvanrossum.github.io/bio.html
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
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[xxiv] Evolving notation —
Bird took the work forwards through the 1980’s, notably in a series of tutorial
papers [31, 32, 33] produced in quick succession; an example, the calculation for
the Maximum Segment Sum problem, is shown in Figure 3.

[xxv] The names “Squiggol” and “BMF” —
Meertens recalls that Robert Dewar passed a note to him with the single word
“Squigol” on it, making a pun with language names such as ALGOL, COBOL, and
SNOBOL [140]. The first appearance of the name in the minutes is for Meeting #35
in Sausalito in December 1985. However, it has come to be written “Squiggol”,
perhaps to emphasise that the pronunciation should be "skwIg6l (“qui”) rather
than "skwaIg6l (“quae”). Later, at a meeting of the STOP project in Nijmegen in
1988, Doaitse Swierstra coined the more sober name “Bird–Meertens Formalism”
(BMF), making a different pun with “Backus–Naur Form” (BNF).

[xxvi] The Eindhoven quantifier notation —
The Eindhoven quantifier notation rationalised the notation for binding a variable,
determining its range and forming elements from it [11, 156]. In the conventional∑N

n=0
n2 for example, the n below the

∑
is a binding occurrence; but the n in

n2 is bound; and the n2 forms elements from that bound variable. The 0 and the
N determine the range of n, and the

∑
itself gives the ‘quantifier’, the operation

(usually associative and commutative) carried out on the elements. In the Eind-
hoven notation that would be written in the order quantifier, bound variable(s),
range, element-former. The whole expression is always enclosed by binding-scope
delimiters — so the example above might be written (+n : 0≤n≤N : n2).
The advantage of using the Eindhoven notation is that uniform calculational laws
apply to the manipulation of those expressions, and they greatly reduce the risk
of error.

[xxvii] Catamorphisms —
Meertens coined the term catamorphism for the unique function induced by a ho-
momorphism from the initial algebra, in a working document presented at Meet-
ing #38 in Rome (1988).

[xxviii] Datatype-generic programming —
The term ‘datatype-generic programming’ was coined by Roland Backhouse and
Jeremy Gibbons for a project that ran 2003–2006 [14]; the point was to distinguish
from the different use of the term ‘generic programming’ in languages like C++,
where it essentially means parametric polymorphism. Within the context of the
Group, ‘datatype-generic programming’ has come to mean parametrization by a
functor, as with catamorphisms, and plain ‘generic programming’ to mean func-
tions defined more specifically over the sum-of-products structure of a polynomial
functor, as with PolyP and Generic Haskell.

[xxix] Polytypic programming languages and PolyP —
The language PolyP, an extension of the lazy, higher-order functional program-
ming language Haskell [176], was designed by Jansson and Jeuring at Chalmers,
Gothenburg [112]. The development of PolyP and its applications was discussed
at Meeting #49 in Rancho Santa Fe (1996), Meeting #51 in Oxford (1998), and
Meeting #53 in Potsdam (1999).

[xxx] Generic datatypes with mutual recursion —
The theory to make Generic Haskell possible was developed by Hinze, a first-time
observer in Potsdam (1999). He presented his theory at Meeting #54 in Blackheath
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(2000) [92]. To support generic functions on sets of mutually recursive datatypes,
Hinze, Jeuring, and Löh developed Generic Haskell from 2000 onwards [120, 95].
Various aspects of Generic Haskell were discussed also at Meeting #59 in Notting-
ham in 2004.

[xxxi] Type-indexed datatypes —

Type-indexed datatypes were introduced by Hinze et al. [95]. The type families
extension of Haskell is based on the work of Chakravarty et al.[50].

[xxxii] Fixed-point representation of mutually recursive datatypes —

Rodriguez and others developed MultiRec [181], a generic programming library
that uses a fixed-point representation of possibly mutually recursive datatypes.

[xxxiii] Generic programming libraries —

For an early comparison of generic programming libraries, see Rodriguez et al. [180].
An early variant of Scrap Your Boilerplate [119] was discussed at Meeting #56 on
Ameland, The Netherlands (2001). Generic Deriving [123] was discussed at Meet-
ing #70 in Ulm.

[xxxiv] Catamorphisms —

This work was done mainly by Grant Malcolm [127].

[xxxv] A zoo of morphisms —

There were mutumorphisms [72], which are pairs of mutually recursive functions;
zygomorphisms [126], which consist of a main recursive function and an auxiliary
one on which it depends; histomorphisms [198], in which the body has access
to the recursive images of all subterms, not just the immediate ones; so-called
generalised folds [28], which use polymorphic recursion to handle nested datatypes;
and then there were generic accumulations [166], which keep intermediate results
in additional paramters for later stages in the computation.

[xxxvi] Paramorphism —

This was introduced by Lambert Meertens at Meeting #41 in Burton, UK (1990)
[141].

[xxxvii] Recursion schemes from comonads —

This appeared in Uustalu et al [200]. Comonads capture the general idea of ‘eval-
uation in context’ [199], and this scheme makes contextual information available
to the body of the recursion. It was used to subsume both zygomorphisms and
histomorphisms.

[xxxviii] Adjoint folds —

This was done by Hinze [93]. Using adjunctions as the common thread, adjoint folds
arise by inserting a left adjoint functor into the recursive characterisation, thereby
adapting the form of the recursion; they subsume paramorphisms, accumulating
folds, mutumorphisms (and hence zygomorphisms), and generalised folds. Later, it
was observed that adjoint folds could be used to subsume recursion schemes from
comonads by Hinze and Wu [94].

[xxxix] Constructive mathematics and computer programming —

The connection between constructive mathematics and computer programming
was pioneered by the Swedish philosopher and logician Per Martin-Löf [132].

[xl] Programming languages implementing dependent types —

Programming languages with dependent types include ALF [125], Cayenne [7],
ATS [206], Epigram [134], Agda [162] and Idris [44].
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[xli] Curry-Howard correspondence —
The Curry-Howard correspondence describes how the typing rules of the lambda
calculus are in one-to-one correspondence with the natural deduction rules in logic.
Wadler [203] gives a historic overview of this idea, aimed at a more general audi-
ence.

[xlii] Generic programming in dependently typed languages —
The idea of using dependent types to define an explicit universe of types was one of
the early applications of dependently typed programming [4, 27]. Since then, there
have been several PhD theses exploring this idea further [53, 116, 158, 124, 162, 57]

[xliii] WG2.1 and dependent types —
Backhouse started exploring type theory in the mid 1980’s [13]. At Meeting #42,
Nordström was invited as an observer and talked about the work on ALF. Through-
out the early 21st century, observers and members were frequently active in the
area of type theory or generic programming, including McBride, Löh, Jansson,
Swierstra, Dagand, McKinna and many others.

[xliv] Algebra of programming in Agda —
Patrik Jansson gave a first tutorial on the dependently typed programming lan-
guage Agda at Meeting #63 in Kyoto in 2007. This lead to an exploration of how
to mechanize the kind of program that was previously carried out on paper [159].

[xlv] Program calculation and type theory —
As type theory is a language for describing both proofs and programs, it is no
surprise that it provides the ideal setting for formalizing the program calculation
techniques that members of the Group pioneered [3, 193, 195].

[xlvi] Applications of dependent types —
As languages with dependent types matured, various researchers started exploring
novel and unexpected applications in a variety of domains [110, 40, 111, 58].

[xlvii] Dependently typed combinator parsing —
This was for example investigated by Nils Danielsson [59].

[xlviii] Dependent types and program development —
Many modern dependently typed programming languages are equipped with some
sort of IDE. Once the type signature of a method has been fixed, the programmer
can interactively find a suitable definition. There are numerous examples of how a
powerful type signature can give strong guarantees about a data structure’s invari-
ants [133], the correctness of a domain-specific language [60], or type preservation
of a compiler [136].

[xlix] Dependent types and effects —
There is a large body of work studying how to incorporate side-effects in depen-
dently typed programming languages. This can be done by constructing deno-
tational models [192, 194], by adding new effectful primitives to the type the-
ory [160], or by giving an algebraic account of the properties that laws that effects
satisfy [45, 78].

[l] Monads —
This insight was made by Eugenio Moggi while studying semantics of programming
languages [143].

[li] Kleisli arrows —
Mike Spivey adopted this notion of monads for writing purely functional programs
with exceptions [189]; Phil Wadler generalized it to other effects, and popularized
it as the main abstraction for dealing with effects in Haskell [201, 202].
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[lii] Parser combinators —

The combinator style of parsing is due to William Burge [48]. The monadic pre-
sentation was popularized by Graham Hutton and Erik Meijer [108], and a depen-
dently typed version presented by Nils Danielsson [xlvii].

[liii] Parsers in verse —

The verse characterization of the parser type is due Fritz Ruehr [182].

[liv] Applicative functors —

The applicative interface for parsers was invented by Doaitse Swierstra [191]. This
and other applications inspired Conor McBride and Ross Paterson to identify the
abstraction of applicative functors (also called “strong lax-monoidal functors” or
“idioms”) [135]. Like monads, applicative functors have turned out to have unfore-
seen applications, such as in datatype traversals [79, 29] and distributed computing
[76].

[lv] Algebraic effects —

Purely functional specifications of effects were studied by Wouter Swierstra in his
PhD thesis [192, 194]. The axioms of an algebraic specification can be applied
to equational reasoning involving either combinators or the imperative-flavoured
comprehension notation provided for example by Haskell’s do notation [78]. Alge-
braic effects and handlers were introduced by Gordon Plotkin then explored more
fully in Matija Pretnar’s PhD thesis [178], and are now the subject of much active
work in the Group and beyond.

[lvi] Applications of relation algebra —

Roland Backhouse and B.A. Carré discovered similarities between an algebra for
path problems and the algebra of regular languages [15]. Tony Hoare and others
developed algebraic laws of programming, insisting that “specifications obey all the
laws of the calculus of relations” [98]. Richard Bird and Oege de Moor used relations
for the calculational derivation of programs covering principles of algorithm design
such as dynamic programming, greedy algorithms, exhaustive search and divide
and conquer [35].

[lvii] Algebra of binary relations —

Calculi based on the algebra of binary relations were developed by George Boole,
Charles Peirce, Ernst Schröder, Augustus De Morgan and Alfred Tarski [174, 183,
197]

[lviii] Graph algorithms —

Walter Guttmann, for example, showed that the same correctness proof shows
that well-known algorithms solve the minimum weight spanning tree problem, the
minimum bottleneck spanning tree problem and similar optimisation problems
with different aggregation functions [85]. Algebraic versions of Dijkstra’s shortest
path algorithm and the one by Floyd/Warshall are applications of these algorithms
to structures different from graphs, pinpointing the mathematical requirements on
the underlying cost algebra that ensure their correctness [103]. Roland Backhouse
and colleagues are currently writing a book on algorithmic graph theory presented
relationally [18].

[lix] Program analysis —

Program analysis using an algebraic style of reasoning has always been a core
activity of the Group; for examples see [67, 64, 63].
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[lx] Pointer structures —
Bernhard Möller and Richard Bird researched representations of data structures
in general, and pointer structures in particular [144, 34].

[lxi] Algebraic logics —
An important step to an algebraic form of program logic was taken by Hoare and
his colleagues [98]. More recently, the central aspects of Separation Logic [164, 163]
were treated algebraically [56, 54, 55].
Next to programming semantics, the infinite iteration operator can be applied
to model various logics. The temporal logics LTL, CTL and CTL∗ have been
in [115, 152, 61]. There were studies on logics for hybrid systems [101, 102] and
Neighbourhood Logic [100].

[lxii] Further applications of the algebraic approach —
The Group discovered countless areas in computer science where semirings are
the underlying structure. Applications reach from, fundamental concepts of pro-
gramming language semantics, including concurrent programs [99] and termina-
tion [91, 67, 62, 16] via games [186, 12, 17] and data processing [177], to multi-agent
systems [146] and quantum computing [196].
Beyond that, matrix-style reasoning has applications in object-oriented program-
ming [122] and feature-oriented software development, including aspects of product
families [107] and of feature interactions [20].

[lxiii] Algebraic semantics of the while loop —
The fixed-point characterisation of while loops goes back to Andrzej Blikle and
David Park [37, 167]. Dexter Kozen transferred the concept into the setting of
Kleene algebras [117].

[lxiv] Algebras with tests —
Test elements form a Boolean subalgebra. It represents an algebraic version of the
usual assertion logics like the Hoare calculus [118, 149]. There is a direct link to
weakest (liberal) preconditions [35, 150].

[lxv] Fixed-point fusion —
Fixed-point fusion is a consequence of the fixed-point semantics of recursion [142,
1].

[lxvi] Virtual data structures —
These were described by Doaitse Swierstra and Oege de Moor [190].

[lxvii] Omega algebras —
The omega operator was introduce by Cohen [51]; Möller performed a systematic
study of its foundations [145].
Guttmann used it for analysing executions of lazy and strict computations [83].
Infinite traces, also called streams, have many applications including the modelling
protocols [144], as well as dynamic and hybrid systems [186, 187, 101] . The corre-
sponding algebras can also be used to formally reason about (non)termination in
classical programs [105].

[lxviii] Tool-Support for algebraic reasoning —
Peter Höfner and Georg Struth proved countless theorems of all these algebras in
automated theorem provers, such as Prover9 [104, 106]. Walter Guttmann, Peter
Höfner, Georg Struth and others used the interactive proof assistant Isabelle/HOL
to implement the algebras, the concrete models, as well as many program deriva-
tions, e.g. [5, 81, 6, 84].
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[lxix] Program transformation —
In the functional realm, fundamental ideas in program transformation were intro-
duced by Cooper [52] and subsequently developed by others, in particular Burstall
and Darlington [49]. Later activities occurred within the ISI project [19, 121] and
at Kestrel Institute [82]. In the realm of artificial intelligence there were ideas in
the field of automated programming (e.g., the DEDALUS system [128] and its
successor [129, 130]).

[lxx] Refinement calculi —
Imperative programming calculi based on refinement include those of Dijkstra [66],
Back [8], Hoare [97, 98], Hehner [88, 89, 90], Morris [157], and Morgan [154, 155].

[lxxi] Transformational development —
For background on the ‘life cycle of transformational program development’, see
Broy [2]. The five levels of the ‘wide spectrum’ are due to Partsch [171].

[lxxii] The language CIP-L —
The language CIP-L is described in detail in the first of two volumes about the
CIP project as a whole [24]. For some of the motivation, see Bauer [22] and Broy
and Pepper [47].

[lxxiii] The system CIP-S —
The specification of the CIP-S system can be found in the second volume about
the CIP project [25]. The more interesting parts of the formal development of
the system, together with the transformation rules used, can also be found there.
Successors to CIP-S were developed by Partsch [172] and Guttmann et al. [86].

[lxxiv] Experiences with CIP —
Smaller CIP case studies include sorting [46, 168] and parsing [170, 169, 171]. As
noted above, the CIP-S system itself [25] constitutes a larger case study.

[lxxv] Programs should be grown —
Fred Brooks wrote “Some years ago Harlan Mills proposed that any software sys-
tem should be grown by incremental development.” [73]



Bibliography

[1] Aarts C, Backhouse R, Boiten E, Doornbos H, van Gasteren N, van Gel-
drop R, Hoogendijk P, Voermans E, van der Woude J (1995) Fixed-point
calculus. Information Processing Letters 53(3):131–136

[2] Agresti WM (1986) What are the new paradigms? In: Agresti WM (ed)
New Paradigms for Software Development, IEEE Computer Society Press

[3] Alpuim J, Swierstra W (2018) Embedding the refinement calculus in Coq.
Science of Computer Programming 164:37–48

[4] Altenkirch T, McBride C (2003) Generic programming within dependently
typed programming. In: Gibbons J, Jeuring J (eds) Generic Programming,
Springer, pp 1–20

[5] Armstrong A, Struth G, Weber T (2013) Kleene algebra. Archive of Formal
Proofs http://isa-afp.org/entries/Kleene_Algebra.html

[6] Armstrong A, Foster S, Struth G, Weber T (2014) Relation alge-
bra. Archive of Formal Proofs http://isa-afp.org/entries/Relation_
Algebra.html

[7] Augustsson L (1998) Cayenne – a language with dependent types. In: In-
ternational Conference on Functional Programming, ICFP ’98, pp 239–250

[8] Back RJ (1978) On the correctness of refinement steps in program devel-
opment. PhD thesis. Report A-1978-4, Department of Computer Science,
University of Helsinki

[9] Back RJ (1981) On correct refinement of programs. Journal of Computer
and System Sciences 23(1):49–68, DOI 10.1016/0022-0000(81)90005-2

[10] Back RJ, von Wright J (1998) Refinement Calculus: A Systematic Intro-
duction. Graduate Texts in Computer Science, Springer

[11] Backhouse R (1988) An exploration of the Bird-Meertens formalism. Tech.
Rep. CS 8810, Department of Computer Science, Groningen University

[12] Backhouse R, Michaelis D (2004) Fixed-point characterisation of winning
strategies in impartial games. In: Berghammer R, Möller B, Struth G (eds)
Relational and Kleene-Algebraic Methods in Computer Science, Springer,
Lecture Notes in Computer Science, vol 3051, pp 34–47

[13] Backhouse R, Chisholm P, Malcolm G, Saaman E (1989) Do-it-yourself
type theory. Formal Aspects of Computing 1(1):19–84

[14] Backhouse R, Gibbons J, Hinze R, Jeuring J (eds) (2007) Spring School
on Datatype-Generic Programming, Lecture Notes in Computer Science,
vol 4719, Springer-Verlag, DOI 10.1007/978-3-540-76786-2
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[61] Desharnais J, Möller B (2017) Non-associative Kleene algebra and tempo-
ral logics. In: Höfner P, Pous D, Struth G (eds) Relational and Algebraic
Methods in Computer Science, Lecture Notes in Computer Science, vol
10226, pp 93–108, DOI 10.1007/978-3-319-57418-9 6
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[100] Höfner P, Möller B (2008) Algebraic neighbourhood logic. Journal of Logic
and Algebraic Programming 76:35–59
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Berghammer R, Möller B, Struth G (eds) Relations and Kleene Algebra
in Computer Science, Springer, Lecture Notes in Computer Science, vol
4988, pp 206–220
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[131] Martin-Löf P (1982) Constructive mathematics and computer program-
ming. In: Studies in Logic and the Foundations of Mathematics, vol 104,
Elsevier, pp 153–175
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[147] Möller B (2019) Geographic wayfinders and space-time algebra. Journal
of Logical and Algebraic Methods in Programming 104:274–302, DOI
10.1016/j.jlamp.2019.02.003
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