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Abstract: Monads are a popular feature of the programming language

Haskell because they can model many different notions of computation in

a uniform and purely functional way. Our particular interest here is the

probability monad, which can be –and has been– used to synthesise models

for probabilistic programming.

Quantitative Information Flow, or QIF, arises when security is combined

with probability, and concerns the measurement of the amount of information

that ‘leaks’ from a probabilistic program’s state to a (usually) hostile observer:

that is, not “whether” leaks occur but rather “how much?”

Recently it has been shown that QIF can be seen monadically, a ‘lifting’

of the probability monad from (simply) distributions to distributions of

distributions — so called “hyper-distributions”. Haskell’s support for monads

therefore suggests a synthesis of an executable model for QIF. Here we provide

the first systematic and thorough account of doing that: using distributions

of distributions to synthesise a model for Quantitative Information Flow in

terms of monads in Haskell.

1 Introduction

In contexts where programs have access to or manipulate private information,

assessing the control of how that information flows is an essential aspect of

the verification task. In some, probably most cases some part of the secret

must be released for the program to achieve anything useful at all — but it is
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the unintended leaks, which could be avoided by more careful programming,

that concern us here. Preventing them is enormously challenging, and the

idea of quantifying the information that does flow was proposed by (Denning,

1982), (Millen, 1987), (Clark et al., 2005b) and others to provide a sound

framework to enable the analysis of the severity and impact of such flows.

Our model for Quantitative Information Flow, that is QIF, was originally

expressed in terms of information-theoretic channels, even to the extent of

measuring (change in) Shannon Entropy ‘by default’ as the method of choice

(Millen, 1987); and as such it has been used successfully to assess flows

related to confidentiality and privacy for relevant operational scenarios. More

recently, however, this channel model has been generalised: more general

entropies than Shannon’s are applicable (Alvim et al., 2012), and flow can

be defined for programs rather than just channels (McIver et al., 2010).

(Programs can update the private information, whereas channels can only

read it.) The key to this generalisation is hyper-distributions (McIver et al.,

2010, 2014a) (§3 below) — based on ‘hypers’, QIF in computer programs

can be given a monadic semantics that supports many different entropies.

This paper combines the monadic semantics with a second idea: that

monads (§2.1 below) abstract and unify common features of “notions of

computation” (Moggi, 1991) and that monadic features can be, and have

been built into (functional) programming languages (Wadler, 1992). Putting

those two ideas together encourages the synthesis of an implementation of

a ‘QIF -aware’ programming language. We present a prototype of such a

language, which we have called “Kuifje”.1 The synthesis also provides an

important tool for experimentation with and analysis of how information

flows in real programming.

A helpful guide to what we present is the analogous, but more straightfor-

ward synthesis that arises from a simpler combination: that simple proba-

bilistic semantics (i.e. without flow) is also monadic (Lawvere, 1962; Giry,

1981). The result is easy implementations of functional probabilistic pro-

gramming languages (Ramsey and Pfeffer, 2002; Erwig and Kollmansberger,

2006; Kiselyov and Shan, 2009). Our work here benefits from that, because

QIF -aware programming languages are probabilistic — the ‘quantities’ in the

information flow are derived from the probabilities occurring in the programs

and in the probability distributions over the hidden state to which they are

applied.

In the development of our functional implementation we use the notion of

monoids as a guiding structure. Indeed, we can see both the syntactic- and the

1 “Kuifje” is the Flemish/Dutch name of Hergé’s Tintin, and refers to his hairstyle: a quiff.
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semantic domain of a simple programming language as a monoid, the former

being free, so that its denotational semantics is then a monoid morphism. The

initial-algebra representation of free monoids gives rise to a straightforward

implementation of this denotational semantics as a functional-programming-

style fold . Moreover, with ‘fold fusion’ (Malcolm, 1990; Hutton, 1999) we can

easily derive an efficient implementation of the hyper-distribution semantics

from its näıve specification.

2 Background

We begin by describing monads in general (briefly) as they are used in

Computer Science (§2.1), how they relate to quantitative information flow

(§2.2), how they are instantiated in the functional programming language

Haskell (§2.3), and how their Haskell instantiation can be used to build

the tools necessary for a probabilistic information-flow-aware programming-

language implementation (§2.4). The Haskell-oriented reader may want to

skip the theoretical background and jump straight to §2.3.

2.1 Monads

The mathematical structure of monads was introduced to Computer Science

by Moggi in order to have a model of computation that was more general

than the “gross simplification” of identifying programs with total functions

from values to values, a view that “wipes out completely behaviours like

non-termination, non-determinism or side effects. . . ” (Moggi, 1991). Here

we will be using that generality to capture the behaviour of programs that

hide and, complementarily, leak information: and our particular focus will

be on using the monadic facilities of the programming language Haskell

(Peyton Jones, 2003) to illustrate our ideas (§2.3).

Moggi’s insight was to model a “notion of computation” as a monad T, in

order to distinguish plain values of some type A from the computations TA
that yield such values. (Later, we will see T as a Haskell type-constructor.)

Thus T might enrich sets A of values to A⊥ by adding an extra element ⊥
denoting ‘not a proper value’, perhaps the simplest computational monad;

or it might enrich A to PA, the subsets of A, for modelling demonic choice;

or it might enrich A to W∗×A, pairing with a sequence of W values, for

modelling ‘writing’ such as to a log file; or it might enrich A to DA, the

discrete distributions on A which, below, will be our starting point here. We

say “enrich” because in each case the original A can be found embedded
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within TA: a plain value can always be seen as a degenerate computation.

Thus A is found: within A⊥ as that subset of computations yielding a proper

value; within W∗×A as the computations (〈 〉, a) in which no writes have yet

occurred; within PA as the singleton sets {a} that represent the (degenerate)

demonic choice of only one value, i.e. no choice at all (Hobson’s Choice); and

A is found within DA as the point distribution 〈a〉, the probabilistic choice

‘certainly a’, this time no probabilistic choice at all.2

For a general monad T, the embeddings illustrated above are all instances

of the unit function, written η and of type A→TA, so that in the above

four cases η a is (the proper value) a, (the nothing-yet-written) (〈 〉, a), (the

singleton) {a}, and (the point) 〈a〉, respectively. Whereas a pure function

taking values from A to values in B has type A→B, Moggi modelled an

‘impure function’ for a particular notion of computation T as a so-called

Kleisli arrow A→TB— that is, a pure function yielding a computation rather

than a plain value. Thus partial functions are modelled as Kleisli arrows

A→B⊥, ‘writing functions’ as Kleisli arrows A→W∗×B, ‘nondeterministic

functions’ as Kleisli arrows A→PB, and ‘probabilistic functions’ as Kleisli

arrows A→DB.

If a monad T is to model a “notion of computation”, then in particular

it had better support sequential composition: if a program f takes a value

a:A to some structure in TB, and it is followed by a compatible program g

with the same notion T of computation, i.e. a Kleisli arrow of type B→TC,
then that second program g must act as if it has type TB→TC if it is to be

sequentially composed with f , since the input type of g, the second stage,

must in some sense match the output type of the first stage f . This is achieved

by defining a Kleisli-lifting (−)∗, which converts Kleisli arrow g:B→TC to a

‘lifted’ version g∗, a function of type TB→TC. Then the intuitive conclusion,

that if f goes from A to B and g from B to C then their composition should

go from A to C, is realised by the Kleisli composition g•f of f :A→TB and

g:B→TC defined as g•f = g∗◦f having type A→TC, using Kleisli-lifting

(−)∗ and ordinary functional composition (◦) together.

A monad T can be seen as a functor which, among other things, means

that for any function h:A→B there is another function Th:TA→TB that

behaves in a sensible way (in particular, respecting identity and composition).

Then an alternative definition of Kleisli composition is to require that T
have a multiplication operation µ:T2C→TC. In that case, for Kleisi arrow

g:B→TC one can define g∗ by µ ◦ Tg, and the Kleisli composition g•f of

f :A→TB and g:B→TC becomes µ ◦ Tg ◦ f , thus achieving the same end.

2 For a:A we write 〈a〉 for the point distribution in DA which assigns probability 1 to a and
probability 0 to all other elements of A (like a one-sided die).
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With suitable conditions on unit η and multiply µ, the two presentations,

one in terms of Kleisli lifting and the other in terms of multiplication, are

equivalent and we will use them interchangeably.

The precise conditions for operation T on sets A to be a monad are

that T must act also on the functions between those sets, respecting typing

(so that Tf :TA→TB when f :A→B), and it must support families of func-

tions ηA:A→TA and µA:T2A→TA that satisfy also the following algebraic

identities (for f : A → B and g : B → C):

(a) TidA = idTA — T respects identity.

(b) Tg ◦ Tf = T(g◦f) — T respects composition.

(c) ηB ◦ f = Tf ◦ ηA — η is a natural transformation 1→T.

(d) µB ◦ T2f = Tf ◦ µA — µ is a natural transformation T2→T.

(e) µA ◦ TµA = µA ◦ µTA — µ is associative.

(f) µA ◦ TηA = µA ◦ ηTA = idA — η is unit of µ.

Identities (a,b) are the conditions for T to be a functor, and (c,d) require

that the families η and µ form natural transformations, and finally (e,f) are

the additional conditions for (T, η, µ) to form a monad. In particular, it is a

straightforward exercise to use these identities to verify that (•) and η form

a monoid: we have h•(g•f) = (h•g)•f and η•f = f = f•η.

To make those identities more concrete and familiar, we describe in words

what the analogous identities would be for the powerset monad P used to

model non-deterministic, i.e. ‘demonic’ programs. They are (in the same

order)

(a) The image of a set X through the identity function id is X itself.

(b) The image of a set X through the composition g◦f is the image through

g of the image through f of X.

(c) Making a singleton set {x} from x, and then applying f to all elements

of that set, is the same as applying f to x first and then making a

singleton set from that: in both cases you get the singleton set {fx}.
(d) Applying f to the elements of the elements of a set of sets (that is,

applying f ‘twice deep’), and then taking the distributed union of the

result, is the same as taking the distributed union of the set of sets

first, and then applying f to its elements (i.e. once deep). Starting

e.g. from {{x1}, {x2, x3}} you get {f x1, f x3, f x3} in both cases.

(e) Applying distributed union to each of the elements of a set of sets

of sets (i.e. three nested braces), and then taking the distributed

union of that, is the same as taking the distribution union twice. For

example, starting from {{{x1}}, {{x2, x3}, {x4}}} the former gives
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{{x1}, {x2, x3, x4}} and then {x1, x2, x3, x4}, and the latter reaches

the same result but via {{x1}, {x2, x3}, {x4}} instead.

(f) Converting a set’s elements to singleton sets, and then taking the dis-

tributed union, is the same as converting the set to a singleton set

(of sets) and then taking the distributed union of that — and it is

the identity in both cases. The former takes {x1, x2} to {{x1}, {x2}}
and then (back) to {x1, x2}; and the latter goes via {{x1, x2}}.

2.2 Monads for probabilistic programming

Probabilistic computation is an instance of the more general monadic con-

struction introduced in §2.1 just above, and it provides the essential ‘numeric

component’ of moving from earlier, only qualitative descriptions of infor-

mation flow (Cohen, 1977; Goguen and Meseguer, 1984) to Quantitative

Information Flow (Denning, 1982; Millen, 1987; Gray, 1990; Clark et al.,

2005b), abbreviated “QIF ”: the study of information leakage, typically from-

or between computer programs, where –crucially– the amount of information

leaked can be measured and compared. Thus in this section we concentrate

on probabilistic computation alone; we move on to information flow in §3.

A (discrete) probabilistic computation over some A takes an initial state

a:A to a final distribution α:DA — thus it has type A→DA. For example

with A={h, t} for the head and tail faces of a coin, a computation P that

‘seeks heads’ might be

Ph = 〈h〉 if heads already, don’t flip any more

Pt = 〈h, t〉 if t keep flipping
(1)

where in general we write 〈a, b, · · · , z〉 for the uniform distribution over the

elements listed inside 〈· · · 〉. As a special case 〈a〉 is the point distribution on

a.

To seek heads twice we run P twice, i.e. we compose P with itself; but,

as already noted more generally, the simple P◦P would be type-incorrect

because the second-executed P (the left one) expects an A but the first

P delivers a DA. Let us write a distribution list 〈· · · 〉 with superscripts

summing to 1 for a discrete distribution with those probabilities (rather than

uniform), so that omitted superscripts are assumed to be equal; and we write

¬p for 1−p. Then, following the Kleisli approach, we lift the second P to P ∗,
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so that its argument is of type DA, and note that

P ∗〈hp, t¬p〉
= { definition (−)∗ }

(µ ◦ DP )〈hp, t¬p〉
= { function composition }

µ(DP 〈hp, t¬p〉 )
= { definition DP : see † below }

µ〈 〈h〉p, 〈h, t〉¬p 〉
= { definition µ for monad D: see ‡ below }
〈h(1+p)/2, t(1−p)/2 〉 , (2)

so that using P ∗ in its general form from (2) we can calculate

P 2h = P ∗(Ph) = P ∗〈h〉 = P ∗〈h1, t0〉 = 〈h(1+1)/2, t
(1−1)/2〉 = 〈h1, t0〉 = 〈h〉 ,

and again from (2) we have

P 2t = P ∗(Pt) = P ∗〈h, t〉 = P ∗〈h1/2, t
1/2〉 = 〈h(1+1/2)/2, t

(1−1/2)/2〉 = 〈h3/4, t
1/4〉 .

For “see † below” we note that DP is in monadic terms the application of

functor D to arrow h; in elementary probability this is the ‘push forward’ of

h (Feller, 1971). For f :A→B and α:DA and b:B the push forward Df of f

has type DA→DB and is defined

(Df)α b =
∑
a:A
fa=b

αa = β b say , 3

i.e. so that the probability βb assigned by the DB-typed distribution β = Df α
to the element b of B is the total probability assigned by α in DA to those

a’s in A such that fa = b.

For “see ‡ below” we have that the definition of multiply µ for D is the

‘squash’ or ‘distributed average’ that takes a distribution of distributions to

a single distribution. With D as our base set, 4 we take some ∆:D2D and

d:D and have that µ∆ ∈ DD and 5

µ∆ d =
∑
δ:∆

∆δ × δd .6 (3)

3 Here we follow the practice of avoiding parentheses as much as possible (because otherwise
there would be so many). We don’t write ((Df)α) b, because function application associates to
the left (and thus would allow even D f α b); and we don’t write D(f)(α)(b), because functional
application is (in this area) usually indicated by juxtaposition without parentheses. Note also
that we are using currying, where what might be seen as a multi-argument function is instead
written as higher-order functions taking their single arguments one at a time from left to right.

4 This is a temporary departure from A,B as typical base sets, because we need to use “capital
Greek D” as an element of D2D.

5 Concerning (:) vs. (∈) — we use the former to introduce a bound variable, both in text and in
formulae. With for example x∈X we are instead referring to x,X that are already defined.
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The above might seem quite general, particularly when there is a more

conventional –and simpler– view of P in (1) above, the ‘seek h’ operation, as

a Markov chain. We now look at that connection, strengthening the intuition

for what the probability monad D and its η, µ are doing, and preparing

ourselves for when their generality becomes more useful.

The Markov matrix for the head-seeking P is

after P

before P

( )
1 0

1/2
1/2

Such matrices are called stochastic because their rows sum to one: the rows

above are (invisibly) labelled h above t, and the columns h before t; and

each element of the matrix gives the probability that one application of P

takes that row label to that column label. Thus for example h (upper row)

is taken to h (left column) with probability 1; but t (lower row) is taken to

h with probability only 1/2. Now if the initial distribution of the coin faces

were 〈hp, t¬p〉, then –as is well known– the final distribution of coin faces is

given by the vector-matrix product

(p ¬p)
(

1 0
1/2

1/2

)
=

(
1+p

2

1−p
2

)
,

agreeing with what was calculated above at (2). And the effect of two P ’s in

succession, that is P (P 〈hp, t¬p〉), is therefore given by the matrix product(
(p ¬p)

(
1 0

1/2
1/2

)) (
1 0

1/2
1/2

)
which, because of the associativity of matrix multiplication, can of course be

written

(p ¬p)
((

1 0
1/2

1/2

)(
1 0

1/2
1/2

))
= (p ¬p)

(
1 0

3/4
1/4

)
.

(4)

Now we can observe that although the type of P itself is A→DA, the type of

‘multiply by the square matrix’ in the examples above is DA→DA — that

is, the matrix viewed ‘row wise’ is of type A→DA but, viewed as a whole

(and using the definition of matrix multiplication) it is of type DA→DA.

6 The definition of µ in the powerset monad P is analogous: it is a distributed union that takes a
set of sets to a single set by removing one level of set braces. Specifically, if we think of a set as
its characteristic predicate (a function from elements to booleans), then for a set of sets X:P2A,
we have µX a = (∃x:PA . X x ∧ x a) — that is, a ∈ µX iff there exists some x:X with a ∈ x.
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Thus the matrix as a whole corresponds to the Kleisli lifting P ∗ of its rows

P . Then (4) goes on to show that P ∗◦P corresponds in turn to the matrix

multiplication with itself of the matrix corresponding to P ∗. 7

The wide applicability of matrix algebra comes in part from the fact

(fortuitiously) that it has this monadic structure. In general, as Moggi

explained, monads contribute to flexibility of general program-algebraic

operations as well — and that flexibility is what we use here to explore –and

implement– a program algebra for QIF.

Summary We will use the discrete-distribution monad D which takes a

set A to the set DA of its discrete distributions. The unit η of D takes

an element of A to the point distribution 〈a〉 on a; the multiply µ takes a

distribution-of-distributions ∆:D2D to its ‘squash’ as shown at (3) above,

which is however equivalent to the ‘smaller’ summation over the support d∆e
of ∆ only, thus

µ∆ d =
∑
δ:d∆e

∆δ × δd , (5)

where the support of ∆ is those δ:DD such that ∆δ 6= 0. (This is important

in Haskell because we can then represent distributions as finite lists over

their support, omitting the possibly infinitely many elements of probability

zero.)

2.3 Monads in Haskell

Monads were introduced into Haskell because their mathematical generality

translates into expressive power. They are modelled as a type class Functor

with a method fmap, and a subclass Monad of Functor providing two ad-

ditional methods return and (>>=); the latter is pronounced “bind”. Their

methods’ types are

fmap :: (a → b)→ m a → m b

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

where m and a,b correspond to the T and A,B of Section 2.1. Function

fmap is the functorial action of monad m, and return is the unit η of monad

m, and (>>=) is Kleisli lifting (but with the two arguments swapped). The

multiplication µ is modelled by

7 This corresponds to the general Kleisli identity (P ∗◦P )∗ = P ∗◦P ∗ .



10 Gibbons, McIver, Morgan, and Schrijvers

join :: m (m a)→ m a

As noted above, Kleisli lifting and monad multiplication are interdefinable:

therefore we have the further identities

join x = x >>= id

x >>= f = join (fmap f x )

All of those are just ordinary Haskell functions, defined in plain Haskell code,

and it is straightforward to implement additional operations in terms of

them. For example, Kleisli lifting with the arguments in the traditional order

(=<<) is defined in terms of bind by

(=<<) :: (a → m b)→ (m a → m b)

g =<< x = x >>= g

and backwards Kleisli composition (<=<) (written “•” in Section 2.1) and

its forwards version (>=>) are defined by

(<=<) :: (b → m c)→ (a → m b)→ (a → m c)

g <=< f = join ◦ fmap g ◦ f

(>=>) :: (a → m b)→ (b → m c)→ (a → m c)

f >=> g = join ◦ fmap g ◦ f

Clearly they are equal, operationally performing f ‘and then’ g; it is solely a

matter of convenience which way around to write it.

As a final link back to the familiar, we mimic our use of the powerset

monad P in §2.1 to give a similar presentation here of the monad laws in

Haskell, but using this time the list monad — call it L. Then the functorial

action of L on a function f :: a → b is to produce map f of type [a ]→ [b ];

unit η of L takes x to the one-element list [x ] containing just x , i.e. it is (:[ ]);

and the multiply µ of L is the function concat that ‘squashes’ a list of lists

into a single list. We now have

id = map id — (a)

map g ◦map f = map (g ◦ f ) — (b)

map f ◦ (:[ ]) = (:[ ]) ◦ f — (c)

concat ◦map (map f ) = map f ◦ concat — (d)

concat ◦map concat = concat ◦ concat — (e)

concat ◦map (:[ ]) = concat ◦ (:[ ]) = id — (f)

We will see see the benefit of all the above generality below, where these

properties, and others, are exploited in a monadic treatment of QIF and the

construction of a Haskell implementation of it.
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2.4 Probabilistic programming in Haskell

With §2.2 and §2.3 as building blocks, we can model probabilistic programs

in Haskell as Kleisli arrows for the distribution monad D. Thus in this section

we recall in more detail the previous work that shows how that is done

(Ramsey and Pfeffer, 2002; Erwig and Kollmansberger, 2006; Kiselyov and

Shan, 2009). (Note that we are still not addressing QIF itself.)

Representation We limit probabilities to the rationals; and our distribu-

tions are discrete, represented as (finite) lists of pairs with each pair giving

an element of the base type and the probability associated with that element.

Usually (but not always) the representation will be reduced in the sense that

the list includes only elements of the support of the distribution, and each of

those exactly once, i.e. excluding both repeated elements and elements with

probability zero.

type Prob = Rational

newtype Dist a = D {runD :: [(a,Prob)]}

The ‘essence’ of the representation is the type [(a,Prob)], i.e. lists of pairs.

The D {runD :: . . .} above is Haskell notation for defining Dist a as a record

type, with a single field called runD that consists of a list of pairs, and

introduces function D :: [(a,Prob)] → Dist a to wrap up such a list as a

record value. The field-name runD can be used as a function, to extract the

‘bare’ list of pairs.

Monad instance The make-probabilistic-monad functor is the type con-

structor Dist above, whose argument type a is the base type of the distribu-

tion. The unit return of the monad takes an element to the point distribution

on that element. The bind operator (>>=) takes a distribution d :: Dist a

and a distribution-valued function f :: a → Dist b and computes effectively

the application of the stochastic matrix f to the initial distribution d . 8

instance Monad Dist where

return x = D [(x , 1)]

d >>= f = D [(y , p × q) | (x , p)← runD d , (y , q)← runD (f x )]

Note that (>>=) can produce representations that are not reduced, since

values of y can be repeated between the supports of different distributions

f x as x itself varies over the support of d . We will arrange to reduce the

representations where necessary.

8 Think of f as taking a stochastic-matrix row-label to the distribution of column-label probabilities
in that row.
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Operations Function uniform constructs a discrete distribution from a

non-empty list of elements, assigning the same probability to each element.

(It is not defined on the empty list.)

uniform :: [a ]→ Dist a

uniform l = D [(x , 1 / length l) | x ← l ]

The three-argument function (− −⊕ −) takes a probability p and two

elements and from them constructs a distribution in which the first element

has probability p and the second 1−p.

− −⊕ − :: Prob → a → a → Dist a

x p⊕ y = D [(x , p), (y , 1 − p)]

Again, the essence here is the two-element list [(x , p), (y ,¬p)] of course. That

is, the distribution x p⊕ y generally has two-element support—unless x and

y coincide, in which case it is a point distribution (in unreduced form).

Reduction Function reduction removes duplicates and zeroes from the

concrete representation of a distribution. That does not change the abstract

distribution represented, but makes its handling more efficient. In the sequel

it will be built-in to monadic compositions (such as (>>=) above, and (>=>)

etc.)

unpackD :: Ord a ⇒ Dist a → [(a,Prob)]

— Recover list representation, reduced.

unpackD = removeDups ◦ removeZeroes ◦ runD

where

removeZeroes = filter (λ(x , p)→ p 6= 0)

removeDups = toList ◦ fromListWith (+)

reduction :: Ord a ⇒ Dist a → Dist a

reduction = D ◦ unpackD — Unpack and then repack.

Here (from right to left) function runD extracts the essence, namely the list

of pairs; then removeZeroes and removeDups reduce the list; and finally D

replaces the reduced list within the constructor, where it began. The Haskell

library function fromListWith requires an ordering on the elements, so it can

make use of a binary search tree in order to remove duplicates in O(n log n)

time; one could instead require only element equality rather than ordering,

at the cost of O(n2) time.
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output︷ ︸︸ ︷
0 1

channel: input
{ ( )

0 .99 .01 ← sums to 1
1 .02 .98 ← sums to 1

Figure 1 Channel matrix describing not-quite-perfect transmission

output︷ ︸︸ ︷
0 1

channel: uniform input

{ ( )
← sums to 1 overall

0 1/2 .495 .005
1 1/2 .01 .49

Figure 2 Joint distribution between input and output, based on Fig. 1 and uniform

input

3 QIF and hyper-distributions

With the above preliminaries, we can now move to quantitative information

flow.

3.1 Background

In the communication channels of (Shannon, 1948), information flows in at

the source, is transmitted but possibly with errors introduced, and then flows

out at the target. Typically the error-rate is described mathematically as a

channel matrix that gives explicit probabilities for message corruption. For

example, Fig. 1 shows a channel matrix representing correct transmission

with high probability only — if a 0 is input, there is a 1% probability that a

1 will come out instead; and for a 1 input, the probability of error is 2%. As

noted earlier, the matrix is called stochastic because its rows sum to one.

Analyses of channels like Fig. 1 assume a distribution over the inputs, and

look at the correlation with the resulting output. For example, if we assume

a uniform input distribution on {0, 1}, then the joint distribution matrix

between inputs and outputs would be as in Fig. 2, obtained by multiplying

the input probabilities (1/2 here) along the rows. Here it’s the matrix as a

whole that sums to 1, not the individual rows.

The ‘information flow’ due to such channel matrices is often expressed as
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output︷ ︸︸ ︷
0 1

channel: input
{ ( )

0 .51 .49 ← sums to 1
1 .49 .51 ← sums to 1

Figure 3 Channel matrix describing a 1% success-rate

the difference between the Shannon Entropy of the input before- and after

the output is observed. 9 In this example the Shannon Entropy beforehand is

the entropy of the prior distribution: simply 1 bit, because that distribution

is uniform over two values. The Shannon Entropy afterwards is however the

conditional Shannon Entropy obtained by averaging the Shannon Entropies

of the posterior distributions, with the weights of that averaging being their

probability of occurrence. In Fig. 2 for example, the marginal probability

that a 0 is output is .495+.01 = .505 and the conditional distribution on the

input is then the normalised column for that output, i.e. that it was 0 with

probability .495/.505 = .980 and 1 with probability .020, which distribution

has Shannon Entropy .140. Similarly, for output 1 the marginal probability

is .495 and the conditional probability on the inputs is 0 with probability
.005/.495 = .010 and output 1 with probability .990, with Shannon Entropy

.081. The conditional Shannon Entropy overall is thus the weighted average

of those two, that is .505×.140 + .495×.081 = .111, and the number of

bits transmitted is the entropy-before vs. conditional-entropy-afterwards

difference, that is 1−.111 = .889 bits in this case. It’s a pretty good channel

from the communication point of view.

When we look at this from the point of view of computer security however,

it’s a terrible channel: it has leaked almost all (0.889 bits) of the secret

(1 bit). Far better for secrets would be the channel of Fig. 3 that has only a

very slight bias induced on the output with respect to the input. A similar

calculation for the above shows the conditional Shannon Entropy on the

uniform input in this case to be 0.9997, so that this channel leaks only

0.0003 bits. This is more like what we want for our secure programs. (For

communication, however, it’s Fig. 3 that is a terrible channel.) Thus although

the mathematics for flow of communications and for flow of secrets (leaks)

from programs is the same, the interpretation is complementary.

In spite of that correspondence, it turns out that Shannon Entropy is

sometimes (even often) very far from the best way to measure entropy

9 The Shannon Entropy of a p vs. 1−p distribution is −(p lg(p) + (1−p) lg(1−p)).



QIF with Monads in Haskell 15

Shannon Bayes Bayes
Entropy Risk Vulnerability

V () =
password → A a 9 % H() R() 1−R()

π1 probability 1/2
1/2 0 0 1 1/2

1/2

π2 probability 2/3
1/9

1/9
1/9 ∼1.45 1/3

2/3

Distribution π2 has more Shannon Entropy than π1, but still π2 is an easier target
than π1 for the one-guess password hacker.

Figure 4 Entropies for two example password distributions

where leaks from computer programs are concerned. (Smith, 2009) argued

that in some cases it might be better to measure (in-)security by using

instead the maximum probability that the secret could be guessed: an

intelligent attacker would guess the secret(s) she knows to have the largest

probability: this is called Bayes Vulnerability. As an entropy (but not Shannon

entropy) this is expressed as a real-valued function that takes a distribution to

1−maximum probability, where the subtraction from one (1−) is a technical

device that ensures increasing disorder leads to increasing entropy: that

function is called Bayes Risk. On a fixed state space X of size N , the

maximum Bayes Risk is 1−1/N and –as for Shannon Entropy– occurs on the

uniform distribution.

We illustrate the difference with an example of two possible distributions of

passwords. In one distribution, people choose alphabetic passwords uniformly,

but never use numbers or punctuation. In the other, people mostly choose

their friends’ names (which are alphabetic) but, among those who do not,

the choice is uniform between all other passwords including other alphabetics

and those with numbers and punctuation.

To keep the calculations simple, we will suppose the password space is

the four-element set {A, a, 9,%} for names, alphabetics generally, numbers

and, finally, other punctuation. Suppose that the first distribution has prob-

abilities (in that order) of (1/2,
1/2, 0, 0) and that the second distribution is

{(2/3,
1/9,

1/9,
1/9)}. In Fig. 4 we see a tabulation of the Shannon Entropy H

and Bayes Risk R for these two distributions.

Distribution π1 has Shannon Entropy H(π1)=1 and Bayes Risk R(π1)=1/2.

For π2 we find H(π2) = 2/3 lg(3/2) + 3·1/9 lg(9) ≈ 1.45, and R(π2) = 1−2/3 =
1/3. Thus ‘from Shannon’s point of view’ distribution π2 is more secure than
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π1 — that is H(π2)>H(π1). But Bayes would say the opposite, because

R(π2)<R(π1) or, equivalently, we have V (π2)>V (π1), indicating that π2 is

more vulnerable, not less. In summary, distribution π2 has more Shannon

Entropy, i.e. more information-theoretic disorder than π1, but still is more

vulnerable to a a one-guess attacker than π1 is.

But it does not stop there: a later development (Alvim et al., 2012) was

the further generalisation of entropies to not just two (Shannon, Bayes) but

in fact an infinite family of them based on ‘gain functions’ that captured the

economics of the attacker: How much is the secret worth to her? Both Shannon

Entropy and Bayes Risk are instances of these gain functions. 10 Then a

final generalisation (McIver et al., 2015) (for now) was to recognise that, as

functions, gain-function-determined entropies are characterised simply by

being concave and continuous over distributions. 11

Pulling back however from the brink of runaway generalisation, we simply

note that, whatever entropy is being used, it is applied to the prior before

the channel, and applied conditionally to the resulting joint distribution

between input and output determined after the channel. In that latter case,

the joint distribution is regarded as a distribution (the output marginal) over

posterior distributions obtained by conditioning the input distribution on the

event that each particular output has occurred (the normalised joint-matrix

columns).

It is ‘distributions on posterior distributions’ that have been named hyper-

distributions (McIver et al., 2014a, 2010), a conceptual artefact synthesised

by asking “If we allow entropies from a general class of functions f on

distributions (including Shannon Entropy and Bayes Risk as special cases),

what operation do we carry out to determine the f -leakage of a channel

with respect to a particular prior?” The answer is “Apply the entropy to

the prior, and take the expected value of the same entropy over the hyper-

distribution produced by the channel’s acting on that prior; then compare

the two numbers obtained.” 12

That is why we focus on hyper-distributions as a unifying concept for

QIF — it is the common feature of determining leakage in the generalised

setting explained above, where there are (infinitely) many possible entropies

to consider. In other work we discuss extensively how hyper-distributions

10 A technical detail for those familiar with (Alvim et al., 2012) — Shannon Entropy requires
an infinitary gain funtion, and in fact is more neatly expressed with the complementary ‘loss
functions’ that express how much the attacker has to lose.

11 This generalisation was introduced in (McIver et al., 2015) as loss functions’ determining
‘uncertainty measures’ that were continuous and concave.

12 Popular comparisons include ‘additive leakage’, where you subtract the former from the latter,
and ‘multiplicative leakage’ where you take the quotient.
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output︷ ︸︸ ︷
0 1

perfect channel: skewed input

{ ( )
0 0.9 1 0
1 0.1 0 1

The resulting hyper is 0.9×(1, 0) + 0.1×(0, 1), indicating that with probability 0.9
the adversary will know the input was 0, and with probability 0.1 she will know
that it was 1.

Figure 5 Perfect channel, 0-skewed input

output︷ ︸︸ ︷
0 1

nearly perfect channel: skewed input

{ ( )
0 0.9 1 0
1 0.1 .01 .99

Figure 6 Nearly perfect channel, 0-skewed input

lead to a robust notion of a program-refinement–like ‘leakage ordering’ (v)

on QIF programs (McIver et al., 2014a, 2010, 2015).

An example of that unification is the comparison of a perfect channel with

a nearly perfect channel applied to the same non-uniform prior. We will

appeal to two different entropies.

The point is not the precise numbers in the hypers, but rather that those

hypers, as an abstraction, contain all the information needed to calculate

the (conditional) Shannon Entropy, the Bayes Risk, and indeed any other

well behaved entropy we require. For the perfect Fig. 5 the conditional

Shannon Entropy is 0.9H(1, 0) + 0.1H(0, 1) = 0, and the Bayes Risk is

0.9R(1, 0) + 0.1R(0, 1) = 0. In both cases the observer is in no doubt about

the input’s value.

For the nearly perfect Fig. 6 however, the conditional Shannon Entropy is

0.901H(0.999, 0.001) + 0.099H(0, 1) = 0.02 ,

and the Bayes Risk is

0.901R(0.999, 0.001) + 0.099R(0, 1) = 0.001 .
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In this case there is some residual doubt — but not much.

3.2 Hyper-distribution and generalised entropies seen

monadically

We now bring our two conceptual threads together: monads and QIF.

In §2.1 we saw that monads capture a notion of computation T by lifting

a base-type A to a type TA of computations over A; and in §2.2 we saw

how in particular the distribution monad D lifted a type to the probabilistic

computations on that type. Our approach to QIF is based on that; but

to get the extra expressive power, i.e. to describe not only probability but

information flow, we lift base-type DA, rather than A itself. The ‘ordinary’

probabilistic computations of type A→DA are replaced by computations

of type DA→D(DA), or DA→D2A of ‘information-flow aware’ probabilistic

computations on A. For that we are using the same monad D as before, but

we are starting ‘one level up’. It is the D2A type that we have called the

hyper-distributions on A, or “hypers” for short.

The first application of D takes us, as we saw in §2.2 and have seen in

other work in this area, to probabilistic computations — but with just the

one D we have only the probabilistic computations that are information-flow

unaware. For information-flow awareness we need the extra level that hypers

provide, so that we can do the before-after comparisons described in §3.1

just above.

We will see that it is the unit η that takes say a distribution δ:DA to a

particular hyper 〈δ〉 that is information-flow aware, but in a degenerate sense,

as before: it is aware of nothing. In fact it is only the point distribution on

the original distribution δ, and so this hyper will in fact denote the (effect of)

a probabilistic program that leaks nothing, just as η earlier gave us possibly

improper programs that in fact are proper, sequence-writing programs that

have not yet written, demonic programs that behave deterministically, and

probabilistic programs that use only one-sided dice. This is indeed the kind

of embedding that we mentioned before.

The multiplication µ, on the other hand, will now have a more interesting

role beyond its technical use in defining Kleisli composition. Given a proper

(i.e. not necessarily point) hyper ∆ in D2A, the squash µ∆ of type DA is the

result of the ‘simple’ probabilistic program from which all information-flow

properties have been removed. In §7.1 we discuss the antecedents of that

approach.

Thus monadic QIF programs for us will have type DA→D2A. If we express

a channel C that way, in the style of §3.1, and pick some uncertainty function
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f , then on a prior π the uncertainty beforehand is fπ — and after observing

the output of channel C it is (µ◦Df)(Cπ). One then either subtracts or

divides one from/by the other to obtain the additive- or multiplicative

f -leakage of C applied to π.

But a further advantage of this extra structure, introduced by the ‘second

D’, is that we can represent –within the same type– both

Markov program steps that change the state probabilistically, but leak no

information while they do that, and the complementary

Channel program steps that leak information but do not change the state

while they do that.

A (pure) Markov program M (for “Markov”) will be of type DA→D2A
and has the characteristic that for any initial distribution δ we find that

Mδ = ηδ′ for some δ′, i.e. that the result of the M is always a singleton

hyper. And indeed M as a matrix would take row δ, encoding the initial

distribution, to row δ′ encoding the final distribution. On the other hand, a

(pure) channel C again has type DA→D2A (the same as a Markov program),

but in addition has the characteristic that µ(Cδ) = δ, i.e. that the state

distribution is not changed: all that is possible is that information can leak.

Recall that the trivial channel that leaks nothing, treating all inputs the

same 13 takes any prior to the singleton hyper on that prior: that is, its

action is π 7→ 〈π〉, indicating that after the channel has run the adversary

knows for sure that the distribution on the input was. . . just π, which she

knew before.

On the other hand, the channel that leaks everything (the identity matrix)

takes input π in general to a non-singleton hyper whose support is (only)

point distributions: for example the prior (2/3,
1/3) is taken by that channel

to the hyper 2/3〈 (1, 0) 〉+ 1/3〈 (0, 1) 〉, indicating that with probability 2/3 the

adversary will know for sure that the input was 0 and with probability 1/3
she will know that it was 1. That is just what a ‘leak everything’ channel

should do.

With the above as a starting point, Kleisli composition of hyper programs

allows the two possibilities above to be combined sequentially, while still

remaining within the same type, even though we are now one level up at DA
rather than A: that’s what the generality of Kleisli composition does for us

automatically. That is, we can without any further definitions write C;M

for a QIF -aware program that leaks information and then changes the state;

13 Concretely this is any channel matrix all of whose rows are equal: the nicest formulation is a
0-column matrix, i.e. there is no output at all; but slightly less shocking is a one-column matrix
of all 1’s that gives the same output for all inputs. With more than one column, there can
clearly be more than one output: but since the rows are the same, the relative frequencies of
the outputs gives no information about which input produced them.
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and similarly a program M ;C changes the state first and then leaks that. 14

Either way, the result is a single function of type DA→D2A. Further, the

order-theoretic structure of the space DA, e.g. limits, allow us to introduce

smoothly all the apparatus of sequential programming, including loops —

with the probabilistic- and the QIF features added in ‘for free’ (McIver et al.,

2014b). 15

4 A concrete programming language Kuifje, and its
semantics

In §3 we introduced Markov steps and channel steps as program fragments,

but abstractly. Both are of type DA→D2A but, as we saw, each has further

specific and complementary properties: the Markov step releases no informa-

tion, and the channel step makes no change to the state. In this section we

give concrete notations for these program steps, together with constructions

like conditional and iteration for making more substantial programs. The

functional components from §2.4 above are used for that.

The presentation takes the form of a sequence of three small languages, of

increasing expressivity. We start in §4.1 with a simple imperative command

language CL consisting of assignment statements, conditionals, and loops; in

§4.2 we add probabilistic assignment statements, yielding the probabilistic

command language PCL (essentially pGCL of (McIver and Morgan, 2005));

and finally in §4.3 we add observations, yielding our complete QIF language

Kuifje.

We use an initial-algebra representation for the syntax of these languages

because it enables a straightforward implementation of their denotational

semantics as folds. Moreover, the representation pays off in §5 where it allows

us easily to derive an efficient implementation of the hyper-distribution

semantics from its näıve specification.

4.1 Basic language CL

Concrete syntax We will start without probabilistic or QIF features,

giving a basic Command Language, or CL for short, that is just the usual

“toy imperative language” in which we can write programs like the following:

14 Observe that the combination C;M corresponds to a step of a Hidden Markov Model (Baum
and Petrie, 1966): in HMM ’s first some information about the current state is released and then
the state is probabilistically updated. Here we arrange for those two effects to be conceptually
separated, which allows them to be put together in any combination.

15 We do not discuss the QIF order theory in this paper, however.
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y := 0;

while (x > 0) {

y := y + x;

x := x - 1;

}

When this program is run with an initial state where x = 3, its final state

has x = 0 and y = 0 + 3 + 2 + 1 = 6.

Abstract syntax The obvious representation of a CL program over a state

space of type S is as the type [Instruction S ] of lists of instructions acting

on S , where each instruction is either a state update, a conditional with a

guard and two branches, or a loop with a guard and a body:

type CL s = [Instruction s ]

data Instruction s

= UpdateI (s → s)

| IfI (s → Bool) (CL s) (CL s)

| WhileI (s → Bool) (CL s)

However, because the mutual recursion between instructions and programs

would cause complications later on, we choose instead a ‘continuation-style’

representation that is directly recursive. Each of its constructors takes an

additional argument representing ‘the rest of the program’, and there is an

additional constructor Skip representing the ‘empty’ program:

data CL s

= Skip

| Update (s → s) (CL s)

| If (s → Bool) (CL s) (CL s) (CL s)

| While (s → Bool) (CL s) (CL s) (6)

In particular, CL S is isomorphic to [Instruction S ].

For instance, in the example program above we could use the state

data S = S { x :: Int , y :: Int }

(a record with two fields), which would allow us to render the above example

as follows in Haskell: 16

16 Note that notation like s.y := (s.y + s.x), with the obvious meaning, is not pseudo-code, but
more familiar rendering of valid Haskell code based on lens library17 operators. We refer the
interested reader to this paper’s companion code for the details.

17 https://hackage.haskell.org/package/lens
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example1 :: CL S

example1 =

Update (λs → s.y := 0)

(While (λs → s.x > 0)

(Update (λs → s.y := (s.y + s.x ))

(Update (λs → s.x := (s.x − 1))

Skip))

Skip) (7)

We now discuss the constructions individually. Skip denotes the empty

program. The program Update f p denotes the program that first transforms

the state with f and then proceeds with program p. Program If c p q r

checks whether the current state satisfies predicate c, and proceeds with p if

it does and with q if it does not; in either case, it subsequently continues

with r . Finally, the program While c p q checks whether the current state

satisfies the predicate c; if it does, it executes p and then repeats the while

loop, and if it does not, it continues with q .

We now continue by using the abstract syntax to define several basic

combinators that will allow us to write programs more compactly:

skip :: CL s

skip = Skip

update :: (s → s)→ CL s

update f = Update f skip

cond :: (s → Bool)→ CL s → CL s → CL s

cond c p q = If c p q skip

while :: (s → Bool)→ CL s → CL s

while c p = While c p skip

And we can define sequential composition:

(#) :: CL s → CL s → CL s

Skip # k = k

Update f p # k = Update f (p # k)

If c p q r # k = If c p q (r # k)

While c p q # k = While c p (q # k)

Using the combinators and (#), the examples can be written equivalently as

example1 =

update (λs → s.y := 0) #
while (λs → s.x > 0)
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(update (λs → s.y := (s.y + s.x )) #
update (λs → s.x := (s.x − 1)))

Note that 〈CL s, skip, (#)〉 forms a monoid.

Semantics We can define a compositional semantics for CL programs over

a state of type S as the carrier of a (CLF S )-algebra for the functor CLF S :

data CLF s a

= SkipF

| UpdateF (s → s) a

| If F (s → Bool) a a a

| WhileF (s → Bool) a a

Note that such a semantic definition, i.e. as a carrier of a syntactic algebra, is

compositional by construction. A (CLF S )-algebra is a pair (A, alg) consisting

of a type A and a function alg :: CLF S A→ A. In particular, (CL S , c) is a

(CLF S )-algebra, where

c :: CLF s (CL s)→ CL s

c SkipF = Skip

c (UpdateF f p) = Update f p

c (If F c p q r) = If c p q r

c (WhileF c p q) = While c p q

Indeed, (CL S , c) is the initial (CLF S )-algebra; which is to say, for any

other (CLF S )-algebra (A, alg) there is a unique morphism of algebras

CL S → A; informally, this unique morphism ‘propagates alg through the

abstract syntax tree’. Since this unique morphism is determined by the

algebra alg , we introduce a notation LalgM for it. Concretely, LalgM is defined

as follows:

L−M :: (CLF s a → a)→ (CL s → a)

LalgM Skip = alg SkipF

LalgM (Update f p) = alg (UpdateF f (LalgM p))

LalgM (If c p q r) = alg (If F c (LalgM p) (LalgM q) (LalgM r))

LalgM (While c p q) = alg (WhileF c (LalgM p) (LalgM q))

which propagates alg through the abstract syntax of a given program; LalgM
is known as the fold for algebra (A, alg) (Hutton, 1999).

Any compositional semantics of CL s programs can be formalised as a fold

with an appropriate algebra. For example, one straightforward semantics
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is as an algebra on the carrier s → s, i.e., interpreting programs as state-

transformation functions.

sem :: CL s → (s → s)

sem = LalgM where

alg :: CLF s (s → s)→ (s → s)

alg SkipF = id

alg (UpdateF f p) = f >>> p

alg (If F c p q r) = conditional c p q >>> r

alg (WhileF c p q) = let while = conditional c (p >>> while) q

in while

conditional :: (s → Bool)→ (s → s)→ (s → s)→ (s → s)

conditional c t e = (λs → (c s, s)) >>>

(λ(b, s)→ if b then t s else e s)

Here, (>>>) is forward function composition: f >>> g = g ◦ f .

Note that sem is not only a fold over the abstract syntax, but also a

monoid morphism from the CL S monoid to 〈S → S , id , (>>>)〉.

sem skip = id

sem (p # q) = sem p >>> sem q

The above has set out our general approach to defining a language and its

semantics, illustrating it on the simplest (useful) language possible. We now

add probability.

4.2 Adding probability: CL→ pGCL

The probabilistic version of CL is called PCL, following Haskell’s (upper-case)

convention for type constructors. It is effectively the pGCL of (McIver and

Morgan, 2005), in turn derived from the seminal work of (Kozen, 1983).

Its difference from CL is that state updates in PCL are probabilistic, i.e.,

an update does not assign a single new state, but rather a probability

distribution over (new) states. For instance, we will be able to express that

the variable x in our running example is decremented probabilistically by

either 1 (probability 2/3) or 2 (probability 1/3), as here:

y := 0;

while (x > 0) {

y := y + x;

x := x - (1 2/3⊕ 2);

}

(8)
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Similarly, we will make the conditionals in our program probabilistic. For

instance, the following program’s while loop chooses with probability 1/2 on

each iteration whether to apply the test x > 0 or x > 1 for termination:

y := 0;

while (x > 0 1/2⊕ x > 1) {

y := y + x;

x := x - 1;

}

We can also model the probabilistic choice between entire statements rather

than merely expressions. For instance,

(y := y + 1) 5/6⊕ (x := x + 1)

is short-hand for

if (true 5/6⊕ false) {

y := y + 1

} else {

x := x + 1

}

The probabilistic nature of state updates is reflected as follows in the

abstract syntax:

data PCL s

= Skip

| Update (s →d s) (PCL s)

| If (s →d Bool) (PCL s) (PCL s) (PCL s)

| While (s →d Bool) (PCL s) (PCL s)

where → in (6) has been replaced by the Kleisli arrow →d for the probability

monad D, so that A→d B is the type of probabilistic programs from A to B :

type a →d b = a → Dist b

The abstract syntax of our first probabilistic example (8) becomes:

example2 :: PCL S

example2 =

update (λs → return (s.y := 0)) #
while (λs → return (s.x > 0))

(update (λs → return (s.y := (s.y + s.x ))) #
update (λs → (s.x := (s.x − 1)) 2/3⊕ (s.x := (s.x − 2))))
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Observe that what was written earlier in the example as an assignment of a

probabilistically chosen value is represented here as abstract syntax in the

form of a probabilistic choice between assignments of pure values.

We obtain an interpreter for PCL by reusing the constructions of §4.1,

simply adapting the target of the monoid morphism sem from the monoid

〈s → s, id , (>>>)〉 of endofunctions with function composition to the monoid

〈s →d s, return, (>=>)〉 of Kleisli arrows with forward Kleisli composition.

semd :: Ord s ⇒ PCL s → (s →d s)

semd = LalgM where

alg :: Ord s ⇒ PCLF s (s →d s)→ (s →d s)

alg SkipF = return

alg (UpdateF f p) = f >=> p

alg (If F c p q r) = conditional c p q >=> r

alg (WhileF c p q) = let while = conditional c (p >=> while) q

in while

conditional :: (Ord s)⇒ s →d Bool → (s →d s)→ (s →d s)→ (s →d s)

conditional c p q = (λs → fmap (λb → (b, s)) (c s)) >=>

(λ(b, s)→ if b then p s else q s)

4.3 Adding observations: pGCL→Kuifje

Finally, we extend PCL with ‘observations’ to yield our QIF language

“Kuifje”. Observations are probabilistically chosen values that the computation

outputs, or ‘leaks’, as a side-effect. For instance, in our running example

we express that we can observe x at the end of each iteration by adding

observe x there:

y := 0;

while (x > 0) {

y := y + x;

x := x - (1 2/3⊕ 2);

observe x

}
(9)

To express that we will observe either x or y , with equal probability, we

would write
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y := 0;

while (x > 0) {

y := y + x;

x := x - (1 2/3⊕ 2);

observe x 1/2⊕ observe y

}

(10)

And finally, we can express that we either observe x or observe y but we

don’t know which with
y := 0;

while (x > 0) {

y := y + x;

x := x - (1 2/3⊕ 2);

observe (x 1/2⊕ y)

}

(11)

As an example of that important distinction, suppose there were a secret

number x uniformly distributed with 0≤x<3, and that with probability 1/2
either xmod 2 or x÷ 2 were revealed in an observation, i.e. either its low- or

high-order bit. If the observer knew whether mod or ÷ had been used, then

afterwards

knowing that mod was used:
with probability 1/3 she would be able to conclude that x was either 0 or

2, assigning equal probability to each;
with probability 1/6 she would be able to conclude that x was certainly 1.
knowing that ÷ was used:
with probability 1/3 she would be able to conclude that x was either 0 or

1, assigning equal probability to each; and
with probability 1/6 she would be able to conclude that x was certainly 2.

On the other hand, if she did not know which of mod or ÷ had been used,

then afterwards

not knowing which of mod or ÷ was used:
with probability 2/3 she would be able to conclude that x was either 0,1

or 2, with probabilities 1/2, 1/4 and 1/4 respectively; and
with probability 1/3 she would be able to conclude that x was equally

likely to be 1 or 2.

There’s no denying that this is a subtle distinction — but it is a real one,

and our programming language expresses it easily. 18

18 An explanation of the precise probabilities above is given in App. A.
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To support observations –and to obtain our third and final language Kuifje–

we add a new constructor Observe to the type PCL, based on a datatype

Bits that allows the observation to be effectively of any type; in fact “Bits”

is a temporary expedient that, below, will allow us to construct in Haskell

the lists of heterogeneous element-type that accumulate the observations

made. In our final presentation, these lists will disappear — taking “Bits”

with them.

data Kuifje s

= Skip

| Update (s →d s) (Kuifje s)

| If (s →d Bool) (Kuifje s) (Kuifje s) (Kuifje s)

| While (s →d Bool) (Kuifje s) (Kuifje s)

| Observe (s →d Bits) (Kuifje s) — added

The new form Observe f p uses f to probabilistically determine a sequence

of bits from the current state, observe them and then proceed with program

p. Here a sequence of bits is simply a list of booleans.

type Bit = Bool

type Bits = [Bit ]

The new basic combinator

observe :: ToBits a ⇒ (s →d a)→ Kuifje s

observe f = Observe (fmap toBits ◦ f ) skip

allows us to observe values of any type a whose conversion to Bits has been

defined via the ToBits type class

class ToBits a where

toBits :: a → Bits

For instance, Int values can be observed as bits through a binary encoding

(here, quot is division rounding towards zero, so the encoding consists of a

sign bit followed by a list of binary digits, least significant first; thus, −6 is

encoded as [True,False,True,True ]):

instance ToBits Int where

toBits n = (n < 0) : unfoldr (λm → if m ≡ 0

then Nothing

else Just (odd m, quot m 2)) n

For syntax, the new constructor requires only a straightforward extension

of the composition function (#):
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(#) :: Kuifje s → Kuifje s → Kuifje s

Skip # k = k

Update f p # k = Update f (p # k)

While c p q # k = While c p (q # k)

If c p q r # k = If c p q (r # k)

Observe f p # k = Observe f (p # k) — added

The abstract syntax tree of the first example (9) with observations is:

example3a :: Kuifje S

example3a =

update (λs → return (s.y := 0)) #
while (λs → return (s.x > 0))

(update (λs → return (s.y := (s.y + s.x ))) #
update (λs → (s.x := (s.x − 1)) 2/3⊕ (s.x := (s.x − 2))) #
observe (λs → return (s.x )))

For the second (10), it is

example3b :: Kuifje S

example3b =

update (λs → return (s.y := 0)) #
while (λs → return (s.x > 0))

(update (λs → return (s.y := (s.y + s.x ))) #
update (λs → (s.x := (s.x − 1)) 2/3⊕ (s.x := (s.x − 2))) #
cond (λs → True 1/2⊕ False)

(observe (λs → return (s.x )))

(observe (λs → return (s.y))))

And for the third (11) it is

example3c :: Kuifje S

example3c =

update (λs → return (s.y := 0)) #
while (λs → return (s.x > 0))

(update (λs → return (s.y := (s.y + s.x ))) #
update (λs → (s.x := (s.x − 1)) 2/3⊕ (s.x := (s.x − 2))) #
observe (λs → (s.x ) 1/2⊕ (s.y)))

For semantics, however, the domain of interpretation requires a more

significant change. Indeed, we augment the distribution monad Dist with the

capabilities of a Bits-writer monad to accommodate the list of accumulated
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observations: 19 Thus we interpret programs as Kleisli arrows s →db s of this

augmented monad.

type a →db b = a → Dist (Bits, b)

Again because of our general approach, the structure of the interpreter

remains largely the same, because most cases are parametric in the underlying

monad: first we had s → s; then we had s →d s and now we have s →db s.

The two cases that require attention are Update and Observe.

semdb :: Kuifje s → (s →db s)

semdb = LalgP M where

algP :: (Ord s)⇒ KuifjeF s (s →db s)→ (s →db s)

algP SkipF = λx → return ([ ], x )

algP (UpdateF f p) = uplift f >=> p

algP (If F c p q r) = conditional c p q >=> r

algP (WhileF c p q) = let while = conditional c (p >=> while) q

in while

algP (ObserveF f p) = obsem f >=> p

In the case of Update we lift the update function f from the distribution

monad to the augmented distribution monad, by adding an empty sequence

of observations.

uplift :: (a →d b)→ (a →db b)

uplift f = fmap (λb → ([ ], b)) ◦ f

In the case of Observe we extract the observation and return it alongside the

current state.

obsem :: (s →d Bits)→ (s →db s)

obsem f = λs → fmap (λw → (w , s)) (f s)

Finally, while we preserve the definition of If and While in terms of

the more primitive conditional , we do modify the conditional to leak its

argument.

conditional :: (Ord s)⇒ (s →d Bool)→ (s →db s)→ (s →db s)→ (s →db s)

conditional c p q = obsem (fmap toBits ◦ c) >=>

(λ([b ], s)→ return ([b ], (b, s))) >=>

(λ(b, s)→ if b then p s else q s)

19 This list of observations becomes ever longer as the program executes; but in §5.3 the whole
list, and Bits, will be ‘quotiented away’.
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The consequence is that the programs skip and cond (λs → True 1/2⊕
False) skip skip now have different semantics:

> semdb skip ()

1÷ 1 ([ ], ())

> semdb (cond (λs → True 1/2⊕ False) skip skip) ()

1÷ 2 ([False ], ())

1÷ 2 ([True ], ())

There are two good reasons for having leaking conditionals. It is a common

(though not universal) assumption in QIF, a pragmatic principle that one

should not ‘branch on high’. Much more important, however, is that it enables

a compositional hyper-semantics, as we explain in Section 5.3.

5 Hyper-distributions: from leaked values
to leaked information

In §4 we defined the syntax and semantics of our language in three stages,

of which Kuifje –with probabilistic choice and observations– was the final

outcome. We now undertake a major abstraction, removing the sequence of

observed values but leaving behind the information-flow effect they induce.

5.1 Abstracting from observed values

If an observer is interested only in information flow about the value of a

program’s final state, then –we will argue– the values of the observations

themselves are irrelevant. An example of this is spies who speak different

languages. If they are to report the value of a secret Booolean, it makes no

difference whether they say “True/False” or “Waar/Onwaar” or “Vrai/Faux”

as long as their controller knows the correspondence between the observed

utterance and the hidden value that caused it. Thus in our Bit-sequence

semantics it should not matter whether the observations are say

["true", "true", "false"]
or ["waar", "waar", "onwaar"]
or ["vrai", "vrai", "faux"] .

They all three result in exactly the same information flow.

The abstraction we are about to implement, motivated by that, allows a

drastic simplification of the semdb semantics: we throw away the sequences

of Bits, but we retain the distinctions they made. Further, if we propagate
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the abstraction to the leaves of the abstract syntax tree, we never have to

construct the sequences in the first place — and then we can throw away

the Bits type itself. Here is how it is done.

In the above interpretation, the type S → Dist (Bits,S ) denotes a map

from initial states of type S to probability distributions of sequences of

observed Bits together with a final state of type S .

The resulting distributions dp of type Dist (Bits,S ) are isomorphic to

pairs (d , f ) of type (Dist Bits,Bits → Dist S ), where the domain of f is

restricted to bit sequences that occur with non-zero probability in d . This

isomorphism is witnessed by the functions toPair and fromPair .

toPair :: (Ord s)⇒ Dist (Bits, s)→ (Dist Bits,Bits → Dist s)

toPair dp = (d , f )

where

d = fmap fst dp

f ws = let dpws = D [(s, p) | ((ws ′, s), p)← runD dp,ws ′ ≡ ws ]

in D [(s, p / weight dpws) | (s, p)← runD dpws ]

fromPair :: (Dist Bits,Bits → Dist s)→ Dist (Bits, s)

fromPair (d , f ) = join (fmap (λws → fmap (λs → (ws, s)) (f ws)) d)

The function toPair allows us to determine the likelihood of each possible

trace of observations, together with the conditional distribution of possible

states that the trace induces.

For instance, for the program over two Booleans

example4 :: Kuifje (Bool ,Bool)

example4 = observe (λ(b1, b2)→ b1 1/2⊕ b2)

and the uniform distribution of Boolean pairs as input distribution

boolPairs :: Dist (Bool ,Bool)

boolPairs = uniform [(b1, b2) | b1 ← bools, b2 ← bools ]

where bools = [True,False ]

we can see the distribution of observations

> fst (toPair (boolPairs >>= semdb example4))

1÷ 2 [False ]

1÷ 2 [True ]

that is the sequence [False ] with probability 1/2 and the sequence [True ] the

same; and their respective conditional distributions of final states
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> snd (toPair (boolPairs >>= semdb example4)) [False ]

1÷ 2 (False,False)

1÷ 4 (False,True)

1÷ 4 (True,False) (12)

that is that if False is observed, the posterior distribution of states is as

above, and similarly

> snd (toPair (boolPairs >>= semdb example4)) [True ]

1÷ 4 (False,True)

1÷ 4 (True,False)

1÷ 2 (True,True) (13)

If True is observed, the posterior distribution of states is as here instead.

If we do not care about the particular trace of observations –our postulate–

but are only interested in the variation of distributions of final states, we can

eliminate the sequences of observations altogether while retaining however

the conditional distributions they determine. This yields so-called hyper-

distributions, i.e., distributions of distributions, of type Dist (Dist s). Each

of the ‘inner’ distributions of the hyper has as its own ‘outer’ probability the

probability that was assigned to the no-longer-present Bits-sequence that

gave rise to it. We do that with this function:

multiply :: (Dist Bits,Bits → Dist s)→ Dist (Dist s)

multiply (d , f ) = fmap f d

Thus, putting everything together, we can compute the hyper-distribution of

final states as follows from a given distribution of initial states.

hyper :: (Ord s)⇒ Kuifje s → (Dist s → Dist (Dist s))

hyper p d0 = multiply (toPair (d0 >>= semdb p)) (14)

That yields the following result on our example program, where the outers

are on the left and the inners are on the right:

> hyper example4 boolPairs

1÷ 2 1÷ 4 (False,True)

1÷ 4 (True,False)

1÷ 2 (True,True)

1÷ 2 1÷ 2 (False,False)

1÷ 4 (False,True)

1÷ 4 (True,False)
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5.2 Hyper-distributions in theory: why?

Although the definition of hyper calculates the sequences of observations,

which we can then remove, we will see in §5.3 below that these two steps

can be fused into one so that only the abstractions are used, and the Bits-

sequences are never constructed.

First however we look at the theoretical reasons for doing this.

Our model of a QIF -aware program is as an initial-state to final-state

mechanism that chooses its final state probabilistically, depending on the

initial state, and might release information about the state at the same

time. The fundamental insight in theory is that the actual value of the leak

is unimportant: the leak’s only role is in allowing an adversary to make

deductions about what the state must have been at that point in order for

that leak-value to have been observed. That is, we have decided as a design

principle that the two programs

observe b and observe (not b)

are the same: each one, if executed, will allow the adversary to deduce the

(current) value of b because, knowing the source-code, she also knows (in this

example) whether she must negate the leak or not; and –beyond leaking b–

they are operationally the same, since neither changes the state. This being

so, we use hyper-distributions in the (denotational) theory to abstract from

those output values; and the result is that two programs are behaviourally

equal just when their denotations are equal — i.e. this way we achieve full

abstraction.

Further, this ‘tidiness’ in the semantic structures allows us in a more

extensive presentation to discuss the domain structure of the semantic space:

its refinement order; whether it is complete; how fixed-points are found etc.

This is extensively discussed in other work (McIver et al., 2014b).

5.3 Hyper-distributions in practice: why?

If we accept the arguments in §5.2 just above, that we are interested only in

the hyper-distribution of final states for a given distribution of initial states

then, as we have suggested, hyper is not the most efficient way to compute

it: hyper first computes the full distribution Dist (Bits, s) before condensing

it to the usually much more compact hyper-distribution Dist (Dist s). In

this section we explain how that can be implemented. We work directly with

the more compact hyper-distributions throughout: programs are interpreted

as hyper-arrows, and the writer-monad is no longer used; and this increased

efficiency is the ‘why’ of hyper-distributions in practice. Thus we define
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type a →dd b = Dist a → Dist (Dist b)

which happens to form a monoid as well: 〈s →dd s, return, >=>〉. Indeed, we

can derive the hyper semantics directly as a fold semdd,

semdd :: (Ord s)⇒ Kuifje s → (s →dd s)

semdd = LalgHM (15)

by solving the “fold fusion” equation for the algebra algH

post ◦ algP = algH ◦ fmap hyper (16)

where

post :: Ord s ⇒ (s →db s)→ (s →dd s)

post t = λd → multiply (toPair (d >>= t))

Using the following three properties of post

post return = return (17)

post (f >=> g) = post f >=> post g (18)

post (λs → (f s) w⊕ (g s)) = λd → (post f d) w⊕ (post g d) (19)

it is possible to verify20 that the definition of algH below satisfies (16).

algH :: (Ord s)⇒ KuifjeF s (s →dd s)→ (s →dd s)

algH SkipF = return

algH (UpdateF f p) = huplift f >=> p

algH (If F c p q r) = conditional c p q >=> r

algH (WhileF c p q) = let while = conditional c (p >=> while) q

in while

algH (ObserveF f p) = hobsem f >=> p

conditional :: Ord s ⇒ (s →d Bool)→ (s →dd s)→ (s →dd s)→ (s →dd s)

conditional c t e = λd →
let d ′ = d >>= λs → c s >>= λb → return (b, s)

w1 = sum [p | ((b, s), p)← runD d ′, b ]

w2 = 1 − w1

d1 = D [(s, p / w1) | ((b, s), p)← runD d ′, b ]

d2 = D [(s, p / w2) | ((b, s), p)← runD d ′,not b ]

h1 = t d1

h2 = e d2

20 Note that Equation 19 only holds when there are no two inputs x and y such that f x and g y
yield the same observations. This is the case for two branches of a conditional, which, because
they leak their condition, always yield disjoint observations.
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in if null (runD d2) then h1

else if null (runD d1) then h2

else join (h1 w1⊕ h2)

huplift :: Ord s ⇒ (s →d s)→ (s →dd s)

huplift f = return ◦ (>>= f )

Because semdd immediately abstracts over the observations and never collects

them in a (homogeneously-typed) list, we do not first have to convert them

to Bits. This means that we can generalize our syntax of programs to

observations of arbitrary type o:

data Kuifje s

= Skip

| Update (s →d s) (Kuifje s)

| If (s →d Bool) (Kuifje s) (Kuifje s) (Kuifje s)

| While (s →d Bool) (Kuifje s) (Kuifje s)

| ∀o . (Ord o,ToBits o)⇒ Observe (s →d o) (Kuifje s)

and interpret them without requiring a ToBits instance.

hobsem :: (Ord s,Ord o)⇒ (s →d o)→ (s →dd s)

hobsem f = multiply ◦ toPair ◦ (>>= obsem f )

where

obsem :: Ord o ⇒ (a →d o)→ (a →d (o, a))

obsem f = λx → fmap (λw → (w , x )) (f x )

toPair :: (Ord s,Ord o)⇒ Dist (o, s)→ (Dist o, o → Dist s)

toPair dp = (d , f )

where

d = fmap fst dp

f ws = let dpws = D [(s, p) | ((ws ′, s), p)← runD dp,ws ′ ≡ ws ]

in D [(s, p / weight dpws) | (s, p)← runD dpws ]

multiply :: (Dist o, o → Dist s)→ Dist (Dist s)

multiply (d , f ) = fmap f d

In summary, with semdd from (15) we obtain the same results as with semdb

(12,13) — but without the need for post-processing:

> semdd example4 boolPairs

1÷ 2 1÷ 4 (False,True)

1÷ 4 (True,False)

1÷ 2 (True,True)
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1÷ 2 1÷ 2 (False,False)

1÷ 4 (False,True)

1÷ 4 (True,False)

6 Case Studies

6.1 The Monty-Hall problem

The (in)famous Monty-Hall problem (Rosenhouse, 2009) concerns a quiz-show

where a car is hidden behind one of three curtains. The other two curtains

conceal goats. The show’s host is Monty Hall, and a contestant (Monty’s

adversary) is trying to guess which curtain conceals the car.

Initially, the contestant believes the car is equally likely to be behind each

curtain. She chooses one of the three, reasoning (correctly) that her chance of

having chosen the car is 1/3; but the host does not open the curtain. Instead

Monty opens one of the two other curtains, making sure that a goat is there.

(Thus if the contestant has chosen the car –though she does not know that–

he will open either of the other two curtains; but if she has not chosen the

car he opens the (unique) other curtain that hides a goat. Either way, from

her point of view, he has opened a curtain where there is a goat.)

Monty Hall then says “Originally you had a one-in-three chance of getting

the car. But now there are only two possible positions for the car: the curtain

you chose, and the other closed curtain. Would you like to change your mind?”

The notorious puzzle is then “Should she change?”

A qualitative (i.e. non-quantitative) approach to this, relying on intuition,

suggests that

(i) Since Monty Hall could have opened a goat-curtain no matter where the

car is, his doing so conveys nothing; and

(ii) Since the contestant still does not know where the car is, nothing has been

leaked.

But a quantitative approach enables more sophisticated reasoning.21 Even

though the contestant does not know for sure where the car is, after Monty’s

action, is it really true that she knows no more than before? Or has she

perhaps learned something, but not everything? Has some information flowed?

21 . . . but also sometimes unsophisticated too: “Since there are now only two doors, the chance of
the car’s being behind the door already chosen has risen to 1/2.”
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There are many compelling informal arguments for that.22 But here we give

one based on the information-flow semantics of Kuifje.

We declare the three-element type Door

data Door = DoorA | DoorB | DoorC deriving (Eq ,Show ,Ord)

and describe Monty’s action with a single Kuifje statement: choose a door

that is neither the door already chosen by the contestant nor the one with

the car. This is the hall program just below, with argument ch for the

contestant’s choice; its initial state d is where the car is:

hall :: Door → Kuifje Door

hall ch = observe (λd → uniform ([DoorA,DoorB ,DoorC ] \\ [d , ch ]))

The list [DoorA,DoorB ,DoorC ]\\[d , ch ] is those doors that were not chosen

by the contestant and don’t conceal the car: there can be one or two of them,

depending on whether the contestant (so far, unknowingly) chose the car.23

If the contestant initially chooses DoorA, then we obtain the following

hyper-distribution of the car’s door after observing the goat revealed by

Monty:

doors = uniform [DoorA,DoorB ,DoorC ]

monty = semdd (hall DoorA) doors

>monty

1÷ 2 1÷ 3 DoorA

2÷ 3 DoorB

1÷ 2 1÷ 3 DoorA

2÷ 3 DoorC (20)

It expresses that the contestant will know (or should realise) that the car

is with probability 2/3 behind the still-closed curtain. The two 1/2 ‘outer’

probabilities reflects (given she chose DoorA) that the remaining closed door

is equally likely to be DoorB or DoorC .24 Since the program treats all doors

in the same way, the same argument holds even if another initial door was

chosen: in every case, it is better to change.

Since we have captured the result hyper in the variable monty , we can

22 For those who still doubt: Suppose there were 100 doors, 99 goats and one car. The contestant
chooses one door, and Monty opens 98 others with goats behind every one. . .

23 The operator (\\) removes all elements of the right list from the left list.
24 That can happen in two ways. If she chose the car (unknowingly) at DoorA, then Monty is

equallty likely to open DoorB or DoorC ; if she did not choose the car, it is equally likely to
be behind DoorB or DoorC , and thus equally likely that Monty will open DoorC or DoorB
respectively.
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carry this analysis a bit further. (Note that we do not have to re-run the

program: the output hyper monty contains all we need for the analysis.)

Recall that the Bayes Vulnerability bv of a distribution (for which we wrote

V () in Fig. 4) is precisely the maximum probability of any element:

bv :: Ord a ⇒ Dist a → Prob

bv = maximum ◦map snd ◦ runD ◦ reduction

and that this represents a rational adversary’s strategy in guessing a secret

whose distribution is known: guess the secret of (possibly equal) greatest

probability. To use bv in the situation above, where there are two possible

distributions the contestant might face, we simply average her best-chance

over each of the two distributions’ likelihood of occurring. For the first, with

probability 1/2, she will be able to guess correctly with probability 2/3, giving
1/2×2/3 = 1/3 for the overall probability that Monty will reveal DoorC and

the car will be behind DoorB . We get 1/3 for the other alternative (it is

effectively the same, with the doors changed), and so her overall probability

of finding the car is 1/3+1/3 = 2/3.

That process can be automated by defining

condEntropy :: (Dist a → Rational)→ Dist (Dist a)→ Rational

condEntropy e h = average (fmap e h) where

average :: Dist Rational → Rational — Average a distr. of Rational ’s.

average d = sum [r × p | (r , p)← runD d ]

which for any entropy, that is bv in the case just below, gives its average

when applied to all the inners of a hyper — yielding the conditional entropy.

Thus we get

> condEntropy bv monty

2÷ 3

for the (smart) contestant’s chance of getting her new car.

6.2 A defence against side-channels

Our second example here concerns a side-channel attack on the well known

fast-exponentiation algorithm used for public-key encryptions.

The algorithm is given in pseudo-code at Fig. 7. As usual we assume

that the program code is public, so that any side channels caused e.g. by

‘branching on high’ might allow an adversary to make deductions about the

inputs: in this case, a careful analysis might be used to distinguish between
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VAR B ← Base. Global variables.
E ← Exponent.
p ← To be set to BE.

BEGIN VAR b,e:= B,E Local variables.
p:= 1
WHILE e 6=0 DO
VAR r:= e MOD 2
IF r6=0 THEN p:= p*b FI ← Side channel.
b,e:= b2,e÷2

END
END
{ p = BE }

Here we are assuming that the ‘branch on high’ is the undesired side-channel: by
detecting whether or not the branch is taken, the adversary can learn the bits of
exponent E –which is the secret key– one by one. When the loop ends, she will have
learned them all.

Figure 7 Insecure implementation of public/private key encryption.

Global variables.
VAR B ← Base. Global variables.

D ← Set of possible divisors.

p ← To be set to BE.
E:= uniform(0..N-1) Choose exponent uniformly at random.

BEGIN VAR b,e:= B,E Local variables.
p:= 1
WHILE e6=0 DO
VAR d:= uniform(D) ← Choose divisor uniformly from set D.
VAR r:= e MOD d
IF r6=0 THEN p:= p*b

r FI ← Side channel.
b,e:= bd,e÷d

END
END
{ p = BE } What does the adversary know about E at this point?

Here the side channel is much less effective: although the adversary learns whether
r=0, she knows nothing about d except that it was chosen uniformly from D, and
thus learns little about e, and hence E at that point. A typical choice for D would
be [2, 3, 5]. When the loop ends, she will have learned something about E, but not
all of it. (In order to be able to analyse the program’s treatment of E as a secret, we
have initialised it uniformly from N possible values.)

Figure 8 Obfuscated implementation of public/private key encryption.
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the two branches of the IF, 25 as indicated in Fig. 7, which is equivalent to

determining whether the current value of e is divisible by 2. That occurs

each time the loop iterates, and an adversary who has access to this (e.g. by

analysing timing) would therefore be able to figure out exactly the initial

value of E one bit at a time — and E is in fact the encryption key.

A defence against this side channel attack was proposed by (Walter, 2002)

and is implemented at Fig. 8. His idea is that rather than attempting to

close the side channel, instead one can reduce its effectiveness. The problem

with the implementation at Fig. 7 is that 2 is always used as a divisor, which

is why the ith branching at the IF-statement is correlated exactly with the

i’th bit of the original secret E. In Fig. 8, that correlation is attenuated by

adding an extra variable d, used as divisor in place of 2 — and it is selected

independently at random on each iteration. That obfuscates the relationship

between e and the branching at the IF-statement, because the adversary

does not know which value of d is being used. The information transmitted

by the channel is therefore no longer exactly correlated with the i’th bit of

the secret.

To compare the two programs we used the semantics of Kuifje to compute

the final hyper-distribution resulting from Fig. 8 for an example range of E,

determined by N. We assume that all the variables are hidden, as we are only

interested in the information flowing through the side channel and what it

tells us about e’s divisibility by d. 26

Below is a translation of our obfuscated algorithm Fig. 8 into Kuifje. All

variables are global, so the state space is:

data SE = SE { base, exp, e, d , p :: Integer }

And we initialise the state as follows:

initSE :: Integer → Integer → SE

initSE base exp = SE { base = base, exp = exp, e = 0, d = 0, p = 0}

And here is the body of the algorithm, based on Fig. 8, taking a list ds of

divisors:

exponentiation :: [Integer ]→ Kuifje SE

exponentiation ds =

update (λs → return (s.e := (s.exp))) #
update (λs → return (s.p := 1)) #
while (λs → return (s.e 6= 0))

25 For example it could be a timing leak.
26 We are not, in this analysis, considering a brute force attack that could invert the exponentia-

tion.
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(update (λs → uniform [s.d := d ′ | d ′ ← ds ]) #
cond (λs → return (s.e ‘mod ‘ s.d 6= 0))

(update (λs → return (s.p := ((s.p)× ((s.base) ↑ (s.e ‘mod ‘ s.d))))) #
update (λs → return (s.e := (s.e − (s.e ‘mod ‘ s.d))))) — Then

skip # — Else

update (λs → return (s.base := ((s.base) ↑ (s.d)))) #
update (λs → return (s.e := (s.e ‘div ‘ s.d)))

)
(21)

Finally, we project the program’s output onto a hyper retaining only the

variable E (that is exp), using the following function:

project :: Dist (Dist SE )→ Dist (Dist Integer)

project = fmap (fmap (λs → s.exp))

In the two runs below we choose E uniformly from [0 . . 15], that is a 4-bit

exponent (secret key). The first case hyper2 is effectively the conventional

algorithm of Fig. 7, because we restrict the divisor d to being 2 every time:

hyper2 = project (semdd (exponentiation [2])

(uniform [initSE 6 exp | exp ← [0 . . 15]]))

The value of hyper2 , that is what is known about E after calculating the

power p, is shown in Fig. 9. The first column (all 1÷ 16, that is 1/16) shows

that there are sixteen possible outcomes distributed just as the hidden input

E was, that is uniformly. The second- and third columns show that in each of

those outcomes, the adversary will know for certain (1÷ 1) what the secret

ket E was. That is, with probability 1/16 she will know for certain (i.e. with

probability 1/1) that it was 0, with probability 1/16 that it was 1, with 1/16 it

was 2 etc. If the prior distribution were different, then the outer of the hyper

would be correspondingly different: but in each case the second column, the

inners, would be “probability 1” throughout. Compare that with the “perfect

channel” of Fig. 5 — it has the same effect, making a hyper all of whose

inners are point distributions.

The second case hyper235 , again with uniform choice of E over 4 bits, is

what we are more interested in: it is not a perfect channel for E. In that

case we can see what happens with divisor d’s being chosen uniformly from

[2, 3, 5]:

hyper235 = project (semdd (exponentiation [2, 3, 5])

(uniform [initSE 6 exp | exp ← [0 . . 15]]))

The value of hyper235 is shown in Fig. 10. Surprisingly, there are still cases

where E is learned exactly by the adversary: for example, with probability
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> hyper2
1÷ 16 1÷ 1 0
1÷ 16 1÷ 1 1
1÷ 16 1÷ 1 2
1÷ 16 1÷ 1 3
1÷ 16 1÷ 1 4
1÷ 16 1÷ 1 5
1÷ 16 1÷ 1 6
1÷ 16 1÷ 1 7
1÷ 16 1÷ 1 8
1÷ 16 1÷ 1 9
1÷ 16 1÷ 1 10
1÷ 16 1÷ 1 11
1÷ 16 1÷ 1 12
1÷ 16 1÷ 1 13
1÷ 16 1÷ 1 14
1÷ 16 1÷ 1 15

Figure 9 Hyper hyper2 produced by running the program of Fig. 8 when d=[2].

1/432 she will learn that E=12 is certain (and similarly 13, 14, 15). But her

probability 1/432 of learning that is very low. On the other hand, with a

higher probability 41/144, i.e. about 1/3, the adversary will learn only that E

is in the set {3..14} with certain probabilities. Thus in the second case the

hyper shows that with low probability the adversary learns a lot, but with

high probability the adversary learns only a little.

We now discuss further the significance of hyper235 resulting from running

the exponentiation program when d can be 2,3 or 5. A rational adversary will

guess that the value of exp is the one of highest probability: thus in the case
41/144 mentioned above, she will guess that exp is 7. To find out her overall

probability of guessing correctly, we take the average of those maxima.

As in the previous example (§6.1) we use the Bayes Vulnerability bv of a

distribution, the maximum probability of any element:

bv :: Ord a ⇒ Dist a → Prob

bv = maximum ◦map snd ◦ runD ◦ reduction

and we average that value over hyper235 using condEntropy :

condEntropy :: (Dist a → Rational)→ Dist (Dist a)→ Rational

condEntropy e h = average (fmap e h) where

average :: Dist Rational → Rational — Average a distr. of Rational ’s.

average d = sum [r × p | (r , p)← runD d ]
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> hyper235
1÷ 16 1÷ 1 0 7÷ 72 1÷ 14 5
7÷ 48 3÷ 7 1 1÷ 7 7

2÷ 7 2 1÷ 14 8
1÷ 7 3 1÷ 21 9
1÷ 7 4 1÷ 14 10

5÷ 36 3÷ 20 2 3÷ 14 11
3÷ 20 3 1÷ 14 12
1÷ 10 4 4÷ 21 13
3÷ 20 5 5÷ 42 14
3÷ 20 6 17÷ 216 3÷ 34 6
1÷ 20 8 3÷ 34 8
1÷ 20 9 3÷ 34 9
1÷ 10 10 5÷ 34 10
1÷ 20 12 3÷ 17 12
1÷ 20 15 3÷ 17 14

41÷ 144 3÷ 41 3 4÷ 17 15
3÷ 41 4 2÷ 27 3÷ 32 7
5÷ 41 5 3÷ 32 9
3÷ 41 6 3÷ 32 10
6÷ 41 7 1÷ 4 11
5÷ 41 8 3÷ 16 13
4÷ 41 9 3÷ 32 14
1÷ 41 10 3÷ 16 15
3÷ 41 11 1÷ 108 1÷ 4 8
2÷ 41 12 3÷ 4 12
3÷ 41 13 5÷ 432 1÷ 5 9
3÷ 41 14 3÷ 5 13

31÷ 432 3÷ 31 4 1÷ 5 14
6÷ 31 6 1÷ 108 1÷ 4 10
2÷ 31 8 1÷ 2 14
3÷ 31 9 1÷ 4 15
6÷ 31 10 1÷ 144 1÷ 3 11
5÷ 31 12 2÷ 3 15
6÷ 31 15 1÷ 432 1÷ 1 12

1÷ 432 1÷ 1 13
1÷ 432 1÷ 1 14
1÷ 432 1÷ 1 15

Figure 10 Hyper hyper234 produced by running the program of Fig. 8 when d=[2, 3, 5].

yielding the conditional entropy:

> condEntropy bv hyper235

7÷ 24 (22)

We see that her chance of guessing exp is now less than 1/3, significantly less

than the ‘can guess with certainty’ of hyper2 :
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> condEntropy bv hyper2

1÷ 1

A more interesting situation however is one where we look at the adversary

in more abstract terms: it is not the secret key E that she wants, but rather

the money she can get by using it. If that were say $1, then her expected

profit from an attack on hyper235 is from (22) of course $161/1296, i.e. about

12 cents. But now –even more abstractly– we imagine that if she guesses

incorrectly, she is caught in the act and is punished: the extra abstraction is

then that we assign a notional cost to her of say $5 for being punished. In

this setting then, one might imagine that she would never bother to guess the

key: as we saw, her probability of guessing correctly is only about 1/8, and

thus of guessing incorrectly is 7/8, giving an expected profit of 1/8×1− 7/8×5,

i.e. a loss of about $4.25.

If that were so then, since she is rational, she would not guess at all: it is

too risky because she will lose on average $4.25 every time she does. But it is

not so: that is the wrong conclusion. Recall for example that with probability
1/432 she will learn that exp was 12 (and similarly for 13, 14, 15) 27 — and

in those cases, she will guess. With a bit of arithmetic, we capture the true

scenario of gaining $1 if the guess is correct and losing $5 if guess is incorrect

as follows:

jail :: Ord a ⇒ Dist a → Rational

jail d = let m = maximum (map snd (runD (reduction d))) in

(1×m − 5× (1 − m)) ‘max ‘ 0

where the term 1×m− 5×(1−m) represents her expected (abstract) profit,

and bounding below by 0 encodes her strategy that if that profit is negative,

she won’t risk a guess at all. Now we find

> condEntropy jail hyper235

31÷ 432

> condEntropy jail hyper2

1÷ 1

— that is, that by choosing rationally to guess the password only when her

expected gain is non-negative, the adversary gains 7 cents on average. We

see also just above that in the 2-only case she gets the full $1 on average,

because she has no risk of guessing incorrectly: the value of E is completely

revealed.
27 There is also the case where exp is 0, in which case she learns that for sure — and guesses 0.

In practical circumstances that choice of exp would be forbidden; but to keep things simple in
the presentation, we have left it in.
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Note that the calculations and experiments we just carried out were on the

hyper-distributions hyper2 and hyper235 and did not require the program

exponentiation at (21) to be re-run on each experiment. Just one run captures

in the resulting hyper all the information we need to evaluate various attacker

strategies (like bv and jail).

Finally, we note that Kuifje is not able currently to deal with the large

inputs required for realistic cryptographic computations. As our examples

show however, it is a useful experimental tool to increase the understanding

of the underlying risks associated with those computations, for example side

channels in implementations of cryptography, and what can be done about

them.

7 Conclusion

7.1 Related work

This paper brings together two ideas for the first time: quantitative informa-

tion flow for modelling security in programs, and functional programming’s

generic use of monads to incorporate computational effects in programming

languages. The result is a clean implementation of a security-based semantics

for programs written in Haskell.

What makes this synthesis possible is that information flows can be

modelled in program semantics using the Giry Monad for probabilistic

semantics (Giry, 1981) which, as explained above, is applied to the type DX
rather than the more familiar X for some state space.

Quantitative information flow for modelling confidentiality was described

by (Gray, 1990) and in even earlier work by (Millen, 1987), establishing a

relationship between information channels and non-interference of (Goguen

and Meseguer, 1984) and the strong dependence of (Cohen, 1977). This last

treatment of non-interference turned out however to be unable to impose the

weaker security guarantees which are required for practical implementations

— it does not allow for partial information flows, for example, which are very

difficult and perhaps even impossible to eradicate.

The channel model for information flow was mentioned by (Chatzikokolakis

et al., 2008) for studying anonymity protocols and was further developed

by (Alvim et al., 2012) to include the ideas of gain functions to generalise

entropies and secure refinement to enable robust comparisons of information

flows between channels. Both of these ideas were already present in earlier

work (McIver et al., 2010) which described a model for quantitative informa-

tion flow in a sequential programming context. A special case of that model
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are programs which only leak information without updating variables. Such

programs correspond exactly to channels.

(McIver et al., 2015) demonstrated that information flow in programs (and

therefore channels too) can be expressed in terms of the Giry monad, unifying

the sequential program operator for programs and ‘parallel composition’

for channels. The idea of refinement’s merging posterior behaviour is a

generalisation of the way ignorance is handled in qualitative model for

information flow (Morgan, 2006, 2009) which is similarly based on monads

(for sets rather than distributions).

The abstraction for information flow and state updates that is required

for this monadic program semantics is inspired by Hidden Markov Models

(Baum and Petrie, 1966), but does not assume that all Markov updates and

channel leaks are the same — this generalisation was not present in the

original concrete model. Others have also used a concrete version of Hidden

Markov Models for analysing information flow in programs (Clark et al.,

2005a,b) and do not consider refinement.

Probability in sequential program semantics to express randomisation

(but not information flow) was originally due to (Kozen, 1981) although it

was not presented in the monadic form used here; that seems to be due to

(Lawvere, 1962) and then later brought to a wider audience by (Giry, 1981),

as mentioned above.

Haskell’s use of monads goes back to (Moggi, 1991), who famously showed

that monads provide a semantic model for computational effects, and (Jones

and Plotkin, 1989) used this to present a monadic model of a probabilistic

lambda calculus. (Wadler, 1992) promoted Moggi’s insight within functional

programming, with the consequence that monads now form a mainstream

programming abstraction, especially in the Haskell programming language.

In particular, several people (Ramsey and Pfeffer, 2002; Erwig and Kollmans-

berger, 2006; Gibbons and Hinze, 2011) have explored the representation of

probabilistic programs as Kleisli arrows for the probability monad.

7.2 Discussion

The approach we have taken to providing an executable model of QIF is as

an embedded domain-specific language (Hudak, 1996; Gibbons, 2013) called

Kuifje, hosted within an existing general-purpose language. That is, we have

not taken the traditional approach of designing a standalone language for

QIF , and building a compiler that translates from QIF concrete syntax to

some more established language. Instead, we have defined a datatype Kuifje

to represent QIF abstract syntax trees as values, a semantic domain →dd
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to represent the behaviour of QIF programs, and a translation function

hyper :: Ord s ⇒ Kuifje s → (s →dd s) from abstract syntax to semantic

domain — all within an existing host language. In our case, that host language

is Haskell, although that fact is not too important — we could have chosen

OCaml, or Scala, or F#, or any one of a large number of alternatives instead.

Embedded DSLs offer a number of benefits over standalone languages,

especially when it comes to early exploratory studies. For example, one can

reuse existing tools such as type-checkers, compilers, and editing modes,

rather than having to build one’s own; moreover, programs in the DSL may

exploit features of the host language such as definition mechanisms, modules,

and basic datatypes, so these do not have to be added explicitly to the

language. These benefits make it quick and easy to build a prototype for the

purposes of studying a new language concept. On the other hand, programs

in the embedded DSL have to be encoded as abstract syntax trees, and

written using the syntactic conventions of the host language, rather than

enjoying a free choice of notation best suited to the task; this can be a bit

awkward. Once DSL design decisions have been explored and the language

design is stable, and the number of users and uses starts to grow, it is easier

to justify the additional effort of developing a standalone implementation,

perhaps taking the embedded DSL implementation as a starting point.

Our Haskell implementation is inspired by work on algebraic effects and

handlers (Pretnar, 2015), a language concept that assigns meaning to a syntax

tree built out of effectful operations by folding over it with an appropriate

algebra known as a handler. While the conventional approach of algebraic

effects and handlers applies to trees that have a free-monad structure, our

approach is an instance of the generalized framework of (Pieters et al., 2017)

that admits handlers for trees with a generalized monoid structure (Rivas

and Jaskelioff, 2017) like our plain monoids.

The monoidal representation of programs as state transformers, while

relatively simple, has one big limitation: it requires that the type of the

initial state is the same as that of intermediate states and of the final state.

This means that the program cannot introduce local and result variables,

or drop the initial variables and local variables. This leads to awkward

models where the initial state contains dummy values for local variables that

are initialized in the program. We can overcome this limitation and model

heterogenous state by moving –within the framework of generalized monoids–

from plain monoids over set to Hughes’ arrows (Hughes, 2000), which are

monoids in a category of so-called profunctors.
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Appendix A A-priori - and a-posteriori distributions

In §4.3 an example compared two programs that released information about

a variable x, initially distributed uniformly so that 0≤x<3. Here we show

how those numbers are calculated. Note that this is not an innovation of this

paper: we are merely filling in the background of the conventional treatment

of priors (a priori distributions) and posteriors (a posteriori distributions),

for those who might not be familiar with them.

In our example x is initially either 0, 1 or 2 with probability 1/3 for each,

i.e. the uniform distribution: this is called a priori because it is what the

observer believes before any leaks have occurred. Prior is short for a-priori

distribution.

If x mod 2 is leaked, then the observer will see either 0 –when x is 0 or

2–, or 1 when x is 1. The 0 observation occurs with probability 2/3, because

that is the probability that x is 0 or 2; observation 1 occurs with remaining

probability 1/3. In the 0 case, the observer reasons that x cannot be 1;

and that its probability of being 0 or 2 is 1/2 each, because their initial

probabilities were equal. This is the a posteriori distribution, conditioned on

the observation’s being 0, so that x is equally likely to be 0 or 2, and cannot

be 1. In the 1 case, she reasons that x must be 1 (and can’t be 0 or 2).

The corresponding calculations if x÷2 is leaked are that when 0 is observed,

she reasons that x is equally likely to be 0 or 1; and if she sees 1, she knows

for sure that x is 2.

Now if the choice is made between x mod 2 and x ÷ 2 with probability
1/2, and the observer knows whether mod or ÷ is used then, whichever it

turns out to have been used, she will be able to carry out the corresponding
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reasoning above. And so overall her conclusions are the weighted sum of the

separate outcomes, i.e. their average in this case. Thus:

• with probability 1/2×2/3 = 1/3 she will know that x is either 0 or 2 (with

equal probability for each, as explained above);

• with probability 1/2×1/3 = 1/6 she will know that x is 1;

• with probability 1/2×2/3 = 1/3 she will know that x is either 0 or 1; and

• with probability 1/2×1/3 = 1/6 she will know that x is 2.

The other situation is when the observer does not know whether mod or (÷)

was used. In that case she will see 0 with probability 1/2×2/3 + 1/2×2/3 = 2/3,

either because mod was used and x was 0 or 2, or because (÷) was used and

x was 0 or 1. And in that case 0 is twice as likely as each of the other two,

so that the posterior is that x is 0 with probability 1/2 and is 1 or 2 with

probability 1/4 each. When she sees 1, with probability 1/2×1/3 +1/2×1/3 = 1/3,

she will reason a posteriori that x is equally likely to be 1 or 2.

These two cases are handled automatically by the semantics we have

defined. The first is modelled by a conditional, leaking which branch is taken:

modOrDiv1 :: Kuifje Int

modOrDiv1 =

cond (λs → uniform [True,False ])

(observe (λx → return (x ‘mod ‘ 2)))

(observe (λx → return (x ‘div ‘ 2)))

Its effect is as follows:

> semdd modOrDiv1 (uniform [0 . . 2])

1÷ 3 1÷ 2 0

1÷ 2 1

1÷ 3 1÷ 2 0

1÷ 2 2

1÷ 6 1÷ 1 1

1÷ 6 1÷ 1 2

The second case is modelled by a probabilistic observation

modOrDiv2 :: Kuifje Int

modOrDiv2 = observe (λx → (x ‘mod ‘ 2) 1/2⊕ (x ‘div ‘ 2))

whose effect is



QIF with Monads in Haskell 51

> semdd modOrDiv2 (uniform [0 . . 2])

2÷ 3 1÷ 2 0

1÷ 4 1

1÷ 4 2

1÷ 3 1÷ 2 1

1÷ 2 2

Appendix B A password checker

The state is a record of five fields: a password pw and a guess gs, each a

list of characters; a loop counter i ; a list l of indices still to check; and a

Boolean result ans. Each of the programs uses either i or left to control

the loop, but not both; for simplicity, we use a common state record for them

all the programs.

data SP = SP { pw :: [Char ], gs :: [Char ], l :: [Int ], i :: Int , ans :: Bool }
deriving (Show ,Eq ,Ord)

Here is some boilerplate that invokes Template Haskell to generate a lens (a

particular higher-order function) for each of the state variables: each acts as

a getter and setter for its associated variable.

makeLenses ’’ SP

Function makeState takes a value for the password pw and for the guess gs

and produces a state containing those values (setting the other variables to

appropriate defaults):

makeState :: [Char ]→ [Char ]→ SP

makeState pw gs = SP { pw = pw , gs = gs, l = [ ], i = 0, ans = True }

At the end of the run, we will project the five-variable hyper onto a hyper

for pw alone, since that is the secret the adversary is trying to discover:

projectPw :: Dist (Dist SP)→ Dist (Dist [Char ])

projectPw = fmap (fmap (λs → s.pw))

A number of versions of the program now follow. Each starts not from an

initial state, but rather from an initial distribution over states. We will make

that a uniform distribution over all permutations of a password, and a single

fixed guess.

initialDist pw gs = uniform [makeState pw ′ gs | pw ′ ← permutations pw ]
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basicI :: Int → Kuifje SP
basicI n =

update (λs → return (s.i := 0)) # — i := 0;
update (λs → return (s.ans := True)) # — ans := true
while (λs → return (s.ans ∧ s.i < n)) — while (ans ∧ i <N ) do

( — begin
cond (λs → return ((s.pw !! s.i) 6= (s.gs !! s.i))) — if (pw [i ] 6= gs [i ])

(update (λs → return (s.ans := False))) — then ans := false
skip # — else skip

(update (λs → return (s.i := (s.i + 1)))) — i++
) — end

Figure B.1 Basic password checker, with early exit

The first program, shown in Figure B.1, checks the guess against the password

character-by-character, and exits the loop immediately if a mismatch is found.

Now we prepare to run the program and use projectPw to discover the

hyper over pw that results.

hyperI pw gs = projectPw (semdd (basicI (length pw)) (initialDist pw gs))

Here we choose as possible passwords all permutations of "abc" and actual

guess "abc". It yields the following output, showing that the early exit does

indeed leak information about the password: how long a prefix of it agrees

with the guess:

> hyperI "abc" "abc"

1÷ 6 1÷ 1 "abc"

1÷ 6 1÷ 1 "acb"

2÷ 3 1÷ 4 "bac"

1÷ 4 "bca"

1÷ 4 "cab"

1÷ 4 "cba"

The first inner, with probability 1/6, is the case where the password is correctly

guessed: only then will the loop run to completion, because of our choice of

passwords and guess — if the guess is correct for the first two characters, it

must be correct for the third also.

The second inner corresponds to the loop’s exiting after the second itera-

tion: here, again because of the particular values we have chosen, the only

possibility is that the first letter of the guess is correct but the second and

third are swapped.

The third inner is the case where the loop is exited after one iteration:
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basicL :: Int → Kuifje SP
basicL n =

update (λs → return (s.i := 0)) # — i := 0;
update (λs → return (s.ans := True)) # — ans := true
while (λs → return (s.i < n)) — while i <N do

( — begin
cond (λs → return ((s.pw !! s.i) 6= (s.gs !! s.i))) — if (pw [i ] 6= gs [i ])

(update (λs → return (s.ans := False))) — then ans := false
skip # — else skip

(update (λs → return (s.i := (s.i + 1)))) — i++
) — end

Figure B.2 Basic password checker, without early exit

then the first letter must be incorrect (2 possibilities), and the second and

third can be in either order (2 more possibilities), giving 1/2×2 for the inner

probabilities.

For our second example of this program, we use a guess "axc" that is not

one of the possible passwords: here, as just above, the 2/3 inner corresponds

to an exit after the first iteration. Unlike the above, there is a 1/3 inner

representing exit after the second iteration — guaranteed because the second

character "x" of the guess is certainly wrong. In this case however, the

adversary learns nothing about whether the password ends with "bc" or

with "cb".

> hyperI "abc" "axc"

1÷ 3 1÷ 2 "abc"

1÷ 2 "acb"

2÷ 3 1÷ 4 "bac"

1÷ 4 "bca"

1÷ 4 "cab"

1÷ 4 "cba"

In our second program basicL we try to plug the leak that basicI contains

simply by removing the loop’s early exit. It is shown in Fig. B.2.

We run it with

hyperL pw gs = projectPw (semdd (basicL (length pw)) (initialDist pw gs))

and obtain this surprising result:

> hyperL "abc" "abc"

1÷ 6 1÷ 1 "abc"

1÷ 6 1÷ 1 "acb"
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basicM :: Int → Kuifje SP
basicM n =

update (λs → return (s.i := 0)) # — i := 0;
update (λs → return (s.ans := True)) # — ans := true
while (λs → return (s.i < n)) — while i <N do

( — begin
(update (λs → return (s.ans := — ans:=

(s.ans ∧ (s.pw !! s.i) ≡ (s.gs !! s.i))))) # — ans ∧ (pw [i ] = gs [i ]);
(update (λs → return (s.i := (s.i + 1)))) — i++
) — end

Figure B.3 Basic password checker, without early exit and without leaking conditional

1÷ 6 1÷ 1 "bac"

1÷ 3 1÷ 2 "bca"

1÷ 2 "cab"

1÷ 6 1÷ 1 "cba"

Still the program is leaking information about the password, even though the

loop runs to completion every time — and this, we now realise, is because

the condition statement within the loop is leaking its condition. We knew

that, but had perhaps forgotten it: remember “Don’t branch on high.”

Our next attempt therefore is to replace the leaking conditional with an

assignment of a conditional expression, which is how we make the Boolean

pw [i ] 6= gs [i ] unobservable. That is shown in Fig. B.3, and we find

hyperM pw gs = projectPw (semdd (basicM (length pw)) (initialDist pw gs))

> hyperM "abc" "abc"

1÷ 1 1÷ 6 "abc"

1÷ 6 "acb"

1÷ 6 "bac"

1÷ 6 "bca"

1÷ 6 "cab"

1÷ 6 "cba"

indicating that in this case the adversary discovers nothing about the pass-

word at all: the resulting hyper, projected onto pw , is a singleton over an inner

whose probabilities are simply those we knew before running the program in

the first place.

But at this point we should wonder why the adversary does not discover
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basicN :: Int → Kuifje SP
basicN n =

update (λs → return (s.i := 0)) # — i := 0;
update (λs → return (s.ans := True)) # — ans := true
while (λs → return (s.i < n)) — while i <N do

( — begin
(update (λs → return (s.ans := — ans:=

(s.ans ∧ (s.pw !! s.i) ≡ (s.gs !! s.i))))) # — ans ∧ (pw [i ] = gs [i ]);
(update (λs → return (s.i := (s.i + 1)))) — i++
) # — end;

observe (λs → return (s.ans)) — observe ans

Figure B.4 Basic password checker, success observed

the password when she guesses correctly; and we should wonder as well why

we haven’t noticed that issue before. . .

The reason is that in our earlier examples the adversary was learning

whether she had guessed correctly merely by observing the side channel!

That is, the leak was so severe she did not even have to look to see whether

the password checker had accepted her guess or not. Only now, with the side

channel closed, do we discover that we have accidentally left off the final

observe ans that models the adversary’s learning the result of her guess.

We remedy that in Fig. B.4, and find

hyperN pw gs = projectPw (semdd (basicN (length pw)) (initialDist pw gs))

> hyperN "abc" "abc"

1÷ 6 1÷ 1 "abc"

5÷ 6 1÷ 5 "acb"

1÷ 5 "bac"

1÷ 5 "bca"

1÷ 5 "cab"

1÷ 5 "cba"

that is that with probability 1/6 the adversary learns the password exactly,

because she guessed it correctly; but when she guesses incorrectly, she finds

none of the passwords she didn’t guess to be any more likely than any other.

And now –finally– we come to our obfuscating password checker that

compares the characters of the password and the guess in a randomly chosen

order. It is in Fig. B.5.

Running basicR we discover that in the 1/6 case the adversary guesses the

password correctly, she is of course still certain what it is. But now, when
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basicR :: Int → Kuifje SP
basicR n =

update (λs → return (s.l := [0 . .n − 1])) # — l := [0, . . . ,n − 1];
update (λs → return (s.ans := True)) # — ans := true;
while (λs → return (s.ans ∧ not (null (s.l)))) — while (ans ∧ l 6= [ ]) do

( — begin
update (λs → uniform [s.i := j | j ← s.l ]) # — i := uniform (l);
(update (λs → return (s.ans := — ans:=

(s.ans ∧ (s.pw !! s.i) ≡ (s.gs !! s.i))))) # — ans ∧ (pw [i ] = gs [i ]);
(update (λs → return (s.l := (s.l \\ [s.i ])))) — l := l − {i }
) # — end;

observe (λs → return (s.ans)) — observe ans

Figure B.5 Randomized password checker

she does not guess correctly, she knows much less than she did in the case

hyperI , where we began, where early exit leaked the length of the longest

matching prefix.

hyperR pw gs = projectPw (semdd (basicR (length pw)) (initialDist pw gs))

> hyperR "abc" "abc"

1÷ 6 1÷ 1 "abc"

2÷ 3 1÷ 6 "acb"

1÷ 6 "bac"

1÷ 4 "bca"

1÷ 4 "cab"

1÷ 6 "cba"

1÷ 6 1÷ 3 "acb"

1÷ 3 "bac"

1÷ 3 "cba"

The difference in security between basicI and basicR is clearly revealed

by taking the conditional Bayes entropy of each, i.e. (as we saw in the

exponential example) the probability that an adversary will be able to guess

the password after running the checker. We find

> condEntropy bv (hyperR "abc" "abc")

7÷ 18

> condEntropy bv (hyperI "abc" "abc")

1÷ 2
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that is that the chance is 1/2 for the “check in ascending order” version basicI ,

but it is indeed slightly less, at 7/18, in the case that the order is random.

For longer passwords, printing the hyper is not so informative; but still

we can give the conditional Bayes vulnerability (and other entropies too).

We find for example that the obfuscated algorithm, even with its early exit,

reduces the probability of guessing the password by half:

> condEntropy bv (hyperI "abcde" "abcde")

1÷ 24

> condEntropy bv (hyperR "abcde" "abcde")

13÷ 600

There are other entropies, of course: one of them is “guessing entropy” which

is the average number of tries required to guess the secret: the adversary’s

strategy is to guess possible secret values one-by-one in decreasing order of

their probability. 28

We define

ge :: Ord a ⇒ Dist a → Prob

ge = sum ◦ zipWith (∗) [1 . .] ◦ sortBy (flip compare) ◦map snd ◦
runD ◦ reduction

and find

> condEntropy ge (hyperR "abc" "abc")

7÷ 3

> condEntropy ge (hyperI "abc" "abc")

2÷ 1

that is that the average number of guesses for a three-character password is

just more than in the sequential case, where the average number of guesses

is exactly 2.

For five-character passwords (of which there are 5! = 120) we find

> condEntropy ge (hyperR "abcde" "abcde")

5729÷ 120

> condEntropy ge (hyperI "abcde" "abcde")

1613÷ 40

that is about 47 guesses for the obfuscated version, on average, versus about

40 guesses for the sequential version. For six-character passwords we find

28 This does not mean that the adversary runs the password checker many times: rather it means
that she runs it once (only) and, on the basis of what she learns, makes successive guesses “on
paper” as to what the password actually is.
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> condEntropy bv (hyperI "abcdef" "abcdef")

1÷ 120

> condEntropy bv (hyperR "abcdef" "abcdef")

3÷ 800

> condEntropy ge (hyperI "abcdef" "abcdef")

20571÷ 80

> condEntropy ge (hyperR "abcdef" "abcdef")

214171÷ 720

which is about probability 0.008 vs. 0.004 for Bayes vulnerability, and ex-

pected guesses 257 vs. 297 for guessing entropy of the sequential vs. ran-

domised versions respectively. Those results suggest that the extra security

might not be worth the effort of the obfuscation, at least in these examples.

Finally, we might wonder that –since now we are again allowing an early

(though obfuscated) exit– whether there is any longer a reason to replace our

original conditional in basicI and basicL with the “atomic” assignment to

ans in basicM and its successors. After all, now that the loop’s exit is (once

again) observable, the adversary knows what the “answers” ans must have

been: a succession of true’s and then perhaps a false. The randomisation of

i ensures however that, so to speak, she does not know the questions. Thus

(one last time) we re-define our program:

hyperS pw gs = projectPw (semdd (basicS (length pw)) (initialDist pw gs))

> hyperS "abc" "abc"

1÷ 6 1÷ 1 "abc"

2÷ 3 1÷ 6 "acb"

1÷ 6 "bac"

1÷ 4 "bca"

1÷ 4 "cab"

1÷ 6 "cba"

1÷ 6 1÷ 3 "acb"

1÷ 3 "bac"

1÷ 3 "cba"

And indeed we find replacing the conditional seems to offer no extra security.
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basicS :: Int → Kuifje SP
basicS n =

update (λs → return (s.l := [0 . .n − 1])) # — l := [0, . . . ,n − 1];
update (λs → return (s.ans := True)) # — ans := true;
while (λs → return (s.ans ∧ not (null (s.l)))) — while (ans ∧ l 6= [ ]) do

( — begin
update (λs → uniform [s.i := j | j ← s.l ]) # — i := uniform (l);
cond (λs → return ((s.pw !! s.i) 6= (s.gs !! s.i))) — if (pw [i ] 6= gs [i ])

(update (λs → return (s.ans := False))) — then ans := false
skip # — else skip

(update (λs → return (s.l := (s.l \\ [s.i ])))) — l := l − {i }
) # — end;

observe (λs → return (s.ans)) — observe ans

Figure B.6 Randomized password checker, but with conditional reinstated.
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