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Abstract. Unfolds generate data structures, and folds consume them.
A hylomorphism is a fold after an unfold, generating then consuming a
virtual data structure. A metamorphism is the opposite composition, an
unfold after a fold; typically, it will convert from one data representation
to another. In general, metamorphisms are less interesting than hylomor-
phisms: there is no automatic fusion to deforest the intermediate virtual
data structure. However, under certain conditions fusion is possible: some
of the work of the unfold can be done before all of the work of the fold
is complete. This permits streaming metamorphisms, and among other
things allows conversion of infinite data representations. We present a
theory of metamorphisms and outline some examples.

1 Introduction

Folds and unfolds in functional programming [18, 28, 3] are well-known tools in
the programmer’s toolbox. Many programs that consume a data structure follow
the pattern of a fold; and dually, many that produce a data structure do so as
an unfold. In both cases, the structure of the program is determined by the
structure of the data it processes.

It is natural to consider also compositions of these operations. Meijer [30]
coined the term hylomorphism for the composition of a fold after an unfold. The
virtual data structure [35] produced by the unfold is subsequently consumed by
the fold; the structure of that data determines the structure of both its producer
and its consumer. Under certain rather weak conditions, the intermediate data
structure may be eliminated or deforested [39], and the two phases fused into
one slightly more efficient one.

In this paper, we consider the opposite composition, of an unfold after a fold.
Programs of this form consume an input data structure using a fold, construct-
ing some intermediate (possibly unstructured) data, and from this intermediary
produce an output data structure using an unfold. Note that the two data struc-
tures may now be of different shapes, since they do not meet. Indeed, such
programs may often be thought of as representation changers, converting from
one structured representation of some abstract data to a different structured
representation. Despite the risk of putting the reader off with yet another neolo-
gism of Greek origin, we cannot resist coining the term metamorphism for such
compositions, because they typically metamorphose representations.
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In general, metamorphisms are perhaps less interesting than hylomorphisms,
because there is no nearly-automatic deforestation. Nevertheless, sometimes fu-
sion is possible; under certain conditions, some of the unfolding may be per-
formed before all of the folding is complete. This kind of fusion can be helpful
for controlling the size of the intermediate data. Perhaps more importantly, it
can allow conversions between infinite data representations. For this reason, we
call such fused metamorphisms streaming algorithms ; they are the main sub-
ject of this paper. We encountered them fortuitously while trying to describe
some data compression algorithms [4], but have since realized that they are an
interesting construction in their own right.

The remainder of this paper is organized as follows. Section 2 summarizes
the theory of folds and unfolds. Section 3 introduces metamorphisms, which are
unfolds after folds. Section 4 presents a theory of streaming, which is the main
topic of the paper. Section 5 provides an extended application of streaming, and
Section 6 outlines two other applications described in more detail elsewhere.
Finally, Section 7 discusses some ideas for generalizing the currently rather list-
oriented theory, and describes related work.

2 Origami programming

We are interested in capturing and studying recurring patterns of computation,
such as folds and unfolds. As has been strongly argued by the recently popular
design patterns movement [8], identifying and exploring such patterns has many
benefits: reuse of abstractions, rendering ‘folk knowledge’ in a more accessible
format, providing a common vocabulary of discourse, and so on. What distin-
guishes patterns in functional programming from patterns in object-oriented and
other programming paradigms is that the better ‘glue’ available in the former
[20] allows the patterns to be expressed as abstractions within the language,
rather than having to resort to informal prose and diagrams.

We use the notation of Haskell [25], the de facto standard lazy functional
programming language, except that we take the liberty to use some typographic
effects in formatting, and to elide some awkwardnesses (such as type coercions
and qualifications) that are necessary for programming but that obscure the
points we are trying to make.

Most of this paper involves the datatype of lists:

data [α] = [ ] | α : [α]

That is, the datatype [α] of lists with elements of type α consists of the empty
list [ ], and non-empty lists of the form a : x with head a :: α and tail x :: [α].

The primary patterns of computation over such lists are the fold, which con-
sumes a list and produces some value:

foldr :: (α → β → β) → β → [α] → β
foldr f b [ ] =̂ b
foldr f b (a : x ) =̂ f a (foldr f b x )
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and the unfold [16], which produces a list from some seed:

unfoldr :: (β → Maybe (α, β)) → β → [α]
unfoldr f b =̂ case f b of

Just (a, b′) → a : unfoldr f b′

Nothing → [ ]

Here, the datatype Maybe augments a type α with an additional value Nothing:

data Maybe α = Nothing | Just α

The foldr pattern consumes list elements from right to left (following the
way lists are constructed); as a variation on this, there is another fold which
consumes elements from left to right:

foldl :: (β → α → β) → β → [α] → β
foldl f b [ ] =̂ b
foldl f b (a : x ) =̂ foldl f (f b a) x

We also use the operator scanl, which is like foldl but which returns all partial
results instead of just the final one:

scanl :: (β → α → β) → β → [α] → [β]
scanl f b [ ] =̂ [b]
scanl f b (a : x ) =̂ b : scanl f (f b a) x

We introduce also a datatype of internally-labelled binary trees:

data Tree α = Node (Maybe (α, Tree α, Tree α))

with fold operator

foldt :: (Maybe (α, β, β) → β) → Tree α → β
foldt f (Node Nothing) =̂ f Nothing
foldt f (Node (Just (a, t , u))) =̂ f (Just (a, foldt f t , foldt f u))

and unfold operator

unfoldt :: (β → Maybe (α, β, β)) → β → Tree α
unfoldt f b =̂ case f b of

Nothing → Node Nothing
Just (a, b1, b2) → Node (Just (a, unfoldt f b1, unfoldt f b2))

(It would be more elegant to define lists and their recursion patterns in the
same style, but for consistency with the Haskell standard prelude we adopt its
definitions. We could also condense the above code by using various higher-order
combinators, but for accessibility we refrain from doing so.)

The remaining notation will be introduced as it is encountered. For more
examples of the use of these and related patterns in functional programming,
see [13], and for the theory behind this approach to programming, see [12]; for
a slightly different view of both, see [3].
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3 Metamorphisms

In this section we present three simple examples of metamorphisms, or repre-
sentation changers in the form of unfolds after folds. These three represent the
entire spectrum of possibilities: it turns out that the first permits streaming au-
tomatically (assuming lazy evaluation), the second does so with some work, and
the third does not permit it at all.

3.1 Reformatting lines

The classic application of metamorphisms is for dealing with structure clashes
[22]: data is presented in a format that is inconvenient for a particular kind
of processing, so it needs to be rearranged into a more convenient format. For
example, a piece of text might be presented in 70-character lines, but required
for processing in 60-character lines. Rather than complicate the processing by
having to keep track of where in a given 70-character line a virtual 60-character
line starts, good practice would be to separate the concerns of rearranging the
data and of processing it. A control-oriented or imperative view of this task
can be expressed in terms of coroutines: one coroutine, the processor, repeatedly
requests the other, the rearranger, for the next 60-character line. A data-oriented
or declarative view of the same task consists of describing the intermediate data
structure, a list of 60-character lines. With lazy evaluation, the two often turn
out to be equivalent; but the data-oriented view may be simpler, and is certainly
the more natural presentation in functional programming.

We define the following Haskell functions.

reformat :: Integer → [[α]] → [[α]]
reformat n =̂ writeLines n · readLines

readLines :: [[α]] → [α]
readLines =̂ foldr (++) [ ]
writeLines :: Integer → [α] → [[α]]
writeLines n =̂ unfoldr (split n) where split n [ ] =̂ Nothing

split n x =̂ Just (splitAt n x )

The function readLines is just what is called concat in the Haskell standard
prelude; we have written it explicitly as a fold here to emphasize the program
structure. The function writeLines n partitions a list into segments of length n,
the last segment possibly being short. (The operator ‘·’ denotes function com-
position, and ‘++’ is list concatenation.)

The function reformat fits our definition of a metamorphism, since it consists
of an unfold after a fold. Because ++ is non-strict in its right-hand argument,
reformat is automatically streaming when lazily evaluated: the first lines of out-
put can be produced before all the input has been consumed. Thus, we need
not maintain the whole concatenated list (the result of readLines) in memory at
once, and we can even reformat infinite lists of lines.
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3.2 Radix conversion

Converting fractions from one radix to another is a change of representation. We
define functions radixConvert , fromBase and toBase as follows:

radixConvert :: (Integer , Integer) → [Integer ] → [Integer ]
radixConvert (b, b′) =̂ toBase b′ · fromBase b

fromBase :: Integer → [Integer ] → Rational
fromBase b =̂ foldr stepb 0

toBase :: Integer → Rational → [Integer ]
toBase b =̂ unfoldr nextb

where

stepb n x =̂ (x + n) ÷ b
nextb 0 =̂ Nothing
nextb x =̂ Just (�y�, y − �y�) where y =̂ b × x

Thus, fromBase b takes a (finite) list of digits and converts it into a fraction;
provided the digits are all at least zero and less than b, the resulting fraction
will be at least zero and less than one. For example,

fromBase 10 [2, 5] = step10 2 (step10 5 0) = 1/4

Then toBase b takes a fraction between zero and one, and converts it into a
(possibly infinite) list of digits in base b. For example,

toBase 2 (1/4) = 0 : unfoldr next2 (1/2) = 0 : 1 : unfoldr next2 0 = [0, 1]

Composing fromBase for one base with toBase for another effects a change of
base.

At first blush, this looks very similar in structure to the reformatting example
of Section 3.1. However, now the fold operator stepb is strict in its right-hand ar-
gument. Therefore, fromBase b must consume its whole input before it generates
any output — so these conversions will not work for infinite fractions, and even
for finite fractions the entire input must be read before any output is generated.

Intuitively, one might expect to be able to do better than this. For example,
consider converting the decimal fraction [2, 5] to the binary fraction [0, 1]. The
initial 2 alone is sufficient to justify the production of the first bit 0 of the output:
whatever follows (provided that the input really does consist of decimal digits),
the fraction lies between 2/10 and 3/10, and so its binary representation must start
with a zero. We make this intuition precise in Section 4; it involves, among other
steps, inverting the structure of the traversal of the input by replacing the foldr
with a foldl.

Of course, digit sequences like this are not a good representation for fractions:
many useful operations turn out to be uncomputable. In Section 5, we look at a
better representation. It still turns out to leave some operations uncomputable
(as any non-redundant representation must), but there are fewer of them.
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3.3 Heapsort

As a third introductory example, we consider tree-based sorting algorithms. One
such sorting algorithm is a variation on Hoare’s Quicksort [19]. What makes
Quicksort particularly quick is that it is in-place, needing only logarithmic ex-
tra space for the control stack; but it is difficult to treat in-place algorithms
functionally, so we ignore that aspect. Structurally, Quicksort turns out to be
a hylomorphism: it unfolds the input list by repeated partitioning to produce a
binary search tree, then folds this tree to yield the output list.

We use the datatype of binary trees from Section 2. We also suppose functions

partition :: [α] → Maybe (α, [α], [α])
join :: Maybe (α, [α], [α]) → [α]

The first partitions a non-empty list into a pivot and the smaller and larger
elements (or returns Nothing given an empty list); the second concatenates a
pair of lists with a given element in between (or returns the empty list given
Nothing); we omit the definitions for brevity. Given these auxiliary functions, we
have

quicksort =̂ foldt join · unfoldt partition

as a hylomorphism.
One can sort also as a tree metamorphism: the same type of tree is an in-

termediate data structure, but this time it is a minheap rather than a binary
search tree: the element stored at each node is no greater than any element in
either child of that node. Moreover, this time the tree producer is a list fold and
the tree consumer is a list unfold.

We suppose functions

insert :: α → Tree α → Tree α
splitMin :: Tree α → Maybe (α, Tree α)

The first inserts an element into a heap; the second splits a heap into its least
element and the remainder (or returns Nothing, given the empty heap). Given
these auxilliary functions, we have

heapsort =̂ unfoldr splitMin · foldr insert (Node Nothing)

as a metamorphism. (Contrast this description of heapsort with the one given
by Augusteijn [1] in terms of hylomorphisms, driving the computation by the
shape of the intermediate tree rather than the two lists.)

Here, unlike in the reformatting and radix conversion examples, there is no
hope for streaming: the second phase cannot possibly make any progress until
the entire input is read, because the first element of the sorted output (which
is the least element of the list) might be the last element of the input. Sorting
is inherently a memory-intensive process, and cannot be performed on infinite
lists.
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4 Streaming

Of the three examples in Section 3, one automatically permits streaming and one
can never do; only one, namely radix conversion, warrants further investigation
in this regard. As suggested in Section 3.2, it ought to be possible to produce
some of the output before all of the input is consumed. In this section, we see
how this can be done, developing some general results along the way.

4.1 The streaming theorem

The second phase of the metamorphism involves producing the output, main-
taining some state in the process; that state is initialized to the result of folding
the entire input, and evolves as the output is unfolded. Streaming must involve
starting to unfold from an earlier state, the result of folding only some initial
part of the input. Therefore, it is natural to consider metamorphisms in which
the folding phase is an instance of foldl:

unfoldr f · foldl g c

Essentially the problem is a matter of finding some kind of invariant of this
state that determines the initial behaviour of the unfold. This idea is captured
by the following definition.

Definition 1. The streaming condition for f and g is:

f c = Just (b, c′) ⇒ f (g c a) = Just (b, g c′ a)

for all a, b, c and c′.

Informally, the streaming condition states the following: if c is a state from which
the unfold would produce some output element (rather than merely the empty
list), then so is the modified state g ca for any a; moreover, the element b output
from c is the same as that output from g c a, and the residual states c′ and g c′ a
stand in the same relation as the starting states c and g c a. In other words, ‘the
next output produced’ is invariant under consuming another input.

This invariant property is sufficient for the unfold and the fold to be fused into
a single process, which alternates (not necessarily strictly) between consuming
inputs and producing outputs. We define:

stream :: (γ → Maybe (β, γ)) → (γ → α → γ) → γ → [α] → [β]
stream f g c x =̂ case f c of

Just (b, c′) → b : stream f g c′ x
Nothing → case x of

a : x ′ → stream f g (g c a) x ′

[ ] → [ ]

Informally, stream f g :: γ → [α] → [β] involves a producer f and a consumer g;
maintaining a state c, it consumes an input list x and produces an output list y.
If f can produce an output element b from the state c, this output is delivered
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and the state revised accordingly. If f cannot, but there is an input a left, this
input is consumed and the state revised accordingly. When the state is ‘wrung
dry’ and the input is exhausted, the process terminates.

Formally, the relationship between the metamorphism and the streaming
algorithm is given by the following theorem.

Theorem 2 (Streaming Theorem [4]). If the streaming condition holds for
f and g, then

stream f g c x = unfoldr f (foldl g c x )

on finite lists x .

Proof. The proof is given in [4]. We prove a stronger theorem (Theorem 4) later.

Note that the result relates behaviours on finite lists only: on infinite lists, the
foldl never yields a result, so the metamorphism may not either, whereas the
streaming process can be productive — indeed, that is the main point of intro-
ducing streaming in the first place.

As a simple example, consider the functions unCons and snoc, defined as
follows:

unCons [ ] =̂ Nothing
unCons (a : x ) =̂ Just (a, x )

snoc x a =̂ x ++ [a]

The streaming condition holds for unCons and snoc: unCons x = Just (b, x ′)
implies unCons (snoc x a) = Just (b, snoc x ′ a). Therefore, Theorem 2 applies,
and

unfoldr unCons · foldl snoc [ ] = stream unCons snoc [ ]

on finite lists (but not infinite ones!). The left-hand side is a two-stage copying
process with an unbounded intermediate buffer, and the right-hand side a one-
stage copying queue with a one-place buffer.

4.2 Reversing the order of evaluation

In order to make a streaming version of radix conversion, we need to rewrite
fromBase b as an instance of foldl rather than of foldr. Fortunately, there is a
standard technique for doing this:

foldr f b = applyto b · foldr (·) id · map f

where applyto b f =̂ f b. Because composition is associative with unit id, the foldr
on the right-hand side can — by the First Duality Theorem [6] — be replaced
by a foldl.

Although valid, this is not always very helpful. In particular, it can be quite
inefficient — the fold now constructs a long composition of little functions of the
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form f a, and this composition typically cannot be simplified until it is eventually
applied to b. However, it is often possible that we can find some representation of
those little functions that admits composition and application in constant time.
Reynolds [34] calls this transformation defunctionalization.

Theorem 3. Given fold arguments f :: α → β → β and b :: β, suppose there is
a type ρ of representations of functions of the form f a and their compositions,
with the following operations:
– a representation function rep :: α → ρ (so that rep a is the representation of

f a);
– an abstraction function abs :: ρ → β → β, such that abs (rep a) = f a;
– an analogue � :: ρ → ρ → ρ of function composition, such that abs (r � s) =

abs r · abs s;
– an analogue ident :: ρ of the identity function, such that abs ident = id;
– an analogue appb :: ρ → β of application to b, such that appb r = abs r b.

Then
foldr f b = appb · foldl (�) ident · map rep

The foldl and the map can be fused:
foldr f b = appb · foldl (�) ident

where r � a =̂ r � rep a.

(Note that the abstraction function abs is used above only for stating the cor-
rectness conditions; it is not applied anywhere.)

For example, let us return to radix conversion, as introduced in Section 3.2.
The ‘little functions’ here are of the form stepb n, or equivalently, (÷b) · (+n).
This class of functions is closed under composition:

(stepc n · stepb m) x
= {composition}

stepc n (stepb m x )
= {step}

((x + m) ÷ b + n) ÷ c
= {arithmetic}

(x + m + b × n) ÷ (b × c)
= {composition}

((÷(b × c)) · (+m + b × n)) x

We therefore defunctionalize stepb n to the pair (n, b), and define:

repb n =̂ (n, b)
abs (n, b) x =̂ (x + n) ÷ b
(n, c) � (m, b) =̂ (m + b × n, b × c)
(n, c) �b m =̂ (n, c) � repb m =̂ (m + b × n, b × c)
ident =̂ (0, 1)
app (n, b) =̂ abs (n, b) 0 =̂ n ÷ b

Theorem 3 then tells us that

fromBase b = app · foldl (�b) ident
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4.3 Checking the streaming condition

We cannot quite apply Theorem 2 yet, because the composition of toBase b′

and the revised fromBase b has the abstraction function app between the unfold
and the fold. Fortunately, that app fuses with the unfold. For brevity below, we
define

mapl f Nothing =̂ Nothing
mapl f (Just (a, b)) =̂ Just (a, f b)

(that is, mapl is the map operation of the base functor for the list datatype);
then

unfoldr nextc · app = unfoldr nextappc

⇐ {unfold fusion}
nextc · app = mapl app · nextappc

and

nextc (app (n, r))
= {app, nextc; let u =̂ �n × c ÷ r�}

if n 0 then Nothing else Just (u,n×c÷r − u)
= {app; there is some leeway here (see below)}

if n 0 then Nothing else Just (u, app (n − u×r÷c, r÷c))
= {mapl}

mapl app (if n 0 then Nothing else Just (u, (n − u×r÷c, r÷c)))

Therefore we try defining

nextappc (n, r) =̂ if n 0 then Nothing else Just (u, (n − u×r÷c, r÷c))
where u =̂ �n × c ÷ r�

Note that there was some leeway here: we had to partition the rational n×c÷r−u
into a numerator and denominator, and we chose (n − u×r÷c, r÷c) out of the
many ways of doing this. One might perhaps have expected (n×c − u×r , r)
instead; however, this leads to a dead-end, as we show later. Note that our
choice involves generalizing from integer to rational components.

Having now massaged our radix conversion program into the correct format:

radixConvert (b, c) = unfoldr nextappc · foldl (�b) ident

we may consider whether the streaming condition holds for nextappc and �b ;
that is, whether

nextappc (n, r) = Just (u, (n ′, r ′))
⇒

nextappc ((n, r) �b m) = Just (u, (n ′, r ′) �b m)

An element u is produced from a state (n, r) iff n �= 0, in which case u =
�n × c÷ r�. The modified state (n, r)�b m evaluates to (m + b×n, b× r). Since
n, b > 0 and m ≥ 0, this necessarily yields an element; this element v equals
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�(m + b × n) × c ÷ (b × r)�. We have to check that u and v are equal. Sadly,
in general they are not: since 0 ≤ m < b, it follows that v lies between u and
�(n + 1) × c ÷ r�, but these two bounds need not meet.

Intuitively, this can happen when the state has not completely determined
the next output, and further inputs are needed in order to make a commitment
to that output. For example, consider having consumed the first digit 6 while
converting the sequence [6, 7] in decimal (representing 0.6710) to ternary. The
fraction 0.610 is about 0.12103; nevertheless, it is not safe to commit to producing
the digit 1, because the true result is greater than 0.23, and there is not enough
information to decide whether to output a 1 or a 2 until the 7 has been consumed
as well.

This is a common situation with streaming algorithms: the producer function
(nextapp above) needs to be more cautious when interleaved with consumption
steps than it does when all the input has been consumed. In the latter situation,
there are no further inputs to invalidate a commitment made to an output; but
in the former, a subsequent input might invalidate whatever output has been
produced. The solution to this problem is to introduce a more sophisticated
version of streaming, which proceeds more cautiously while input remains, but
switches to the normal more aggressive mode if and when the input is exhausted.
That is the subject of the next section.

4.4 Flushing streams

The typical approach is to introduce a ‘restriction’

snextapp = guard safe nextapp

of nextapp for some predicate safe, where

guard p f x =̂ if p x then f x else Nothing

and to use snextapp as the producer for the streaming process. In the case of
radix conversion, the predicate safec (dependent on the output base c) could be
defined

safec (n, r) =̂ (�n × c ÷ r� �(n + 1) × c ÷ r�)
That is, the state (n, r) is safe for the output base c if these lower and upper
bounds on the next digit meet; with this proviso, the streaming condition holds,
as we checked above. (In fact, we need to check not only that the same elements
are produced from the unmodified and the modified state, but also that the two
residual states are related in the same way as the two original states. With the
definition of nextappc that we chose above, this second condition does hold; with
the more obvious definition involving (n×c − u×r , r) that we rejected, it does
not.)

However, with this restricted producer the streaming process no longer has
the same behaviour on finite lists as does the plain metamorphism: when the
input is exhausted, the more cautious snextapp may have left some outputs
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still to be produced that the more aggressive nextapp would have emitted. The
streaming process should therefore switch into a final ‘flushing’ phase when all
the input has been consumed.

This insight is formalized in the following generalization of stream:

fstream :: (γ→Maybe (γ, β)) → (γ→α→γ) → (γ→[β]) → γ → [α] → [β]
fstream f g h c x =̂ case f c of

Just (b, c′) → b : fstream f g h c′ x
Nothing → case x of

a : x ′ → fstream f g h (g c a) x ′

[ ] → h c

The difference between fstream and stream is that the former has an extra ar-
gument, h, a ‘flusher’; when the state is wrung as dry as it can be and the input
is exhausted, the flusher is applied to the state to squeeze the last few elements
out. This is a generalization, because supplying the trivial flusher that always
returns the empty list reduces fstream to stream.

The relationship of metamorphisms to flushing streams is a little more com-
plicated than that to ordinary streams. One way of expressing the relationship
is via a generalization of unfoldr, whose final action is to generate a whole tail
of the resulting list rather than the empty list. This is an instance of primi-
tive corecursion (called an apomorphism by Vene and Uustalu [37]), which is
the categorical dual of primitive recursion (called a paramorphism by Meertens
[29]).

apol :: (β → Maybe (α, β)) → (β → [α]) → β → [α]
apol f h b =̂ case f b of

Just (a, b′) → a : apol f h b′

Nothing → h b

Informally, apolf hb = unfoldrf b++hb′, where b′ is the final state of the unfold (if
there is one — and if there is not, the value of h b′ is irrelevant), and unfoldr f =
apol f (const [ ]). On finite inputs, provided that the streaming condition holds, a
flushing stream process yields the same result as the ordinary streaming process,
but with the results of flushing the final state (if any) appended.

Theorem 4 (Flushing Stream Theorem). If the streaming condition holds
for f and g, then

fstream f g h c x = apol f h (foldl g c x )

on finite lists x .

The proof uses the following lemma [4], which lifts the streaming condition from
single inputs to finite lists of inputs.

Lemma 5. If the streaming condition holds for f and g, then

f c = Just (b, c′) ⇒ f (foldl g c x ) = Just (b, foldl g c′ x )

for all b, c, c′ and finite lists x .
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It also uses the approximation lemma [5, 15].

Lemma 6 (Approximation Lemma). For finite, infinite or partial lists x
and y,

x = y ≡ ∀n. approx n x = approx n y

where
approx :: Int → [α] → [α]
approx (n + 1) [ ] = [ ]
approx (n + 1) (a : x ) = a : approx n x

(Note that approx 0 x = ⊥ for any x , by case exhaustion.)

Proof (of Theorem 4). By Lemma 6, it suffices to show, for fixed f , g, h and for
all n and finite x , that

∀c. approx n (fstream f g h c x ) = approx n (apol f h (foldl g c x ))

under the assumption that the streaming condition holds for f and g. We use a
‘double induction’ simultaneously over n and the length #x of x . The inductive
hypothesis is that

∀c. approx m (fstream f g h c y) = approx m (apol f h (foldl g c y))

for any m, y such that m < n∧#y ≤ #x or m ≤ n∧#y < #x . We then proceed
by case analysis to complete the inductive step.

Case f c = Just (b, d). In this case, we make a subsidiary case analysis on n.

Subcase n = 0. Then the result holds trivially.
Subcase n = n ′ + 1. Then we have:

approx (n ′ + 1) (apol f h (foldl g c x ))
= {Lemma 5: f (foldl g c x ) = Just (b, foldl g d x )}

approx (n ′ + 1) (b : apol f h (foldl g d x ))
= {approx}

b : approx n ′ (apol f h (foldl g d x ))
= {induction: n ′ < n}

b : approx n ′ (fstream f g h d x )
= {approx}

approx (n ′ + 1) (b : fstream f g h d x )
= {fstream; case assumption}

approx (n ′ + 1) (fstream f g h c x )

Case f c = Nothing. In this case, we make a subsidiary case analysis on x .

Subcase x = a : x ′. Then
apol f h (foldl g c (a : x ′))

= {foldl}
apol f h (foldl g (g c a) x ′))

= {induction: #x ′ < #x}
fstream f g h (g c a) x ′

= {fstream; case assumption}
fstream f g h c (a : x ′)
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Subcase x = [ ]. Then

apol f h (foldl g c [ ])
= {foldl}

apol f h c
= {case assumption}

h c
= {fstream; case assumption}

fstream f g h c [ ]

4.5 Invoking the Flushing Stream Theorem

Theorem 4 gives conditions under which an apomorphism applied to the result
of a foldl may be streamed. This seems of limited use, since such scenarios are
not commonly found. However, they can be constructed from more common
scenarios in which the apomorphism is replaced with a simpler unfold. One way
is to introduce the trivial apomorphism, whose flusher always returns the empty
list. A more interesting, and the most typical, way is via the observation that

apol (guard p f ) (unfoldr f ) = unfoldr f

for any predicate p. Informally, the work of an unfold can be partitioned into
‘cautious’ production, using the more restricted producer guard p f , followed by
more ‘aggressive’ production using simply f when the more cautious producer
blocks.

4.6 Radix conversion as a flushing stream

Returning for a final time to radix conversion, we define

snextappc (n, r) =̂ guard safec nextappc

We verified in Sections 4.3 and 4.4 that the streaming condition holds for snextappc

and �b . Theorem 4 then tells us that we can convert from base b to base c using

radixConvert (b, c) = fstream snextappc (�b) (unfoldr nextappc) (0, 1)

This program works for finite or infinite inputs, and is always productive. (It
does, however, always produce an infinite result, even when a finite result would
be correct. For example, it will correctly convert 1/3 from base 10 to base 2, but
in converting from base 10 to base 3 it will produce an infinite tail of zeroes.
One cannot really hope to do better, as returning a finite output depending on
the entire infinite input is uncomputable.)
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5 Continued fractions

Continued fractions are finite or infinite constructions of the form

b0 +
a0

b1 +
a1

b2 +
a2

b3 + · · ·
in which all the coefficients are integers. They provide an elegant representation
of numbers, both rational and irrational. They have therefore been proposed
by various authors [2, 17, 24, 38, 26, 27] as a good format in which to carry out
exact real arithmetic. Some of the algorithms for simple arithmetic operations on
continued fractions can be seen as metamorphisms, and as we shall show here,
they can typically be streamed.

We consider algorithms on regular continued fractions: ones in which all the ai

coefficients are 1, and all the bi coefficients (except perhaps b0) are at least 1. We
denote regular continued fractions more concisely in the form 〈b0, b1, b2, . . .〉. For
example, the continued fraction for π starts 〈3, 7, 15, 1, 292, . . .〉. Finite continued
fractions correspond to rationals; infinite continued fractions represent irrational
numbers.

5.1 Converting continued fractions

We consider first conversions between rationals and finite regular continued frac-
tions. To complete the isomorphism between these two sets, we need to augment
the rationals with 1/0 = ∞, corresponding to the empty continued fraction. We
therefore introduce a type ExtRat of rationals extended with ∞.

Conversion from rationals to continued fractions is straightforward. Infinity,
by definition, is represented by the empty fraction. A finite rational a/b has a first
term given by a div b, the integer obtained by rounding the fraction down; this
leaves a remainder of (a mod b)/b, whose reciprocal is the rational from which
to generate the remainder of the continued fraction. Note that as a consequence
of rounding the fraction down to get the first term, the remainder is between
zero and one, and its reciprocal is at least one; therefore the next term (and by
induction, all subsequent terms) will be at least one, yielding a regular continued
fraction as claimed.

type CF = [Integer ]

toCF :: ExtRat → CF
toCF =̂ unfoldr get

where get x =̂ if x ∞
then Nothing
else Just (�x�, 1/(x−�x�))

Converting in the opposite direction is more difficult: of course, not all con-
tinued fractions correspond to rationals. However, finite ones do, and for these
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we can compute the rational using a fold — it suffices to fold with the inverse
of get (or at least, what would have been the inverse of get , if foldr had been
defined to take an argument of type Maybe (α, β) → β, dualizing unfoldr).

fromCF :: CF → ExtRat
fromCF =̂ foldr put ∞ where put n y =̂ n + 1/y

Thus, fromCF ·toCF is the identity on extended rationals, and toCF ·fromCF
is the identity on finite continued fractions. On infinite continued fractions,
fromCF yields no result: put is strict, so the whole list of coefficients is required.
One could compute an infinite sequence of rational approximations to the ir-
rational value represented by an infinite continued fraction, by converting to a
rational each of the convergents. But this is awkward, because the fold starts at
the right, and successive approximations will have no common subexpressions —
it does not constitute a scan. It would be preferable if we could write fromCF
as an instance of foldl; then the sequence of approximations would be given as
the corresponding scanl.

Fortunately, Theorem 3 comes to the rescue again. This requires defunction-
alizations of functions of the form put n and their compositions. For proper
rationals, we reason:

put n (put m a/b)
= {put}

put n (m + b/a)
= {arithmetic}

put n (m×a+b/a)
= {put}

n + a/m×a+b

= {arithmetic}
(n × (m × a + b) + a)/(m × a + b)

= {collecting terms; dividing through by b}
((n × m + 1) × a/b + n)/(m × a/b + 1)

This is a ratio of integer-coefficient linear functions of a/b , sometimes known as
a rational function or linear fractional transformation of a/b . The general form
of such a function takes x to (q x + r)/(s x + t) (denoting multiplication by
juxtaposition for brevity), and can be represented by the four integers q, r , s , t .

For the improper rational ∞, we reason:

put n (put m ∞)
= {put}

put n (m + 1/∞)
= {1/∞ = 0}

put n m
= {put}

n + 1/m
= {arithmetic}

(n × m + 1)/m
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which agrees with the result for proper rationals, provided we take the reasonable
interpretation that (q × a/b + r)/(s × a/b + t) = q×a+r×b/s×a+t×b when b = 0.

Following Theorem 3, then, we choose four-tuples of integers as our repre-
sentation; for reasons that will become clear, we write these four-tuples in the
form

(
q
s

r
t

)
. The abstraction function abs applies the rational function:

abs
(
q
s

r
t

)
x =̂ q x+r/s x+t

and the representation function rep injects the integer n into the representation
of put n:

rep n =̂
(
n
1

1
0

)
The identity function is represented by ident :

ident =̂
(

1
0

0
1

)
We verify that rational functions are indeed closed under composition, by con-
structing the representation of function composition:

abs (
(
q
s

r
t

) � (
q′

s′
r ′

t′
)
) x

= {requirement}
abs

(
q
s

r
t

)
(abs

(
q′
s′

r ′
t′

)
x )

= {abs}
abs

(
q
s

r
t

)
((q ′ x + r ′)/(s ′ x + t ′))

= {abs again}
(q (q ′ x+r ′) + r (s ′ x+t ′))/(s (q ′ x+r ′) + t (s ′ x+t ′))

= {collecting terms}
((q q ′+r s ′) x + (q r ′+r t ′))/((s q ′+t s ′) x + (s r ′+t t ′))

= {abs}
abs

(
q q′+r s′
s q′+t s′

q r ′+r t′
s r ′+t t′

)
x

We therefore define(
q
s

r
t

) � (
q′
s′

r ′
t′

)
=̂

(
q q′+r s′
s q′+t s′

q r ′+r t′
s r ′+t t′

)
Finally, we define an extraction function

app
(
q
s

r
t

)
=̂ abs

(
q
s

r
t

) ∞
= q/s

(Notice that � turns out to be matrix multiplication, and ident the unit ma-
trix, which explains the choice of notation. These matrices are sometimes called
homographies, and the rational functions they represent homographic functions
or Möbius transformations. They can be generalized from continued fractions to
many other interesting exact representations of real numbers [32], including re-
dundant ones. In fact, the same framework also encompasses radix conversions,
as explored in Section 3.2.)

By Theorem 3 we then have

fromCF = app · foldl (�) ident where
(
q
s

r
t

)
� n =̂

(
n q+r
n s+t

q
s

)
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Of course, this still will not work for infinite continued fractions; however, we
can now define

fromCFi :: CF → [ExtRat ]
fromCFi =̂ map app · scanl (�) ident

yielding the (infinite) sequence of finite convergents of an (infinite) continued
fraction.

5.2 Rational unary functions of continued fractions

In Section 5.1, we derived the program

fromCF = app · foldl (�)
(

1
0

0
1

)
for converting a finite continued fraction to an extended rational. In fact, we
can compute an arbitrary rational function of a continued fraction, by starting
this process with an arbitrary homography in place of the identity

(
1
0

0
1

)
. This

is because composition � fuses with the fold:

abs h (fromCF ns)
= {fromCF}

abs h (app (foldl (�) ident ns))
= {specification of app}

abs h (abs (foldl (�) ident ns) ∞)
= {requirement on abs and �}

abs (h � foldl (�) ident ns) ∞
= {fold fusion: � is associative, and ident its unit}

abs (foldl (�) h ns) ∞
= {specification of app again}

app (foldl (�) h ns)

For example, suppose we want to compute the rational 2/x−3, where x is
the rational represented by a particular (finite) continued fraction ns . We could
convert ns to the rational x , then perform the appropriate rational arithmetic.
Alternatively, we could convert ns to a rational as above, starting with the
homography

(
0
1

2
−3

)
instead of

(
1
0

0
1

)
, and get the answer directly. If we want

the result as a continued fraction again rather than a rational, we simply post-
apply toCF .

Of course, this will not work to compute rational functions of infinite contin-
ued fractions, as the folding will never yield a result. Fortunately, it is possible
to applying streaming, so that terms of the output are produced before the
whole input is consumed. This is the focus of the remainder of this section. The
derivation follows essentially the same steps as were involved in radix conversion.

The streaming process maintains a state in the form of a homography, which
represents the mapping from what is yet to be consumed to what is yet to be
produced. The production steps of the streaming process choose a term to out-
put, and compute a reduced homography for the remainder of the computation.
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Given a current homography
(
q
s

r
t

)
, and a chosen term n, the reduced homog-

raphy
(
q′

s′
r ′

t′
)

is determined as follows:

(q x + r)/(s x + t) = n + 1/((q ′ x + r ′)/(s ′ x + t ′))
≡ {reciprocal}

(q x + r)/(s x + t) = n + (s ′ x + t ′)/(q ′ x + r ′)
≡ {rearrange}

(s ′ x + t ′)/(q ′ x + r ′) = (q x + r)/(s x + t) − n
≡ {incorporate n into fraction}

(s ′ x + t ′)/(q ′ x + r ′) = (q x + r − n (s x + t))/(s x + t)
≡ {collect x and non-x terms}

(s ′ x + t ′)/(q ′ x + r ′) = ((q − n s) x + r − n t)/(s x + t)
⇐ {equating terms}

q ′ = s , r ′ = t , s ′ = q − n s , t ′ = r − n t

That is,(
q′
s′

r ′
t′

)
=

(
0
1

1
−n

) � (
q
s

r
t

)
We therefore define

emit
(
q
s

r
t

)
n =̂

(
0
1

1
−n

) � (
q
s

r
t

)
=

(
s

q−n s
t

r−n t

)
Making it a metamorphism. In most of what follows, we assume that we have
a completely regular continued fraction, namely one in which every coefficient
including the first is at least one. This implies that the value represented by the
continued fraction is between one and infinity. We see at the end of the section
what to do about the first coefficient, in case it is less than one.

Given the representation of a rational function in the form of a homography
h, we introduce the function rfc (‘rational f unction of a completely regular
continued fraction’) to apply it as follows:

rfc h =̂ toCF · app · foldl (�) h

This is almost a metamorphism: toCF is indeed an unfold, but we must get rid of
the projection function app in the middle. Fortunately, it fuses with the unfold:

unfoldr get · app = unfoldr geth

where geth (for ‘get on homographies’) is defined by

geth
(
q
s

r
t

)
=̂ if s 0 then Nothing else Just (n, emit

(
q
s

r
t

)
n)

where n =̂ q div s

as can easily be verified.
This yields a metamorphism:

rfc h = unfoldr geth · foldl (�) h
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Checking the streaming condition. Now we must check that the streaming
condition holds for geth and �. We require that when

geth h = Just (n, h′)

then, for any subsequent term m (which we can assume to be at least 1, this
being a completely regular continued fraction),

geth (h � m) = Just (n, h′ � m)

Unpacking this, when h =
(
q
s

r
t

)
and h′ =

(
q′

s′
r ′

t′
)
, we have s �= 0, n = q div s ,

q ′ = s , and s ′ = q mod s ; moreover,
(
q
s

r
t

)
� m =

(
m q+r
m s+t

q
s

)
. We require among

other things that m s + t �= 0 and (m q + r) div (m s + t) = q div s . Sadly, this
does not hold; for example, if m = 1 and s , t are positive,

q+r/s+t < 1 + q/s ≡ s (q + r) < (q + s) (q + t) ≡ r s < q t + s t + s2

which fails if r is sufficiently large.

Cautious progress. As with the radix conversion algorithm in Section 4.3,
the function that produces the next term of the output must be more cautious
when it is interleaved with consumption steps that it may be after all the input
has been consumed. The above discussion suggests that we should commit to an
output only when it is safe from being invalidated by a later input; in symbols,
only when (m q + r) div (m s + t) = q div s for any m ≥ 1. This follows if s and
t are non-zero and have the same sign, and if (q + r) div (s + t) = q div s , as a
little calculation will verify.

(Another way of looking at this is to observe that the value represented by
a completely regular continued fraction ranges between 1 and ∞, so the result
of transforming it under a homography

(
q
s

r
t

)
ranges between

abs
(
q
s

r
t

)
1 = q+r/s+t

and

abs
(
q
s

r
t

) ∞ = q/s

if s �= 0. If the two denominators have the same sign, the result ranges between
these two; if they have different signs, it ranges outside them. Therefore, the
first coefficient of the output is determined if the denominators have the same
sign (which follows if s and t are non-zero and of the same sign) and the two
fractions have the same integer parts.)

We therefore define gets (for ‘safe get ’) by

gets
(
q
s

r
t

)
=̂ let n =̂ q div s in

if s t > 0 ∧ (q + r) div (s + t) n
then Just (n, emit

(
q
s

r
t

)
n)

else Nothing

Note that whenever gets produces a value, geth produces the same value; but
sometimes gets produces nothing when geth produces something. The streaming
condition does hold for gets and �, as the reader may now verify.
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Flushing streams. It is not the case that unfoldr get · app = unfoldr gets , of
course, because the latter is too cautious. However, it does follow that

unfoldr get · app = apol gets (unfoldr geth)

This cautiously produces elements while it it safe to do so, then throws caution
to the winds and produces elements anyway when it ceases to be safe. Moreover,
Theorem 4 applies to the cautious part, and so

rfc h = unfoldr get · app · foldl (�) h
= fstream gets (�) (unfoldr geth) h

This streaming algorithm can compute a rational function of a finite or infi-
nite completely regular continued fraction, yielding a finite or infinite regular
continued fraction as a result.

Handling the first term. A regular but not completely regular continued
fraction may have a first term of 1 or less, invalidating the reasoning above.
However, this is easy to handle, simply by consuming the first term immediately.
We introduce a wrapper function rf :

rf h [ ] =̂ rfc h [ ]
rf h (n : x ) =̂ rfc (h � n) x

This streaming algorithm can compute any rational function of a finite or infinite
regular continued fraction, completely regular or not.

5.3 Rational binary functions of continued fractions

The streaming process described in Section 5.2 allows us to compute a unary
rational function (a x+b)/(c x+d) of a single continued fraction x . The technique
can be adapted to allow a binary rational function (a x y +b x +c y +d)/(e x y +
f x +g y +h) of continued fractions x and y. This does not fit into our framework
of metamorphisms and streaming algorithms, because it combines two arguments
into one result; nevertheless, much of the same reasoning can be applied. We
intend to elaborate on this in a companion paper.

6 Two other applications

In this section, we briefly outline two other applications of streaming; we have
described both in more detail elsewhere, and we refer the reader to those sources
for the details.
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6.1 Digits of π

In [14] we present an unbounded spigot algorithm for computing the digits of π.
This work was inspired by Rabinowitz and Wagon [33], who coined the term
spigot algorithm for an algorithm that yields output elements incrementally and
does not reuse them after they have been output — so the digits drip out one by
one, as if from a leaky tap. (In contrast, most algorithms for computing approx-
imations to π, including the best currently known, work inscrutably until they
deliver a complete response at the end of the computation.) Although incremen-
tal, Rabinowitz and Wagon’s algorithm is bounded, since one needs to decide at
the outset how many digits are to be computed, whereas our algorithm yields
digits indefinitely. (This is nothing to do with evaluation order: Rabinowitz and
Wagon’s algorithm is just as bounded in a lazy language.)

The algorithm is based on the following expansion:

π =
∞∑
i=0

(i !)22i+1

(2i + 1)!

=
(

2 +
1
3
×

)(
2 +

2
5
×

)(
2 +

3
7
×

)
· · ·

(
2 +

i
2i + 1

×
)
· · ·

A streaming algorithm can convert this infinite sequence of linear fractional
transformations (represented as homographies) into an infinite sequence of dec-
imal digits. The consumption operator is matrix multiplication, written � in
Section 5.1. When a digit n is produced, the state h should be transformed into(

10
0

−10n
1

) � h

Any tail of the input sequence represents a value between 3 and 4, so homography
h determines the next digit when

�abs h 3� =̂ �abs h 4�
(in which case, the digit is the common value of these two expressions). This
reasoning gives us the following program:

pi =̂ stream prod (�) ident lfts

where

lfts =̂
[(

k
0

4k+2
2k+1

) | k ← [1..]
]

prod h =̂ if �abs h 4� n then Just (n,
(

10
0

−10n
1

) � h) else Nothing
where n =̂ �abs h 3�

6.2 Arithmetic coding

Arithmetic coding [40] is a method for data compression. It can be more effective
than rival schemes such as Huffman coding, while still being as efficient. More-
over, it is well suited to adaptive encoding, in which the coding scheme evolves
to match the text being encoded.
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The basic idea of arithmetic encoding is simple. The message to be encoded
is broken into symbols, such as characters, and each symbol of the message
is associated with a semi-open subinterval of the unit interval [0 .. 1). Encoding
starts with the unit interval, and narrows it according to the intervals associated
with each symbol of the message in turn. The encoded message is the binary
representation of some fraction chosen from the final ‘target’ interval.

In [4] we present a detailed derivation of arithmetic encoding and decoding.
We merely outline the development of encoding here, to show where streaming
fits in. Decoding follows a similar process to encoding, starting with the unit
interval and homing in on the binary fraction, reconstructing the plaintext in
the process; but we will not discuss it here.

The encoding process can be captured as follows. The type Interval represents
intervals of the real line, usually subunits (subintervals of the unit interval):

unit :: Interval
unit =̂ [0 .. 1)

Narrowing an interval lr by a subunit pq yields a subinterval of lr , which stands
in the same relation to lr as pq does to unit .

narrow :: Interval → Interval → Interval
narrow [l .. r) [p .. q) =̂ [l + (r−l) × p .. l + (r−l) × q)

We consider only non-adaptive encoding here for simplicity: adaptivity turns
out to be orthogonal to streaming. We therefore represent each symbol by a fixed
interval.

Encoding is a two-stage process: narrowing intervals to a target interval, and
generating the binary representation of a fraction within that interval (missing
its final 1).

encode :: [Interval ] → [Bool ]
encode =̂ unfoldr nextBit · foldl narrow unit

where

nextBit (l , r)
| r ≤ 1/2 =̂ Just (False,narrow (0, 2) (l , r))
| 1/2 ≤ l =̂ Just (True,narrow (−1, 1) (l , r))
| l < 1/2 < r =̂ Nothing

This is a metamorphism.
As described, this is not a very efficient encoding method: the entire message

has to be digested into a target interval before any of the fraction can be gen-
erated. However, the streaming condition holds, and bits of the fraction can be
produced before all of the message is consumed:

encode :: [Interval ] → [Bool ]
encode m = stream nextBit narrow unit



24 Jeremy Gibbons

7 Future and related work

The notion of metamorphisms in general and of streaming algorithms in partic-
ular arose out of our work on arithmetic coding [4]. Since then, we have seen
the same principles cropping up in other areas, most notably in the context of
various kinds of numeric representations: the radix conversion problem from Sec-
tion 3.2, continued fractions as described in Section 5, and computations with
infinite compositions of homographies as used in Section 6.1. Indeed, one might
even see arithmetic coding as a kind of numeric representation problem.

7.1 Generic streaming

Our theory of metamorphisms could easily be generalized to other datatypes:
there is nothing to prevent consideration of folds consuming and unfolds produc-
ing datatypes other than lists. However, we do not currently have any convincing
examples.

Perhaps related to the lack of convincing examples for other datatypes, it is
not clear what a generic theory of streaming algorithms would look like. List-
oriented streaming relies essentially on foldl, which does not generalize in any
straightforward way to other datatypes. (We have in the past attempted to
show how to generalize scanl to arbitrary datatypes [9–11], and Pardo [31] has
improved on these attempts; but we do not see yet how to apply those construc-
tions here.)

However, the unfold side of streaming algorithms does generalize easily, to
certain kinds of datatype if not obviously all of them. Consider producing a data
structure of the type

data Generic τ α = Gen (Maybe (α, τ (Generic τ α)))

for some instance τ of the type class Functor . (Lists essentially match this pat-
tern, with τ the identity functor. The type Tree of internally-labelled binary
trees introduced in Section 2 matches too, with τ being the pairing functor.
In general, datatypes of this form have an empty structure, and all non-empty
structures consist of a root element and an τ -shaped collection of children.) It
is straightforward to generalize the streaming condition to such types:

f c = Just (b, c′) ⇒ f (g c a) = Just (b, fmap (λu → g u a) c′)

(This has been called an ‘τ -invariant’ or ‘mongruence’ [23] elsewhere.) Still, we
do not have any useful applications of an unfold to a Generic type after a foldl.

7.2 Related work: Back to basics

Some of the ideas presented here appeared much earlier in work of Hutton and
Meijer [21]. They studied representation changers, consisting of a function fol-
lowed by the converse of a function. Their representation changers are analogous
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to our metamorphisms, with the function corresponding to the fold and the con-
verse of a function to the unfold: in a relational setting, an unfold is just the
converse of a fold, and so our metamorphisms could be seen as a special case of
representation changers in which both functions are folds. We feel that restrict-
ing attention to the special case of folds and unfolds is worthwhile, because we
can capitalize on their universal properties; without this restriction, one has to
resort to reasoning from first principles.

Hutton and Meijer illustrate with two examples: carry-save incrementing and
radix conversion. The carry-save representation of numbers is redundant, using
the redundancy to avoid rippling carries. Although incrementing such a number
can be seen as a change of representation, it is a rather special one, as the point
of the exercise is to copy as much of the input as possible straight to the output;
it isn’t immediately clear how to fit that constraint into our pattern of folding
to an abstract value and independently unfolding to a different representation.
Their radix conversion is similar to ours, but their resulting algorithm is not
streaming: all of the input must be read before any of the output is produced.
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