
Metamorphisms:

Streaming Representation-Changers

Jeremy Gibbons

Computing Laboratory, University of Oxford
www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons

jeremy.gibbons@comlab.ox.ac.uk

Abstract

Unfolds generate data structures, and folds consume them. A hylomorphism is a
fold after an unfold, generating then consuming a virtual data structure. A metamor-
phism is the opposite composition, an unfold after a fold; typically, it will convert
from one data representation to another. In general, metamorphisms are less inter-
esting than hylomorphisms: there is no automatic fusion to deforest the intermediate
virtual data structure. However, under certain conditions fusion is possible: some
of the work of the unfold can be done before all of the work of the fold is complete.
This permits streaming metamorphisms, and among other things allows conversion
of infinite data representations. We present a theory of metamorphisms and outline
some examples.

1 Introduction

Folds and unfolds in functional programming [1–3] are well-known tools in the
programmer’s toolbox. Many programs that consume a data structure follow
the pattern of a fold; and dually, many that produce a data structure do so
as an unfold. In both cases, the structure of the program is determined by the
structure of the data it processes — to invert the architect Louis Sullivan’s
dictum [4], one might say that function follows form.

It is natural to consider also compositions of these operations. Meijer [5] coined
the term hylomorphism for the composition of a fold after an unfold. The vir-
tual data structure [6] produced by the unfold is subsequently consumed by the
fold; the structure of that data determines the structure of both its producer
and its consumer. Under certain rather weak conditions, the intermediate data
structure may be eliminated or deforested [7], and the two phases fused into
one slightly more efficient one.

Preprint submitted to Elsevier Science 10th January 2005

In this paper, we consider the opposite composition, of an unfold after a fold.
Programs of this form consume an input data structure using a fold, con-
structing some intermediate (possibly unstructured) data, and from this in-
termediary produce an output data structure using an unfold. Note that the
two data structures may now be of different shapes, since they do not meet.
Indeed, such programs may often be thought of as representation changers,
converting from one structured representation of some abstract data to a dif-
ferent structured representation of the same data. Despite the risk of putting
the reader off with yet another neologism of Greek origin, we cannot resist
coining the term metamorphism for such compositions, because they typically
metamorphose representations.

In general, metamorphisms are perhaps less interesting than hylomorphisms,
because there is no nearly-automatic deforestation. Nevertheless, sometimes
fusion is possible; under certain conditions, some of the unfolding may be per-
formed before all of the folding is complete. This kind of fusion can be helpful
for controlling the size of the intermediate data. Perhaps more importantly, it
can allow conversions between infinite data representations. For this reason,
we call such fused metamorphisms streaming algorithms ; they are the main
subject of this paper. We encountered them fortuitously while trying to de-
scribe some data compression algorithms [8], but have since realized that they
are an interesting construction in their own right.

The remainder of this article is organized as follows. Section 2 summarizes the
theory of folds and unfolds. Section 3 introduces metamorphisms, which are
unfolds after folds. Section 4 presents a theory of streaming, which is the main
topic of the paper. Section 5 provides an extended application of streaming,
and Section 6 outlines two other applications and a unifying scheme described
in more detail elsewhere. Finally, Section 7 discusses some ideas for generaliz-
ing the currently rather list-oriented theory, and describes related work. This
article is an expansion of an earlier version [9] presented at Mathematics of
Program Construction 2004.

2 Origami programming

We are interested in capturing and studying recurring patterns of computa-
tion, such as folds and unfolds. As has been strongly argued by the recently
popular design patterns movement [10], identifying and exploring such pat-
terns has many benefits: reuse of abstractions, rendering ‘folk knowledge’ in
a more accessible format, providing a common vocabulary of discourse, and
so on. What distinguishes patterns in functional programming from patterns
in object-oriented and other programming paradigms is that the better ‘glue’
available in the former [11] allows the patterns to be expressed as abstractions

2

within the language, rather than having to resort to extra-linguistic prose and
diagrams.

We use the notation of Haskell [12], the de facto standard lazy functional pro-
gramming language, except that we take the liberty to use some typographic
effects in formatting, and to elide some awkwardnesses such as type coercions
and qualifications that are necessary for programming but that obscure the
points we are trying to make. (The true story, warts and all, is included in an
appendix.)

Most of this paper involves the datatype of lists:

data [α] =̂ [] | α : [α]

That is, the datatype [α] of lists with elements of type α consists of the empty
list [], and non-empty lists of the form a : x with head a of type α (we write
‘a :: α’) and tail x :: [α]. Note that the datatype consists of both finite and
infinite lists; for simplicity, we avoid consideration of partial lists.

The primary patterns of computation over such lists are the fold, which con-
sumes a list and produces some value:

foldr :: (α→ β → β)→ β → [α]→ β
foldr f b [] =̂ b
foldr f b (a : x) =̂ f a (foldr f b x)

and the unfold [13], which produces a list from some seed:

unfoldr :: (β → Maybe (α, β))→ β → [α]
unfoldr f b =̂ case f b of

Just (a, b ′) → a : unfoldr f b ′

Nothing → []

Here, the datatype Maybe augments a type α with an additional value Nothing:

data Maybe α =̂ Nothing | Just α

We will later make use of the related sum datatype constructor Either. An
element of type Either α β consists either of an element of type α or of one of
type β:

data Either α β =̂ Left α | Right β

3

The foldr pattern consumes list elements from right to left, following the way
lists are constructed; as a variation on this, there is another fold which con-
sumes elements from left to right:

foldl :: (β → α→ β)→ β → [α]→ β
foldl f b [] =̂ b
foldl f b (a : x) =̂ foldl f (f b a) x

We also use the operator scanl, which is like foldl but which returns all partial
results instead of just the final one:

scanl :: (β → α→ β)→ β → [α]→ [β]
scanl f b [] =̂ [b]
scanl f b (a : x) =̂ b : scanl f (f b a) x

We introduce also a datatype of internally-labelled binary trees:

data Tree α =̂ Node (Maybe (α, Tree α, Tree α))

with fold operator

foldt :: (Maybe (α, β, β)→ β)→ Tree α→ β
foldt f (Node Nothing) =̂ f Nothing
foldt f (Node (Just (a, t , u))) =̂ f (Just (a, foldt f t , foldt f u))

and unfold operator

unfoldt :: (β → Maybe (α, β, β))→ β → Tree α
unfoldt f b =̂ case f b of

Nothing → Node Nothing
Just (a, b1, b2) → Node (Just (a, unfoldt f b1, unfoldt f b2))

It would perhaps be more elegant to define lists and their recursion patterns
in the same style as done here for trees, but for consistency with the Haskell
standard libraries we adopt their definitions instead. We could also condense
the above code by using various higher-order combinators, but for accessibility
we refrain from doing so.

The remaining notation will be introduced as it is encountered. For more
examples of the use of these and related patterns in functional programming,
see [14], and for the theory behind this approach to programming, see [15]; for
a slightly different view of both in a relational setting, see [3].

4

3 Metamorphisms

In this section we present three simple examples of metamorphisms, or repre-
sentation changers in the form of unfolds after folds. These three represent the
entire spectrum of possibilities: it turns out that the first permits streaming
automatically (assuming lazy evaluation), the second does so with some work,
and the third does not permit it at all.

3.1 Reformatting lines

The classic application of metamorphisms is for dealing with structure clashes
[16]: data is presented in a format that is inconvenient for a particular kind
of processing, so it needs to be rearranged into a more convenient format. For
example, a piece of text might be presented in 70-character lines, but required
for processing in 60-character lines. Rather than complicate the processing by
having to keep track of where in a given 70-character line a virtual 60-character
line starts, good practice would be to separate the concerns of rearranging
the data and of processing it. A control-oriented or imperative view of this
task can be expressed in terms of coroutines: one coroutine, the processor,
repeatedly requests the other, the rearranger, for the next 60-character line.
A data-oriented or declarative view of the same task consists of describing the
intermediate data structure, a list of 60-character lines. With lazy evaluation,
the two often turn out to be equivalent; but the data-oriented view may be
simpler, and is certainly the more natural view in functional programming.

We define the following Haskell functions.

reformat :: Integer → [[α]]→ [[α]]
reformat n =̂ writeLines n · readLines

readLines :: [[α]]→ [α]
readLines =̂ foldr (++) []
writeLines :: Integer → [α]→ [[α]]
writeLines n =̂ unfoldr (split n) where split n [] =̂ Nothing

split n x =̂ Just (splitAt n x)

The function readLines is just what is called concat in the Haskell standard
library; we have written it explicitly as a fold here to emphasize the program
structure. The function writeLinesn partitions a list into segments of length n,
the last segment possibly being short. (The operator ‘·’ denotes function com-
position, and ‘++’ is list concatenation. The function splitAt from the Haskell
libraries breaks a list in two at a given position.)

5

The function reformat fits our definition of a metamorphism, since it consists
of an unfold after a fold. Because ++ is non-strict in its right-hand argument,
reformat is automatically streaming when lazily evaluated: the first lines of
output can be produced before all the input has been consumed. Thus, we
need not maintain the whole concatenated list (the result of readLines) in
memory at once, and we can even reformat infinite lists of lines.

3.2 Radix conversion

Converting fractions from positional notation in one radix to another is a
change of representation. We define functions radixConvert , fromBase and
toBase as follows:

radixConvert :: (Integer , Integer)→ [Integer]→ [Integer]
radixConvert (b, b ′) =̂ toBase b ′ · fromBase b

fromBase :: Integer → [Integer]→ Rational
fromBase b =̂ foldr stepb 0

toBase :: Integer → Rational → [Integer]
toBase b =̂ unfoldr nextb

where

stepb n x =̂ (x + n)÷ b
nextb 0 =̂ Nothing
nextb x =̂ Just (byc, y − byc) where y =̂ b × x

Thus, fromBase b takes a (finite) list of digits and converts it into a fraction;
provided the digits are all at least zero and less than b, the resulting fraction
will be at least zero and less than one. For example,

fromBase 10 [2, 5] = step10 2 (step10 5 0) = 1/4

Then toBase b takes a fraction between zero and one, and converts it into a
(possibly infinite) list of digits in base b. For example,

toBase 2 (1/4) = 0 : unfoldr next2 (1/2) = 0 : 1 : unfoldr next2 0 = [0, 1]

Composing fromBase for one radix with toBase for another effects a change
of radix.

6

At first blush, this looks very similar in structure to the reformatting example
of Section 3.1. However, now the fold operator stepb is strict in its right-
hand argument. Therefore, fromBase b must consume its whole input before it
generates any output — so these conversions will not work for infinite fractions,
and even for finite fractions the entire input must be read before any output
is generated.

Intuitively, one might expect to be able to do better than this. For exam-
ple, consider converting the decimal fraction [2, 5] to the binary fraction [0, 1].
The initial 2 alone is sufficient to justify the production of the first bit 0 of
the output: whatever follows (provided that the input really does consist of
decimal digits), the fraction lies between 2/10 and 3/10, and so its binary repre-
sentation must start with a zero. We make this intuition precise in Section 4;
it involves, among other steps, inverting the structure of the traversal of the
input by replacing the foldr with a foldl.

Of course, digit sequences like this are not a good representation for fractions:
many useful operations turn out to be uncomputable. In Section 5, we look at a
better representation. It still turns out to leave some operations uncomputable
(as any non-redundant representation must), but there are fewer of them.

3.3 Sorting

As a third introductory example, we consider tree-based sorting algorithms.
One such sorting algorithm is a variation on Hoare’s Quicksort [17]. What
makes Quicksort particularly quick is that it is in-place, needing only loga-
rithmic extra space for the control stack; but it is difficult to treat in-place
algorithms functionally, so we ignore that aspect. Structurally, Quicksort turns
out to be a hylomorphism: it unfolds the input list by repeated partitioning
to produce a binary search tree, then folds this tree to yield the output list.

We use the datatype of binary trees from Section 2. We also use the following
functions:

partition :: [α]→ Maybe (α, [α], [α])
partition [] =̂ Nothing
partition (a : x) =̂ Just (a, filter (≤ a) x , filter (> a) x)

join :: Maybe (α, [α], [α])→ [α]
join Nothing =̂ []
join (Just (a, x , y)) =̂ x ++ [a] ++ y

(The function filter from the Haskell libraries returns those elements of a list
that satisfy a given predicate.) The first partitions a non-empty list into a pivot

7

and the smaller and larger elements, and returns Nothing given an empty list;
the second concatenates a pair of lists with a given element in between, and
returns the empty list given Nothing. Given these auxiliary functions, we have

quicksort =̂ foldt join · unfoldt partition

as a hylomorphism.

One can sort also as a tree metamorphism: the same type of tree is an in-
termediate data structure, but this time it is a minheap rather than a binary
search tree: the element stored at each node is no greater than any element
below that node. Moreover, this time the tree producer is a list fold (rather
than a tree unfold) and the tree consumer is a list unfold (rather than a tree
fold).

We use functions

insert :: α→ Tree α→ Tree α
insert a t =̂ merge (Node (Just (a, e, e)), t)

where e =̂ Node Nothing

splitMin :: Tree α→ Maybe (α, Tree α)
splitMin (Node t) =̂ case t of

Nothing → Nothing
Just (a, u, v) → Just (a,merge (t , u))

merge (t , Node Nothing) =̂ t
merge (Node Nothing, u) =̂ u
merge (Node x , Node y) =̂ if a < b

then Node (a, t2,merge (t1, Node y))
else Node (b, u2,merge (u1, Node x))

where Just (a, t1, t2) =̂ x
Just (b, u1, u2) =̂ y

The first inserts an element into a heap; the second splits a non-empty heap
into its least element and the remainder, and returns Nothing given the empty
heap. Both are defined in terms of the auxilliary function merge, which com-
bines two heaps into one. Given these component functions, we have

heapsort =̂ unfoldr splitMin · foldr insert (Node Nothing)

as a metamorphism. (Contrast this description of heapsort with the one given
by Augusteijn [18] in terms of hylomorphisms, driving the computation by the
shape of the intermediate tree rather than the two lists.)

8

Here, unlike in the reformatting and radix conversion examples, there is no
hope for streaming: the second phase cannot possibly make any progress until
the entire input is read, because the first element of the sorted output (which
is the least element of the list) might be the last element of the input. Sorting
is inherently a memory-intensive process, and cannot be performed on infinite
lists.

4 Streaming

Of the three examples in Section 3, one automatically permits streaming and
one can never do; only one, namely radix conversion, warrants further inves-
tigation in this regard. As suggested in Section 3.2, it ought to be possible
to produce some of the output before all of the input is consumed. In this
section, we see how this can be done, developing some general results along
the way.

4.1 The streaming theorem

The second phase of the metamorphism involves producing the output, main-
taining some state in the process. That state is initialized to the result of the
first phase, obtained by folding the entire input, and evolves as the output is
unfolded. Streaming must involve starting to unfold from an earlier state, the
result of folding only some initial part of the input. Therefore, it is natural to
consider metamorphisms in which the folding phase is an instance of foldl:

unfoldr f · foldl g c

Essentially the problem is a matter of finding some kind of invariant of this
state that determines the initial behaviour of the unfold. This idea is captured
by the following definition.

Definition 1 The ‘streaming condition’ for f and g is: for all a, b, c and c ′,

f c = Just (b, c ′) ⇒ f (g c a) = Just (b, g c′ a)

Informally, the streaming condition states the following: if c is a state from
which the unfold would produce some output element (rather than merely the
empty list), then so is the modified state g c a for any a; moreover, the element
b output from c is the same as that output from g c a, and the residual states
c ′ and g c ′ a stand in the same relation as the starting states c and g c a. In

9

other words, ‘the next output produced’ is invariant under consuming another
input.

This invariant property is sufficient for the unfold and the fold to be fused into
a single process, which alternates (not necessarily strictly) between consuming
inputs and producing outputs. We define:

stream :: (γ → Maybe (β, γ))→ (γ → α→ γ)→ γ → [α]→ [β]
stream f g c x =̂ case f c of

Just (b, c ′) → b : stream f g c′ x
Nothing → case x of

a : x ′ → stream f g (g c a) x ′

[] → []

Informally, stream f g :: γ → [α]→ [β] involves a producer f and a consumer
g ; maintaining a state c, it consumes an input list x and produces an output
list y . If f can produce an output element b from the state c, this output is
delivered and the state revised accordingly. If f cannot, but there is an input
a left, this input is consumed and the state revised accordingly. When the
state is ‘wrung dry’ and the input is exhausted, the process terminates.

Formally, the relationship between the metamorphism and the streaming al-
gorithm is given by the following theorem.

Theorem 2 (Streaming Theorem [8]) If the streaming condition holds for
f and g, then

stream f g c x = unfoldr f (foldl g c x)

on finite lists x .

Proof. The proof is given in [8]. We prove a stronger theorem (Theorem 6)
later. 2

Note that the result relates behaviours on finite lists only: on infinite lists,
the foldl never yields a result, so the metamorphism may not either, whereas
the streaming process can be productive — indeed, that is the main point of
introducing streaming in the first place.

10

As a simple example, consider the functions unCons and snoc, defined as
follows:

unCons [] =̂ Nothing
unCons (a : x) =̂ Just (a, x)

snoc x a =̂ x ++ [a]

The streaming condition holds for unCons and snoc: unCons x = Just (b, x ′)
implies unCons (snoc x a) = Just (b, snoc x ′ a). Therefore, Theorem 2 applies,
and

unfoldr unCons · foldl snoc [] = stream unCons snoc []

on finite lists (but not infinite ones!). The left-hand side is a two-stage copying
process with an unbounded intermediate buffer, and the right-hand side a one-
stage copying queue with a one-place buffer.

4.2 Reversing the order of evaluation

In order to make a streaming version of radix conversion, we need to rewrite
fromBase b as an instance of foldl rather than of foldr. Fortunately, there is a
standard technique for doing this:

foldr f b = applyto b · foldr (·) id ·map f

where applyto b f =̂ f b. Because composition is associative with unit id, the
foldr on the right-hand side can — by the First Duality Theorem [19] — be
replaced by a foldl.

Although valid, this is not always very helpful. In particular, it can be quite
inefficient — the fold now constructs a long composition of little functions of
the form f a, and this composition typically cannot be simplified until it is
eventually applied to b. However, it is often possible that we can find some rep-
resentation of those little functions that admits composition and application
in constant time. Reynolds [20] calls this transformation defunctionalization.

Theorem 3 Given fold arguments f :: α→ β → β and b :: β, suppose there is
a type ρ of representations of functions of the form f a and their compositions,
with the following operations:

• a representation function rep :: α → ρ (so that rep a is the representation
of f a);

11

• an abstraction function abs :: ρ→ β → β, such that abs (rep a) = f a;
• an analogue � :: ρ→ ρ→ ρ of function composition, such that abs (r�s) =

abs r · abs s;
• an analogue ident :: ρ of the identity function, such that abs ident = id;
• an analogue appb :: ρ→ β of application to b, such that appb r = abs r b.

Then

foldr f b = appb · foldl (�) ident ·map rep

The foldl and the map can be fused:

foldr f b = appb · foldl (~) ident

where r ~ a =̂ r � rep a.

(Note that the abstraction function abs is used above only for stating the
correctness conditions; it is not applied anywhere.)

For example, let us return to radix conversion, as introduced in Section 3.2.
Recall that we had

radixConvert (b, b ′) =̂ toBase b ′ · fromBase b
fromBase b =̂ foldr stepb 0
toBase b =̂ unfoldr nextb

where

stepb n x =̂ (x + n)÷ b
nextb 0 =̂ Nothing
nextb x =̂ Just (byc, y − byc) where y =̂ b × x

The ‘little functions’ here are of the form stepb n, or equivalently, (÷b) · (+n).
This class of functions is closed under composition:

(stepc n · stepb m) x
= {composition}

stepc n (stepb m x)
= {step}

((x + m)÷ b + n)÷ c
= {arithmetic}

(x + m + b × n)÷ (b × c)
= {composition}

((÷(b × c)) · (+m + b × n)) x

12

We therefore defunctionalize stepb n to the pair (n, b), and define:

repb n =̂ (n, b)
abs (n, b) x =̂ (x + n)÷ b
(n, c)� (m, b) =̂ (m + b × n, b × c)
(n, c) ~b m =̂ (n, c)� repb m =̂ (m + b × n, b × c)
ident =̂ (0, 1)
app (n, b) =̂ abs (n, b) 0 =̂ n ÷ b

Theorem 3 then tells us that

fromBase b = app · foldl (~b) ident

4.3 Checking the streaming condition

We cannot quite apply Theorem 2 yet, because the composition of toBase b ′

and the revised fromBase b has the abstraction function app between the un-
fold and the fold. Fortunately, that app fuses with the unfold; more generally,
any projection, and indeed any surjection, fuses with an unfold.

Lemma 4 (Unfold fusion)

unfoldr f · g = unfoldr f ′ ⇐ f · g = mapl g · f ′

where mapl is the map operation for the base functor of the list datatype:

mapl f Nothing =̂ Nothing
mapl f (Just (a, b)) =̂ Just (a, f b)

Corollary 5 If g ·g ′ = id then unfoldr f ·g = unfoldr f ′ where f ′ =̂ mapl g ′ ·f ·g.

In our case,

unfoldr nextc · app = unfoldr nextappc

⇐ {unfold fusion}
nextc · app = mapl app · nextappc

13

and

nextc (app (n, r))
= {app, nextc; let u =̂ bn × c ÷ rc}

if n 0 then Nothing else Just (u, n×c÷r − u)
= {app; there is some leeway here (see below)}

if n 0 then Nothing else Just (u, app (n − u×r÷c, r÷c))
= {mapl}

mapl app (if n 0 then Nothing else Just (u, (n − u×r÷c, r÷c)))

Therefore we try defining

nextappc (n, r) =̂ if n 0 then Nothing else Just (u, (n − u×r÷c, r÷c))
where u =̂ bn × c ÷ rc

Note that there was some leeway here: we had to partition n×c÷r − u into a
numerator and denominator, and we chose (n−u×r÷c, r÷c) out of the many
ways of doing this. One might perhaps have expected (n×c−u×r , r) instead;
however, this leads to a dead-end, as we show later. Note also that our choice
involves generalizing from integer to rational components.

Having now massaged our radix conversion program into the correct format:

radixConvert (b, c) = unfoldr nextappc · foldl (~b) ident

we may consider whether the streaming condition holds for nextappc and ~b ;
that is, whether

nextappc (n, r) = Just (u, (n ′, r ′))
⇒

nextappc ((n, r) ~b m) = Just (u, (n ′, r ′) ~b m)

An element u is produced from a state (n, r) if and only if n 6= 0, in which case
u = bn×c÷rc. The modified state (n, r)~b m evaluates to (m +b×n, b×r).
Since n, b > 0 and m ≥ 0, this necessarily yields an element; this element v
equals b(m + b × n)× c ÷ (b × r)c. We have to check that u and v are equal.
Sadly, in general they are not: since 0 ≤ m < b, it follows that v lies between
u and b(n + 1)× c ÷ rc, but these two bounds need not meet.

Intuitively, this can happen when the state has not completely determined the
next output, and further inputs are needed in order to make a commitment to
that output. For example, consider having consumed the first digit 610 while
converting the sequence [6, 7] in decimal (representing 0.6710) to ternary. The
fraction 0.610 is about 0.12103; nevertheless, it is evidently not safe to commit

14

to producing the digit 1, because the true result is greater than 0.23, and there
is not enough information to decide whether to output a 13 or a 23 until the
710 has been consumed as well.

This is a common situation with streaming algorithms: the producer function
(nextapp above) needs to be more cautious when interleaved with consump-
tion steps than it does when all the input has been consumed. In the latter
situation, there are no further inputs to invalidate a commitment made to an
output; but in the former, a subsequent input might invalidate whatever out-
put has been produced. The solution to this problem is to introduce a more
sophisticated version of streaming, which proceeds more cautiously while in-
put remains, but switches to the normal more aggressive mode if and when
the input is exhausted. That is the subject of the next section.

4.4 Flushing streams

The typical approach is to introduce a ‘restriction’

snextapp =̂ guard safe nextapp

of nextapp for some predicate safe, where

guard p f x =̂ if p x then f x else Nothing

and to use snextapp as the producer for the streaming process. In the case of
radix conversion, the predicate safec (dependent on the output base c) could
be defined

safec (n, r) =̂ (bn × c ÷ rc b(n + 1)× c ÷ rc)

That is, the state (n, r) is safe for the output base c if these lower and upper
bounds on the next digit meet; with this proviso, the streaming condition
holds, as we checked above. (In fact, we need to check not only that the
same elements are produced from the unmodified and the modified state,
but also that the two residual states are related in the same way as the two
original states. With the definition of nextappc that we chose above, this second
condition does hold; with the more obvious definition involving (n×c−u×r , r)
that we rejected, it does not.)

However, with this restricted producer the streaming process no longer has
the same behaviour on finite lists as does the plain metamorphism: when the
input is exhausted, the more cautious snextapp may have left some outputs

15

still to be produced that the more aggressive nextapp would have emitted. The
streaming process should therefore switch into a final ‘flushing’ phase when
all the input has been consumed.

This insight is formalized in the following generalization of stream:

fstream :: (γ→Maybe (β, γ))→ (γ→α→γ)→ (γ→[β])→ γ → [α]→ [β]
fstream f g h c x =̂ case f c of

Just (b, c ′) → b : fstream f g h c′ x
Nothing → case x of

a : x ′ → fstream f g h (g c a) x ′

[] → h c

The difference between fstream and stream is that the former has an extra
argument, h, a ‘flusher’; when the state is wrung as dry as it can be and the
input is exhausted, the flusher is applied to the state to squeeze the last few
elements out. This is a generalization, because supplying the trivial flusher
that always returns the empty list reduces fstream to stream.

In fact, not only is stream expressible in terms of fstream, but the converse
holds too: fstream can be expressed in terms of stream, using a state of a sum
type and an extra ‘end of input’ marker to indicate when to switch into the
flushing phase. So stream and fstream are actually equally expressive. To be
precise, in order to simulate an instance of fstream, the state for the stream
consists of either an element of the original state type γ, or a residual output
list of type [β]; the input is the original input with a sentinel appended. Then

fstream f g h c x = stream f ′ g ′ (Left c) (map Just x ++ [Nothing])

where

f ′ (Left c) =̂ case f c of
Just (b, c ′) → Just (b, Left c ′)
Nothing → Nothing

f ′ (Right y) =̂ case y of
b : y ′ → Just (b, Right y ′)
[] → Nothing

g ′ (Left c) (Just a) =̂ Left (g c a)
g ′ (Left c) Nothing =̂ Right (h c)

Note that the consumer initiates the switch into the flushing state, and is never
subsequently called. Of course, if the original input is infinite, the sentinel is
never reached.

16

The relationship of metamorphisms to flushing streams is a little more com-
plicated than that to ordinary streams. One way of expressing the relationship
is via a generalization of unfoldr, whose final action is to generate a whole tail
of the resulting list rather than the empty list. This is an instance of primitive
corecursion (called an apomorphism by Vene and Uustalu [21]), which is the
categorical dual of primitive recursion (called a paramorphism by Meertens
[22]).

apol :: (β → Maybe (α, β))→ (β → [α])→ β → [α]
apol f h b =̂ case f b of

Just (a, b ′) → a : apol f h b ′

Nothing → h b

Informally, apol f h b = unfoldr f b ++ h b ′, where b ′ is the final state of the
unfold (if there is one — and if there is not, the value of h b ′ is irrelevant),
and unfoldr f = apol f (const []). On finite inputs, provided that the streaming
condition holds, a flushing stream process yields the same result as the ordi-
nary streaming process, but with the results of flushing the final state (if any)
appended.

Theorem 6 (Flushing Stream Theorem) If the streaming condition holds
for f and g, then

fstream f g h c x = apol f h (foldl g c x)

on finite lists x .

The proof uses the following lemma [8], which lifts the streaming condition
from single inputs to finite lists of inputs.

Lemma 7 If the streaming condition holds for f and g, then

f c = Just (b, c ′) ⇒ f (foldl g c x) = Just (b, foldl g c ′ x)

for all b, c, c ′ and finite lists x .

Proof. A simple proof by induction on x suffices. The lemma can also be
proved using the following fusion law for foldl, which itself may be proved by
induction: if h (g u v) = g ′ (h u) v for all u and v , then

h (foldl g c x) = foldl g ′ (h c) x

17

for all c and finite lists x . (If in addition h is strict, then the equation holds
for partial and infinite lists x too; but we do not need that stronger result.)
However, the proof using fusion is more complicated. 2

The proof of Theorem 6 also uses the approximation lemma [23,24].

Lemma 8 (Approximation Lemma) For finite, infinite or partial lists x
and y,

x = y ≡ ∀n. approx n x = approx n y

where

approx :: Int → [α]→ [α]
approx (n + 1) [] =̂ []
approx (n + 1) (a : x) =̂ a : approx n x

Note that approx 0 x = ⊥ for any x , by case exhaustion.

Proof of Theorem 6 By Lemma 8, it suffices to show, for fixed f , g , h and
for all n and finite x , that

∀c. approx n (fstream f g h c x) = approx n (apol f h (foldl g c x))

under the assumption that the streaming condition holds for f and g . We use
a ‘double induction’ simultaneously over n and the length #x of x (or equiv-
alently, a standard induction using the pointwise ordering on pairs (n, #x)).
The inductive hypothesis is that

∀c. approx m (fstream f g h c y) = approx m (apol f h (foldl g c y))

for any m, y such that m < n ∧ #y ≤ #x or m ≤ n ∧ #y < #x . We then
proceed by case analysis to complete the inductive step.

Case f c = Just (b, d). In this case, we make a subsidiary case analysis on n.

Subcase n = 0. Then the result holds trivially.

18

Subcase n = n ′ + 1. Then we have:

approx (n ′ + 1) (apol f h (foldl g c x))
= {Lemma 7: f (foldl g c x) = Just (b, foldl g d x)}

approx (n ′ + 1) (b : apol f h (foldl g d x))
= {approx}

b : approx n ′ (apol f h (foldl g d x))
= {induction: n ′ < n}

b : approx n ′ (fstream f g h d x)
= {approx}

approx (n ′ + 1) (b : fstream f g h d x)
= {fstream; case assumption}

approx (n ′ + 1) (fstream f g h c x)

Case f c = Nothing. In this case, we make a subsidiary case analysis on x .

Subcase x = a : x ′. Then

apol f h (foldl g c (a : x ′))
= {foldl}

apol f h (foldl g (g c a) x ′))
= {induction: #x ′ < #x}

fstream f g h (g c a) x ′

= {fstream; case assumption}
fstream f g h c (a : x ′)

Subcase x = []. Then

apol f h (foldl g c [])
= {foldl}

apol f h c
= {case assumption}

h c
= {fstream; case assumption}

fstream f g h c []

4.5 Invoking the Flushing Stream Theorem

Theorem 6 gives conditions under which an apomorphism applied to the result
of a foldl may be streamed. This seems of limited use, since such scenarios are
not commonly found. However, they can be constructed from more common
scenarios in which the apomorphism is replaced with a simpler unfold. One
way is to introduce the trivial apomorphism, whose flusher always returns the
empty list. A more interesting, and the most typical, way is via the following
observation.

19

Lemma 9 For any predicate p,

apol (guard p f) (unfoldr f) = unfoldr f

Informally, the work of an unfold can be partitioned into ‘cautious’ production,
using the more restricted producer guard p f , followed by more ‘aggressive’
production using simply f when the more cautious producer blocks.

4.6 Radix conversion as a flushing stream

Returning for a final time to radix conversion, we see that

radixConvert (b, c)
= {as derived in Section 4.3}

unfoldr nextappc · foldl (~b) ident
= {Lemma 9}

apol (guard safec nextappc) (unfoldr nextappc) · foldl (~b) ident

For brevity, we define

snextappc (n, r) =̂ guard safec nextappc

We verified in Sections 4.3 and 4.4 that the streaming condition holds for
snextappc and ~b . Theorem 6 then tells us that we can convert from base b
to base c using

radixConvert (b, c) = fstream snextappc (~b) (unfoldr nextappc) (0, 1)

This program works for finite or infinite inputs, and is always productive.
It does, however, always produce an infinite result, even when a finite result
would be correct. For example, it will correctly convert 1/3 from base 10 to
base 2, but in converting from base 10 to base 3 it will produce an infinite tail
of zeroes.

20

5 Continued fractions

Continued fractions are finite or infinite constructions of the form

b0 +
a0

b1 +
a1

b2 +
a2

b3 + · · ·

In our treatment, all the coefficients will be integers. Continued fractions pro-
vide an elegant representation of numbers, both rational and irrational. They
have therefore been proposed by various authors [25–30] as a good format in
which to carry out exact real arithmetic. Some of the algorithms for simple
arithmetic operations on continued fractions can be seen as metamorphisms,
and as we shall show here, they can typically be streamed.

We consider algorithms on regular continued fractions: ones in which all the
numerators ai are 1, and all the bi coefficients (except perhaps b0) are at
least 1. We denote regular continued fractions more concisely in the form
〈b0, b1, b2, . . .〉. For example, the regular continued fraction for π starts with
the coefficients 〈3, 7, 15, 1, 292, . . .〉. Peyton Jones [27] paraphrased this:

about 3; but not really 3, more like 3 + 1/7; but not really 7, more like
7 + 1/15; but not really 15, more like 15 + 1/1(= 16); but not really 1, more
like 1 + 1/292; . . .

Finite continued fractions correspond to rationals; for example, 〈1, 2, 3, 4〉 rep-
resents

1 +
1

2 +
1

3 + 1/4

=
43

30

The number of terms in the continued fraction representation of a rational a/b
is related to the number of steps taken by Euclid’s algorithm to compute the
greatest common divisor of a and b.

Infinite continued fractions represent irrational numbers; but many interesting
irrationals have periodic continued fraction representations, or at least ones
exhibiting clear patterns:

√
2 = 〈1, 2, 2, 2, 2 . . .〉

1+
√

5/2 = 〈1, 1, 1, 1, 1 . . .〉
e = 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . .〉

21

The finite or infinite regular continued fractions that do not end with a 1 are
in one-to-one correspondence with the real numbers — in contrast to digit
sequences (which are redundant: 0.999̇ = 1.0) and rationals (which are both
redundant: 1/2 = 2/4 and incomplete:

√
2 =?).

Given an infinite regular continued fraction, its finite prefixes are called its
convergents ; in a precise technical sense, these form the closest rational ap-
proximations to the real number represented by the entire continued fraction.
Huygens used these convergents to find accurate gear ratios for a mechanical
planetarium, and they explain the design decisions behind some calendars and
musical scales. The first few convergents to π are

3, 22/7,
333/106,

355/113, . . .

The relatively large term 292 coming next means that the previous convergent
〈3, 7, 15, 1〉 = 355/113 is a very close rational approximation to π; the simplest
closer approximation is 〈3, 7, 15, 1, 292〉 = 103993/33102.

5.1 Converting continued fractions

We consider first conversions between rationals and finite regular continued
fractions. To complete the isomorphism between these two sets, we need to
augment the rationals with 1/0 = ∞, corresponding to the empty continued
fraction. We therefore introduce a type ExtRat of rationals extended with ∞.

Conversion from rationals to continued fractions is straightforward. Infinity,
by definition, is represented by the empty fraction. A finite rational a/b has
a first term given by a div b, the integer obtained by rounding the fraction
down; this leaves a remainder of (a mod b)/b, whose reciprocal is the rational
from which to generate the rest of the continued fraction. If the reciprocal is
infinite, the remainder is zero, and the conversion is complete. Note that as a
consequence of rounding the fraction down to get the first term, the remainder
is between zero and one, and its reciprocal is at least one; therefore the next
term (and by induction, all subsequent terms) will be at least one, yielding a
regular continued fraction as claimed.

type CF =̂ [Integer]

toCF :: ExtRat → CF
toCF =̂ unfoldr get

where get x =̂ if x ∞
then Nothing
else Just (bxc, 1/(x−bxc))

22

Converting in the opposite direction is more difficult: of course, we have seen
that not all continued fractions correspond to rationals. However, finite ones
do, and for these we can compute the rational using a fold — it suffices to
fold with the inverse of get (or at least, what would have been the inverse of
get , if foldr had been defined to take an argument of type Maybe (α, β) → β,
dualizing unfoldr).

fromCF :: CF → ExtRat
fromCF =̂ foldr put ∞ where put n y =̂ n + 1/y

Thus, fromCF · toCF is the identity on extended rationals, and toCF · fromCF
is the identity on finite continued fractions. On infinite continued fractions,
fromCF yields no result: put is strict, so the whole list of coefficients is re-
quired. One could compute an infinite sequence of rational approximations to
the irrational value represented by an infinite continued fraction, by convert-
ing to a rational each of the convergents. But this is awkward, because the
fold starts at the right, and successive approximations will have no common
subexpressions — the process does not constitute a scan. It would be prefer-
able if we could write fromCF as an instance of foldl; then the sequence of
approximations would be computed with the corresponding scanl.

Fortunately, Theorem 3 comes to the rescue again. This requires defunction-
alizations of functions of the form put n and their compositions. For proper
rationals, we reason:

put n (put m a/b)
= {put}

put n (m + b/a)
= {arithmetic}

put n (m×a+b/a)
= {put}

n + a/m×a+b

= {arithmetic}
(n × (m × a + b) + a)/(m × a + b)

= {collecting terms; dividing through by b}
((n ×m + 1)× a/b + n)/(m × a/b + 1)

This is a ratio of integer-coefficient linear functions of a/b , sometimes known as
a rational function or linear fractional transformation of a/b . The general form
of such a function takes x to (q x + r)/(s x + t) (denoting multiplication by
juxtaposition for brevity), and can be represented by the four integers q , r , s , t .

23

For the improper rational ∞, we reason:

put n (put m∞)
= {put}

put n (m + 1/∞)
= {1/∞ = 0}

put n m
= {put}

n + 1/m
= {arithmetic}

(n ×m + 1)/m

which agrees with the result for proper rationals, provided we take the rea-
sonable interpretation that (q ×∞+ r)/(s ×∞+ t) = q/s .

Following Theorem 3, then, we choose four-tuples of integers as our represen-
tation; for reasons that will become clear, we write these four-tuples in the
form (q

s
r
t
). The abstraction function abs applies the rational function:

abs (q
s

r
t
) x =̂ q x+r/s x+t

which simplifies to q/s when x = ∞, and to ∞ when s x + t = 0 (or when
x =∞ and s = 0). The representation function rep injects the integer n into
the representation of put n:

rep n =̂ (n
1

1
0
)

The identity function is represented by ident :

ident =̂ (1
0

0
1
)

We verify that rational functions are indeed closed under composition, by

24

constructing the representation of function composition:

abs ((q
s

r
t
)� (q ′

s′
r ′

t ′)) x
= {requirement}

abs (q
s

r
t
) (abs (q ′

s′
r ′

t ′) x)
= {abs}

abs (q
s

r
t
) ((q ′ x + r ′)/(s ′ x + t ′))

= {abs again}
(q (q ′ x+r ′) + r (s ′ x+t ′))/(s (q ′ x+r ′) + t (s ′ x+t ′))

= {collecting terms}
((q q ′+r s ′) x + (q r ′+r t ′))/((s q ′+t s ′) x + (s r ′+t t ′))

= {abs}
abs (q q ′+r s′

s q ′+t s′
q r ′+r t ′

s r ′+t t ′) x

We therefore define

(q
s

r
t
)� (q ′

s′
r ′

t ′) =̂ (q q ′+r s′

s q ′+t s′
q r ′+r t ′

s r ′+t t ′)

Finally, we define an extraction function

app (q
s

r
t
) =̂ abs (q

s
r
t
)∞

= q/s

(Notice that � turns out to be matrix multiplication, and ident the unit
matrix, which explains the choice of notation. These matrices are sometimes
called homographies, and the rational functions they represent homographic
functions or Möbius transformations. We discuss this connection further in
Section 6.3.)

By Theorem 3 we then have

fromCF = app · foldl (~) ident where (q
s

r
t
) ~ n =̂ (n q+r

n s+t
q
s
)

Of course, this still will not work for infinite continued fractions; however, we
can now define

fromCFi :: CF → [ExtRat]
fromCFi =̂ map app · scanl (~) ident

yielding the (infinite) sequence of finite convergents of an (infinite) continued
fraction.

25

5.2 Rational unary functions of continued fractions

In Section 5.1, we derived the program

fromCF = app · foldl (~) (1
0

0
1
)

for converting a finite continued fraction to an extended rational. In fact, we
can compute an arbitrary rational function of a continued fraction, by starting
this process with an arbitrary homography in place of the identity (1

0
0
1
). This

is because composition � fuses with the fold:

abs h (fromCF ns)
= {fromCF}

abs h (app (foldl (~) ident ns))
= {specification of app}

abs h (abs (foldl (~) ident ns)∞)
= {requirement on abs and �}

abs (h � foldl (~) ident ns)∞
= {fold fusion: � is associative, and ident its unit}

abs (foldl (~) h ns)∞
= {specification of app again}

app (foldl (~) h ns)

For example, suppose we want to compute the rational 2/x−3, where x is the
rational represented by a particular (finite) continued fraction ns . We could
convert ns to the rational x , then perform the appropriate rational arithmetic.
Alternatively, we could convert ns to a rational as above, starting with the
homography (0

1
2

−3
) instead of (1

0
0
1
), and get the answer directly. If we want

the result as a continued fraction again rather than a rational, we simply
post-apply toCF .

Of course, this will not work to compute rational functions of infinite continued
fractions, as the folding will never yield a result. Fortunately, it is possible
to applying streaming, so that terms of the output are produced before the
whole input is consumed. This is the focus of the remainder of this section.
The derivation follows essentially the same steps as were involved in radix
conversion.

The streaming process maintains a state in the form of a homography, which
represents the mapping from what is yet to be consumed to what is yet to
be produced. The production steps of the streaming process choose a term to
output, and compute a reduced homography for the remainder of the compu-
tation. Given a current homography (q

s
r
t
), and a chosen term n, the reduced

26

homography (q ′

s′
r ′

t ′) is determined as follows:

(q x + r)/(s x + t) = n + 1/((q ′ x + r ′)/(s ′ x + t ′))
≡ {reciprocal}

(q x + r)/(s x + t) = n + (s ′ x + t ′)/(q ′ x + r ′)
≡ {rearrange}

(s ′ x + t ′)/(q ′ x + r ′) = (q x + r)/(s x + t)− n
≡ {incorporate n into fraction}

(s ′ x + t ′)/(q ′ x + r ′) = (q x + r − n (s x + t))/(s x + t)
≡ {collect x and non-x terms}

(s ′ x + t ′)/(q ′ x + r ′) = ((q − n s) x + r − n t)/(s x + t)
⇐ {equating terms}

q ′ = s , r ′ = t , s ′ = q − n s , t ′ = r − n t

That is,

(q ′

s′
r ′

t ′) = (0
1

1
−n

)� (q
s

r
t
)

We therefore define

emit (q
s

r
t
) n =̂ (0

1
1

−n
)� (q

s
r
t
)

= (s
q−n s

t
r−n t

)

5.2.1 Making it a metamorphism

In most of what follows, we assume that we have a completely regular continued
fraction, namely one in which every coefficient including the first is at least one.
This implies that the value represented by the continued fraction is between
one and infinity. Section 5.2.5 shows how to handle the first coefficient, in case
it is less than one.

Given the representation of a rational function in the form of a homography h,
we introduce the function rfc (‘rational function of a completely regular con-
tinued fraction’) to apply it as follows:

rfc h =̂ toCF · app · foldl (~) h

This is almost a metamorphism: toCF is indeed an unfold, but we must get
rid of the projection function app in the middle. Unfold fusion (Corollary 5)
applies, and we have

unfoldr get · app = unfoldr geth

27

where geth (for ‘get on homographies’) is defined by

geth (q
s

r
t
) =̂ if s 0 then Nothing else Just (n, emit (q

s
r
t
) n)

where n =̂ q div s

as can easily be verified.

This yields a metamorphism:

rfc h = unfoldr geth · foldl (~) h

5.2.2 Checking the streaming condition

Now we must check that the streaming condition holds for geth and ~. We
require that when

geth h = Just (n, h ′)

then, for any subsequent term m (which we can assume to be at least 1, this
being a completely regular continued fraction),

geth (h ~ m) = Just (n, h ′ ~ m)

Unpacking this, when h = (q
s

r
t
) and h ′ = (q ′

s′
r ′

t ′), we have s 6= 0, n = q div s ,
q ′ = s , and s ′ = q mod s ; moreover, (q

s
r
t
)~m = (m q+r

m s+t
q
s
). We require among

other things that m s + t 6= 0 and (m q + r) div (m s + t) = q div s . Sadly, this
does not hold; for example, if m = 1 and s , t are positive,

q+r/s+t < 1 + q/s
≡ {multiply through}

s (q + r) < (q + s) (q + t)
≡ {algebra}

r s < q t + s t + s2

which fails if r is sufficiently large.

5.2.3 Cautious progress

As with the radix conversion algorithm in Section 4.3, the function that pro-
duces the next term of the output must be more cautious when it is inter-
leaved with consumption steps that it may be after all the input has been
consumed. The above discussion suggests that we should commit to an out-
put only when it is safe from being invalidated by a later input; in symbols,

28

only when (m q + r) div (m s + t) = q div s for any m ≥ 1. This follows if s
and t are non-zero and have the same sign, and if (q + r) div (s + t) = q div s ,
as a little calculation will verify.

(Another way of looking at this is to observe that the value represented by a
completely regular continued fraction ranges between 1 and ∞, so the result
of transforming it under a homography (q

s
r
t
) ranges between

abs (q
s

r
t
) 1 = q+r/s+t

and

abs (q
s

r
t
)∞ = q/s

if s 6= 0. If the two denominators have the same sign, the result ranges between
these two; if they have different signs, it ranges outside them. Therefore, the
first coefficient of the output is determined if the denominators have the same
sign (which follows if s and t are non-zero and of the same sign) and the two
fractions have the same integer parts.)

We therefore define gets (for ‘safe get ’) to be guard same geth, where guard is
as defined in Section 4.4 and

same (q
s

r
t
) =̂ s t > 0 ∧ (q+r) div (s+t) q div s

Note that whenever gets produces a value, geth produces the same value;
but sometimes gets produces nothing when geth produces something. The
streaming condition does hold for gets and ~, as the reader may now verify.

5.2.4 Flushing streams

It is not the case that unfoldr get · app = unfoldr gets , of course, because the
latter is too cautious. However, by Lemma 9 it does follow that

unfoldr get · app = apol gets (unfoldr geth)

This cautiously produces elements while it it safe to do so, then throws cau-
tion to the winds and produces elements anyway when it ceases to be safe.
Moreover, Theorem 6 applies to the cautious part, and so

rfc h = unfoldr get · app · foldl (~) h
= fstream gets (~) (unfoldr geth) h

29

This streaming algorithm can compute a rational function of a finite or infi-
nite completely regular continued fraction, yielding a finite or infinite regular
continued fraction as a result.

5.2.5 Handling the first term

A regular but not completely regular continued fraction may have a first term
of 1 or less, invalidating the reasoning above. However, this is easy to handle,
simply by consuming the first term immediately. We introduce a wrapper
function rf :

rf h [] =̂ rfc h []
rf h (n : ns) =̂ rfc (h ~ n) ns

This streaming algorithm can compute any rational function of a finite or
infinite regular continued fraction, completely regular or otherwise.

5.3 Rational binary functions of continued fractions

The streaming process described in Section 5.2 allows us to compute a unary
rational function (a x + b)/(c x + d) of a single continued fraction x . The
technique can be adapted to allow a binary rational function (a x y + b x +
c y + d)/(e x y + f x + g y + h) of continued fractions x and y . This does not
fit into our framework of metamorphisms and streaming algorithms, because
it combines two arguments into one result; nevertheless, much of the same
reasoning can be applied. We simply outline the development here; we intend
to elaborate on this in a companion paper.

5.3.1 Familiar operations as rational binary functions

Let us write the binary rational function (a x y + b x + c y + d)/(e x y + f x +
g y + h) of x and y as a bihomography or tensor applied to (x , y):

(a
e

b
f

c
g

d
h
) (x , y)

30

Suitable choices of the coefficients yield addition, subtraction, multiplication
and division:

x + y = (0
0

1
0

1
0

0
1
) (x , y)

x − y = (0
0

1
0
−1
0

0
1
) (x , y)

x × y = (1
0

0
0

0
0

0
1
) (x , y)

x ÷ y = (0
0

1
0

0
1

0
0
) (x , y)

5.3.2 Consuming a term

Recall that for rational unary functions, the transformation on the coefficients
needed when consuming a single term n of the argument is given by ~:

(q
s

r
t
) ~ n = (n q+r

n s+t
q
t
)

For rational binary functions, the transformation on the coefficients needed
when consuming a single term n of the first argument x is as follows:

(a
e

b
f

c
g

d
h
)� n =̂ (a n+b

e n+f
a
e

c n+d
g n+h

c
g
)

Similarly, for consuming the first term m of the second argument y :

(a
e

b
f

c
g

d
h
) ; n =̂ (a n+c

e n+g
b n+d
f n+h

a
e

b
f
)

That is,(
(a
e

b
f

c
g

d
h
)� n

)
(x , y) = (a

e
b
f

c
g

d
h
) (n : x , y)

and (
(a
e

b
f

c
g

d
h
) ; n

)
(x , y) = (a

e
b
f

c
g

d
h
) (x , n : y)

5.3.3 Producing a term

For rational unary functions, the transformation on the coefficients needed
when producing a single term n of the result is given by the function emit :

emit (q
s

r
t
) n = (s

q−n s
t

r−n t
)

31

The transformation on the coefficients needed when producing a single term
n of the result is as follows:

emit (a
e

b
f

c
g

d
h
) n =̂ (e

a−n e
f

b−n f
g

c−n g
h

d−n h
)

That is,

(a
e

b
f

c
g

d
h
) (x , y) = n +

1

(e
a−n e

f
b−n f

g
c−n g

h
d−n h

) (x , y)

5.3.4 When to commit?

For rational unary functions, the homography (q
s

r
t
) determines the next co-

efficient of the result when

s t > 0 ∧ (q + r) div (s + t) q div s

Similarly, the extreme values of

(a
e

b
f

c
g

d
h
) (x , y)

can be determined from its values at the four corners consisting of x , y chosen
from 1,∞:

(a
e

b
f

c
g

d
h
) (1, 1) = a+b+c+d/e+f +g+h

(a
e

b
f

c
g

d
h
) (1,∞) = a+c/e+g

(a
e

b
f

c
g

d
h
) (∞, 1) = a+b/e+f

(a
e

b
f

c
g

d
h
) (∞,∞) = a/e

provided that the denominators are all non-zero. If the denominators all have
the same sign, the result ranges between these four corner values; if in addi-
tion all four corner values have the same integer part, then this is the next
coefficient of the result.

5.3.5 Which term to consume?

When it is not safe to commit to an output, an input term should be con-
sumed; but for binary functions, a choice has to be made from which of
the two inputs to consume a term. Various strategies have been proposed
for making this choice. No choice is wrong, but some will be more effective
than others. Vuillemin [28] consumes an element from both inputs together

32

(it will be seen that the two consumption operators commute, in the sense
that (h � n) ; m = (h ; m) � n); equivalently, one could alternate between
consumption from the left and consumption from the right. But these are
likely to be suboptimal strategies, in that they consume more input terms
than are necessary for producing a given number of output terms. Potts [31]
describes some more elaborate strategies, aiming for a good compromise be-
tween effectiveness (consuming the terms that lead most quickly to outputs)
and efficiency (making the choice quickly).

5.3.6 Productivity

Unfortunately, there is a problem of productivity with binary operations on
continued fractions, that does not arise with unary operations: some opera-
tions are simply uncomputable. For example, computing x−x for an irrational
x ought to yield zero, but this cannot be determined without examining all of
the infinite input. This problem has led Vuillemin [28] and others to consider
redundant representations of continued fractions, so that such a computation
can still be productive. It is necessarily the case then that ordinary exact
two-way comparisons become uncomputable; however, ‘loose’ three-way com-
parisons (such as a test for zero, with a third case for when the argument is
‘close to zero’) can be implemented.

6 Other applications of streaming

In Sections 6.1 and 6.2, we briefly outline two other applications of streaming;
we have described both in more detail elsewhere, and we refer the reader to
those sources for the full stories. Section 6.3 outlines a common unification of
a number of applications of streaming described in this article and elsewhere.

6.1 Digits of π

In [32] we present an unbounded spigot algorithm for computing the digits
of π. This work was inspired by Rabinowitz and Wagon [33], who coined the
term spigot algorithm for an algorithm that yields output elements incremen-
tally and does not reuse them after they have been output — so the digits
drip out one by one, as if from a leaky tap. (In contrast, most algorithms
for computing approximations to π, including the best currently known, work
inscrutably until they deliver a complete response at the end of the computa-
tion.) Although incremental, Rabinowitz and Wagon’s algorithm is bounded,
since one needs to decide at the outset how many digits are to be computed,

33

whereas our algorithm yields digits indefinitely. This observation is nothing to
do with computational evaluation order: Rabinowitz and Wagon’s algorithm
is just as bounded in a lazy language.

The algorithm is based on the following infinite sum:

π =
∞∑
i=0

(i !)22i+1

(2i + 1)!

which expands out to

π = 2 +
1

3

(
2 +

2

5

(
2 +

3

7

(
· · ·

(
2 +

i

2i + 1

(
· · ·
)))))

One can view this expansion as an infinite composition of linear fractional
transformations:

π =
(
2 +

1

3
×
)(

2 +
2

5
×
)(

2 +
3

7
×
)
· · ·

(
2 +

i

2i + 1
×
)
· · ·

A streaming algorithm can convert this infinite sequence of linear fractional
transformations (represented as homographies) into an infinite sequence of
decimal digits. The consumption operator is matrix multiplication, written
� in Section 5.1. When a digit n is produced, the state (q

s
r
t
) should be

transformed into a homography (q ′, r ′, s ′, t ′) such that

abs (q
s

r
t
) x = n + abs (q ′

s′
r ′

t ′) x ÷ 10

which simplifies to

(q ′

s′
r ′

t ′) = (10
0

−10n
1

)� (q
s

r
t
)

34

Any tail of the input sequence represents a value between 3 and 4, because

3
= {solution of recurrence}

x where x =̂ 2 +
1

3
x

= {expand recurrence}
2 +

1

3

(
2 +

1

3

(
2 + · · ·

))
< {bound terms}

2 +
i

2i + 1

(
2 +

i + 1

2i + 3

(
2 + · · ·

))
< {bound terms}

2 +
1

2

(
2 +

1

2

(
2 + · · ·

))
= {contract recurrence}

x where x =̂ 2 +
1

2
x

= {solution of recurrence}
4

Therefore, homography h determines the next digit when

babs h 3c =̂ babs h 4c

in which case, the digit is the common value of these two expressions. This
reasoning gives us the following program:

pi =̂ stream prod (�) ident lfts

where

lfts =̂ [(k
0

4k+2
2k+1

) | k ← [1..]]

prod h =̂ if babs h 4c n then Just (n, (10
0

−10n
1

)� h) else Nothing
where n =̂ babs h 3c

(The definition of lfts is via a ‘list comprehension’, yielding the term before
the bar for each value of k in [1..].)

6.2 Arithmetic coding

Arithmetic coding [34] is a method for data compression. It can be more effec-
tive (compressing better) than rival schemes such as Huffman coding, while

35

still being as efficient (using little time and space). Moreover, it is well suited
to adaptive encoding, in which the coding scheme evolves to match the text
being encoded.

The basic idea of arithmetic encoding is simple. The message to be encoded
is broken into symbols, such as characters, and each symbol of the message is
associated with a semi-open subinterval of the unit interval [0 .. 1). Encoding
starts with the unit interval, and narrows it according to the intervals asso-
ciated with each symbol of the message in turn. The encoded message is the
binary representation of some fraction chosen from the final ‘target’ interval.

In [8] we present a detailed derivation of arithmetic encoding and decoding.
We merely outline the development of encoding here, to show where streaming
fits in. Decoding follows a similar process to encoding, starting with the unit
interval and homing in on the binary fraction, reconstructing the plaintext in
the process; but we will not discuss it here.

The encoding process can be captured as follows. The type Interval represents
intervals of the real line, usually subunits (subintervals of the unit interval):

unit :: Interval
unit =̂ [0 .. 1)

Narrowing an interval lr by a subunit pq yields a subinterval of lr , which
stands in the same relation to lr as pq does to unit .

narrow :: Interval → Interval → Interval
narrow [l .. r) [p .. q) =̂ [l + (r−l)× p .. l + (r−l)× q)

We consider only non-adaptive encoding here for simplicity: adaptivity turns
out to be orthogonal to streaming. We therefore assume a single fixed model,
represented as a function from symbols to intervals:

model :: Symbol → Interval

Encoding is a three-stage process: mapping symbols into intervals, narrowing
intervals to a target interval, and generating the binary representation of a
fraction within that interval (missing its final 1). (It is tempting to choose a
fraction then convert it to binary; but unless this is done carefully, the fraction
will not be one that has a short binary representation.)

encode :: [Symbol]→ [Bool]
encode =̂ unfoldr nextBit · foldl narrow unit ·map model

36

where

nextBit (l , r)
| r ≤ 1/2 =̂ Just (False, narrow (0, 2) (l , r))
| 1/2 ≤ l =̂ Just (True, narrow (−1, 1) (l , r))
| l < 1/2 < r =̂ Nothing

This can be turned into a metamorphism, as the map fuses with the fold.

As described, this is not a very efficient encoding method: the entire message
has to be digested into a target interval before any of the fraction can be
generated. However, the streaming condition holds, and bits of the fraction
can be produced before all of the message is consumed:

encode :: [Symbol]→ [Bool]
encode m = stream nextBit narrow unit ·map model

(Again, the map fuses with the stream.)

6.3 A unified view of number representations

The observant reader may have noticed some similarities between three of the
examples discussed in this article: radix conversion (Section 4), arithmetic on
continued fractions (Section 5), and computing the digits of π (Section 6.1).
Indeed, all three may be unified into a general scheme described by Potts and
Edalat [35,31], and based on infinite sequences of linear fractional transforma-
tions. We summarize the ideas here.

6.3.1 The general scheme

The general idea is that a number x in some base interval I is represented by
an infinite sequence α = 〈α1, α2, . . .〉 of linear fractional transformations. The
elements of the matrix representing the transformation and the endpoints of
the interval are drawn from some field. Each matrix (a

c
b
d
) is non-singular,

that is, ad − bc 6= 0.

The image α(J) of an interval J under a transformation α is defined in
the obvious way. The ith approximant α|i of a number representation α =
〈α1, α2, . . .〉 is defined to be α1(α2(· · ·αi(I))). Representation α is valid if these
approximants are properly nested: I = α|0 ⊇ α|1 ⊇ α|2 ⊇ · · ·, which follows
if each term αi satisfies αi(I) ⊆ I . A valid representation may still not repre-
sent a unique number (for example, if each αi is the identity transformation);

37

representation α represents number x if the approximants α|i converge to a
singleton set

⋂
i α|i = {x}.

6.3.2 Decimal representation

For example, decimal representation uses the field of rationals, the base in-
terval I = [0, 1], and terms (1

0
d
10

) for d ∈ 0, 1 . . . 9. Indeed, the terms are

non-singular, and (1
0

d
10

) [0, 1] = [d/10,
d+1/10] ⊆ [0, 1], so all sequences of terms

are valid. Moreover, each term shrinks an interval by a factor of ten, so any
sequence of terms converges to a single representative.

6.3.3 Continued fractions

Completely regular continued fractions, in which the first coefficient is at
least 1 like all the other coefficients, uses the field of rationals extended with
∞ (the type ExtRat of Section 5.1), the base interval I = [1,∞], and terms
(b

1
1
0
) with b ∈ 1, 2 Again, the terms are non-singular, and (b

1
1
0
) [1,∞] =

[b, b + 1] ⊆ [1,∞]. It can also be shown that any sequence of such terms
converges to a single representative.

6.3.4 Digits of π

Rabinowitz and Wagon’s spigot algorithm uses the field of rationals, the base
interval [3, 4], and terms (k

0
4k+2
2k+1

) for k = 1, 2 Again, the terms are non-
singular, and(

k

0

4k + 2

2k + 1

)
[3, 4] = [31/2 − 3/4k+2, 4− 2/2k+1] ⊆ [3, 4]

so all sequences of terms are valid. Moreover, each term shrinks an interval by
a factor of at least two, so any sequence converges to a single representative.

6.3.5 Other representations

Potts and Edalat [35,31] use the field of rationals, the base interval I = [0,∞],
and terms the positive non-singular linear fractional transformations (that is,
those with all four elements at least zero), which can be shown to main-
tain proper nesting of intervals. They use these to develop various kinds of
representation, including redundant ones. The scheme also covers positional
representations with non-integer [36, Exercise 1.2.8–35] and imaginary [37,
Section 4.1] bases.

38

6.3.6 Streaming conversions

The single unified setting allows one to convert between these various rep-
resentations using streaming algorithms. For example, the spigot algorithm
for π is based on converting from the third representation above to the first.
The state consists of a non-singular linear fractional transformation h. For a
simple conversion, h can be initialized to the identity transform; but an arbi-
trary (non-singular) rational unary function can be applied at the same time,
as discussed in Section 5.2. However, the invariant that h(I) ⊆ I should be
maintained throughout the conversion process. Consumption is simply a mat-
ter of multiplying matrix h by the next input term αi . Production, if possible,
involves factorizing h into an output term βj and a revised state h ′ such that
h = βj · h ′, while maintaining the above invariant. Note that non-singularity
of the state is another invariant, maintained by consumption and production
of non-singular terms.

To illustrate, reconsider conversion of 0.6710 to ternary, as described in Sec-
tion 4.3. After consuming the 610, the state is (1

0
6
10

). The available output

digits are (1
0

d
3
) for d = 0, 1, 2, but none of these is in fact possible. For exam-

ple, (1
0

6
10

) factorizes into (1
0

0
3
) (1

0
6

10/3
), but the putative revised state (1

0
6

10/3
)

takes the base interval [0, 1] to [18/10,
21/10] 6⊆ [0, 1]; similar objections apply to

the other two digits. Therefore no output can be produced at this point, and
the next input term 710 must be consumed.

7 Future and related work

The notion of metamorphisms in general and of streaming algorithms in par-
ticular arose out of our work on arithmetic coding [8]. Since then, we have seen
the same principles cropping up in other areas, most notably in the context of
various kinds of numeric representations: the radix conversion problem from
Section 3.2, continued fractions as described in Section 5, and computations
with infinite compositions of homographies as used in Section 6.1. Indeed, one
might even see arithmetic coding as a kind of numeric representation problem.

7.1 Generic streaming

Our theory of metamorphisms could easily be generalized to other datatypes:
there is nothing to prevent consideration of folds consuming and unfolds pro-
ducing datatypes other than lists. However, we do not currently have any
convincing examples.

39

Perhaps related to the lack of convincing examples for other datatypes, it is
not clear what a generic theory of streaming algorithms would look like. List-
oriented streaming relies essentially on foldl, which does not generalize in any
straightforward way to other datatypes. (We have in the past attempted to
show how to generalize scanl to arbitrary datatypes [38–40], and Pardo [41]
has improved on these attempts; but we do not see yet how to apply those
constructions here.)

However, the unfold side of streaming algorithms does generalize easily, to
certain kinds of datatype if not obviously all of them. Consider producing a
data structure of the type

data Generic τ α =̂ Gen (Maybe (α, τ (Generic τ α)))

for some instance τ of the type class Functor . (Lists essentially match this
pattern, with τ the identity functor. The type Tree of internally-labelled binary
trees introduced in Section 2 matches too, with τ being the pairing functor.
In general, datatypes of this form have an empty structure, and all non-empty
structures consist of a root element and a τ -shaped collection of children.) It
is straightforward to generalize the streaming condition to such types:

f c = Just (b, c ′) ⇒ f (g c a) = Just (b, fmap (λu → g u a) c ′)

(This has been called an ‘τ -invariant’ or ‘mongruence’ [42] elsewhere.) Still,
we do not have any useful applications of an unfold to a Generic type after a
foldl.

7.2 Related work: Back to basics

Some of the ideas presented here were inspired by the work of Hutton and
Meijer [43]. They studied representation changers, consisting of one abstrac-
tion function followed by the converse of another abstraction function. Their
representation changers are analogous to our metamorphisms, with the func-
tion corresponding to the fold and the converse of a function to the unfold:
in a relational setting, an unfold is just the converse of a fold, and so our
metamorphisms could be seen as a special case of representation changers in
which both abstraction functions are folds. We feel that restricting attention
to the special case of folds and unfolds is worthwhile, because we can capital-
ize on their universal properties; without this restriction, one has to resort to
reasoning from first principles.

Hutton and Meijer illustrate with two examples: a carry-save incrementer and
radix conversion. The carry-save representation of numbers is redundant, us-

40

ing the redundancy to avoid carry propagation. Incrementing such a number
can certainly be seen as a change of representation, and indeed their resulting
program is a simple unfold. However, the problem is more than just a change
of representation: the point of the exercise is to preserve some of the input
representation in the output, and it isn’t immediately clear how to fit that re-
quirement into our pattern of folding to an abstract value and independently
unfolding to a different representation. Their radix conversion problem is sim-
ilar to ours, but their resulting algorithm is not streaming: all of the input
must be read before any of the output is produced.

Acknowledgements

The material on arithmetic coding in Section 6.2, and indeed the idea of
streaming algorithms in the first place, came out of joint work with Richard
Bird [8] and Barney Stratford. The principles behind reversing the order of
evaluation and defunctionalization presented in Section 4.2 have been known
for a long time [44,20], but the presentation used here is due to Geraint Jones.

We are grateful to members of the Algebra of Programming research group
at Oxford and of IFIP Working Group 2.1, the participants in the Datatype-
Generic Programming project, and the anonymous Mathematics of Program
Construction referees for their helpful suggestions regarding this work. The
observation in Section 4.4 that fstream can be expressed in terms of stream is
due to Barney Stratford.

References

[1] T. Hagino, A typed lambda calculus with categorical type constructors, in:
D. H. Pitt, A. Poigné, D. E. Rydeheard (Eds.), Category Theory and Computer
Science, Vol. 283 of Lecture Notes in Computer Science, Springer-Verlag, 1987,
pp. 140–157.

[2] G. Malcolm, Data structures and program transformation, Science of Computer
Programming 14 (1990) 255–279.

[3] R. Bird, O. de Moor, The Algebra of Programming, Prentice-Hall, 1996.

[4] L. H. Sullivan, The tall office building artistically considered, Lippincott’s
Magazine, Mar. 1896.

[5] E. Meijer, M. Fokkinga, R. Paterson, Functional programming with bananas,
lenses, envelopes and barbed wire, in: J. Hughes (Ed.), Functional Programming
Languages and Computer Architecture, Vol. 523 of Lecture Notes in Computer
Science, Springer-Verlag, 1991, pp. 124–144.

41

[6] D. Swierstra, O. de Moor, Virtual data structures, in: B. Möller, H. Partsch,
S. Schumann (Eds.), IFIP TC2/WG2.1 State-of-the-Art Report on Formal
Program Development, Vol. 755 of Lecture Notes in Computer Science,
Springer-Verlag, 1993, pp. 355–371.

[7] P. Wadler, Deforestation: Transforming programs to eliminate trees, Theoretical
Computer Science 73 (1990) 231–248.

[8] R. Bird, J. Gibbons, Arithmetic coding with folds and unfolds, in: J. Jeuring,
S. P. Jones (Eds.), Advanced Functional Programming 4, Vol. 2638 of Lecture
Notes in Computer Science, Springer-Verlag, 2003, pp. 1–26.

[9] J. Gibbons, Streaming representation-changers, in: D. Kozen (Ed.),
Mathematics of Program Construction, Vol. 3125 of Lecture Notes in Computer
Science, 2004, pp. 142–168.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[11] J. Hughes, Why functional programming matters, Computer Journal 32 (2)
(1989) 98–107, also in [45].

[12] S. Peyton Jones, The Haskell 98 Language and Libraries: The Revised Report,
Cambridge University Press, 2003.

[13] J. Gibbons, G. Jones, The under-appreciated unfold, in: Proceedings of the
Third ACM SIGPLAN International Conference on Functional Programming,
Baltimore, Maryland, 1998, pp. 273–279.

[14] J. Gibbons, Origami programming, in: J. Gibbons, O. de Moor (Eds.), The Fun
of Programming, Cornerstones in Computing, Palgrave, 2003, pp. 41–60.

[15] J. Gibbons, Calculating functional programs, in: R. Backhouse, R. Crole,
J. Gibbons (Eds.), Algebraic and Coalgebraic Methods in the Mathematics
of Program Construction, Vol. 2297 of Lecture Notes in Computer Science,
Springer-Verlag, 2002, pp. 148–203.

[16] M. A. Jackson, Principles of Program Design, Academic Press, 1975.

[17] C. A. R. Hoare, Quicksort, Computer Journal 5 (1962) 10–15.

[18] L. Augusteijn, Sorting morphisms, in: S. D. Swierstra, P. R. Henriques, J. N.
Oliveira (Eds.), Advanced Functional Programming, Vol. 1608 of Lecture Notes
in Computer Science, 1998, pp. 1–27.

[19] R. S. Bird, P. L. Wadler, An Introduction to Functional Programming, Prentice-
Hall, 1988.

[20] J. C. Reynolds, Definitional interpreters for higher-order programming
languages, Higher Order and Symbolic Computing 11 (4) (1998) 363–397,
reprinted from the Proceedings of the 25th ACM National Conference, 1972.

42

[21] V. Vene, T. Uustalu, Functional programming with apomorphisms
(corecursion), Proc. of the Estonian Academy of Sciences: Physics, Mathematics
47 (3) (1998) 147–161, 9th Nordic Workshop on Programming Theory.

[22] L. Meertens, Paramorphisms, Formal Aspects of Computing 4 (5) (1992) 413–
424.

[23] R. S. Bird, Introduction to Functional Programming Using Haskell, Prentice-
Hall, 1998.

[24] J. Gibbons, G. Hutton, Proof methods for corecursive programs, Fundamenta
Informatica.

[25] M. Beeler, R. W. Gosper, R. Schroeppel, Hakmem, AIM 239, MIT (Feb. 1972).

[26] B. Gosper, Continued fraction arithmetic, unpublished manuscript (1981).

[27] S. Peyton Jones, Arbitrary precision arithmetic using continued fractions,
INDRA Working Paper 1530, Dept of CS, University College, London (Jan.
1984).

[28] J. Vuillemin, Exact real arithmetic with continued fractions, IEEE Transactions
on Computers 39 (8) (1990) 1087–1105.

[29] D. Lester, Vuillemin’s exact real arithmetic, in: R. Heldal, C. K. Holst, P. Wadler
(Eds.), Glasgow Functional Programming Workshop, 1991, pp. 225–238.

[30] D. Lester, Effective continued fractions, in: Proceedings of the Fifteenth IEEE
Arithmetic Conference, 2001, pp. 163–172.

[31] P. J. Potts, Exact real arithmetic using Möbius transformations, Ph.D. thesis,
Imperial College, London (Jul. 1998).

[32] J. Gibbons, Unbounded spigot algorithms for the digits of π, submitted for
publication (Aug. 2004).

[33] S. Rabinowitz, S. Wagon, A spigot algorithm for the digits of π, American
Mathematical Monthly 102 (3) (1995) 195–203.

[34] I. H. Witten, R. M. Neal, J. G. Cleary, Arithmetic coding for data compression,
Communications of the ACM 30 (6) (1987) 520–540.

[35] A. Edalat, P. J. Potts, A new representation for exact real numbers, Electronical
Notes in Theoretical Computer Science 6 (1997) 13 pp.

[36] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental
Algorithms, Addison-Wesley, 1968.

[37] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Addison-Wesley, 1969.

[38] J. Gibbons, Algebras for tree algorithms, D. Phil. thesis, Programming Research
Group, Oxford University, available as Technical Monograph PRG-94. ISBN 0-
902928-72-4 (1991).

43

[39] J. Gibbons, Polytypic downwards accumulations, in: J. Jeuring (Ed.),
Proceedings of Mathematics of Program Construction, Vol. 1422 of Lecture
Notes in Computer Science, Springer-Verlag, Marstrand, Sweden, 1998, pp.
207–233.

[40] J. Gibbons, Generic downwards accumulations, Science of Computer
Programming 37 (2000) 37–65.

[41] A. Pardo, Generic accumulations, in: J. Gibbons, J. Jeuring (Eds.), Generic
Programming, Kluwer Academic Publishers, 2003, pp. 49–78, proceedings of
the IFIP TC2 Working Conference on Generic Programming, Schloß Dagstuhl,
July 2002. ISBN 1-4020-7374-7.

[42] B. Jacobs, Mongruences and cofree coalgebras, in: Algebraic Methodology and
Software Technology, Vol. 936 of Lecture Notes in Computer Science, 1995, pp.
245–260.

[43] G. Hutton, E. Meijer, Back to basics: Deriving representation changers
functionally, Journal of Functional Programming 6 (1) (1996) 181–188.

[44] E. Boiten, The many disguises of accumulation, Tech. Rep. 91-26, Department
of Informatics, University of Nijmegen (Dec. 1991).

[45] D. A. Turner (Ed.), Research Topics in Functional Programming, University of
Texas at Austin, Addison-Wesley, 1990.

A Appendix: Haskell code

In the body of the paper, we have presented fragments of ‘idealized Haskell’. To
avoid obscuring the discussion with notation, we have used typographic effects
in formatting the code, and have elided some details (such as coercions between
Haskell’s different numeric types, and declaration of type class contexts for ad-hoc
polymorphism). For absolute clarity, we include the raw Haskell code here.

A.1 Code from Section 2

> data Tree a = Empty | Node (a, Tree a, Tree a)

> foldt :: (Maybe (a,b,b) -> b) -> Tree a -> b
> foldt f Empty = f Nothing
> foldt f (Node (a,t,u)) = f (Just (a, foldt f t, foldt f u))

> unfoldt :: (b -> Maybe (a,b,b)) -> b -> Tree a
> unfoldt f b = case f b of

44

> Nothing -> Empty
> Just (a, b1, b2) -> Node (a, unfoldt f b1, unfoldt f b2)

A.2 Code from Section 3.1

> reformat :: Int -> [[a]] -> [[a]]
> reformat n = writeLines n . readLines

> readLines :: [[a]] -> [a]
> readLines = foldr (++) []
> writeLines :: Int -> [a] -> [[a]]
> writeLines n = unfoldr (split n)
> split n x = if null x then Nothing else Just (splitAt n x)

A.3 Code from Section 3.2

> radixConvert :: (Integer,Integer) -> [Integer] -> [Integer]
> radixConvert (b,c) = toBase c . fromBase b

> fromBase :: Integer -> [Integer] -> Rational
> fromBase b = foldr (step b) 0
> step b n x = (x + fromInteger n) / fromInteger b

> toBase :: Integer -> Rational -> [Integer]
> toBase b = unfoldr (next b)
> next b 0 = Nothing
> next b x = Just (floor y, y - i2r (floor y))
> where y = i2r b * x

> i2r :: Integer -> Rational
> i2r = fromInteger

A.4 Code from Section 3.3

> quicksort :: Ord a => [a] -> [a]
> quicksort = foldt join . unfoldt partition

45

> partition :: Ord a => [a] -> Maybe (a, [a], [a])
> partition [] = Nothing
> partition (a:x) = Just (a, filter (<=a) x, filter (>a) x)

> join :: Maybe (a, [a], [a]) -> [a]
> join Nothing = []
> join (Just (a,x,y)) = x ++ [a] ++ y

> heapsort :: Ord a => [a] -> [a]
> heapsort = unfoldr splitMin . foldr insert Empty

> insert :: Ord a => a -> Tree a -> Tree a
> insert a t = merge (Node (a,Empty,Empty), t)

> splitMin :: Ord a => Tree a -> Maybe (a, Tree a)
> splitMin Empty = Nothing
> splitMin (Node (a,t,u)) = Just (a, merge (t,u))

> merge :: Ord a => (Tree a, Tree a) -> Tree a
> merge (t, Empty) = t
> merge (Empty, u) = u
> merge (t, u)
> | minElem t < minElem u = glue (t,u)
> | otherwise = glue (u,t)
> where glue (Node (a,t,u), v) = Node (a, u, merge (t,v))
> minElem (Node (a,t,u)) = a

A.5 Code from Section 4.1

> stream :: (c -> Maybe (b,c)) -> (c -> a -> c) -> c -> [a] -> [b]
> stream f g c x =
> case f c of
> Just (b, c’) -> b : stream f g c’ x
> Nothing -> case x of
> (a:x’) -> stream f g (g c a) x’
> [] -> []

46

A.6 Code from Section 4.2

> fromBase’ :: Integer -> [Integer] -> Rational
> fromBase’ b = app . foldl (astle b) ident where
> astle b (n,d) m = (m + b * n, b * d)
> ident = (0,1)
> app (n,d) = step d n 0

A.7 Code from Section 4.4

> guard :: (b -> Bool) -> (b -> Maybe a) -> (b -> Maybe a)
> guard p f b = if p b then f b else Nothing

> fstream :: (c -> Maybe (b,c)) -> (c -> a -> c) -> (c -> [b]) ->
> c -> [a] -> [b]
> fstream f g h c x =
> case f c of
> Just (b, c’) -> b : fstream f g h c’ x
> Nothing -> case x of
> (a:x’) -> fstream f g h (g c a) x’
> [] -> h c

> apol :: (b -> Maybe (a,b)) -> (b -> [a]) -> b -> [a]
> apol f h b =
> case f b of
> Just (a,b’) -> a : apol f h b’
> Nothing -> h b

> fstream’ f g h c x = stream f’ g’ (Left c) (map Just x ++ [Nothing])
> where
> f’ (Left c) = case f c of Just (b,c’) -> Just (b, Left c’)
> Nothing -> Nothing
> f’ (Right y) = case y of b:y’ -> Just (b, Right y’)
> nil -> Nothing
> g’ (Left c) (Just a) = Left (g c a)
> g’ (Left c) Nothing = Right (h c)

47

A.8 Code from Section 4.6

> radixConvert’ :: (Integer,Integer) -> [Integer] -> [Integer]
> radixConvert’ (b,c) = fstream snextapp astle (unfoldr nextapp) (0,1)
> where
> nextapp (0,r) = Nothing
> nextapp (n,r) = Just (u, (n - i2r u * r / i2r c, r / i2r c))
> where u = floor (n * i2r c / r)
> snextapp = guard safe nextapp
> safe (n,r) = floor (n * i2r c / r) == floor ((n+1) * i2r c / r)
> astle (n,d) m = (i2r m + i2r b * n, i2r b * d)

A.9 Code from Section 5.1

> data ExtRat = Finite Rational | Infinite deriving (Eq,Ord)

> lift2 :: (Rational->Rational->Rational) -> (ExtRat->ExtRat->ExtRat)
> lift2 f (Finite x) (Finite y) = Finite (f x y)
> lift2 f _ _ = Infinite

> lift1 :: (Rational->Rational) -> (ExtRat->ExtRat)
> lift1 f (Finite x) = Finite (f x)
> lift1 f Infinite = error "Infinity"

> instance Num ExtRat where
> (+) = lift2 (+)
> (-) = lift2 (-)
> (*) = lift2 (*)
> signum = lift1 signum
> abs = lift1 abs
> fromInteger n = Finite (fromInteger n)

> instance Real ExtRat where
> toRational (Finite x) = x
> toRational Infinite = error "Infinity"

> instance Fractional ExtRat where
> recip (Finite 0) = Infinite
> recip (Finite x) = Finite (recip x)
> recip Infinite = Finite 0
> fromRational x = Finite x

48

> instance RealFrac ExtRat where
> properFraction (Finite x) = (n, Finite y)
> where (n,y) = properFraction x

> instance Show ExtRat where
> show (Finite x) = show x
> show Infinite = "oo"

> i2e :: Integer -> ExtRat
> i2e = fromInteger

> type CF = [Integer]

> toCF :: ExtRat -> CF
> toCF = unfoldr get where
> get Infinite = Nothing
> get (Finite x) = Just (y, recip (Finite (x - i2r y)))
> where y = floor x

> fromCF :: CF -> ExtRat
> fromCF = foldr put Infinite
> where put n y = fromInteger n + recip y

> fromCF’ :: CF -> ExtRat
> fromCF’ = apph . foldl astleh identh

> fromCFi :: CF -> [ExtRat]
> fromCFi = map apph . scanl astleh identh

> type Homog = (Integer,Integer,Integer,Integer)

> astleh :: Homog -> Integer -> Homog
> astleh (q,r,s,t) n = (n*q+r, q, n*s+t, s)

> identh :: Homog
> identh = (1,0,0,1)

> apph :: Homog -> ExtRat
> apph (q,r,s,t) = i2e q / i2e s

> absh :: Homog -> Integer -> ExtRat
> absh (q,r,s,t) n = fromInteger (n*q+r) / fromInteger (n*s+t)

49

A.10 Code from Section 5.2

> emit :: Homog -> Integer -> Homog
> emit (q,r,s,t) n = (s, t, q-n*s, r-n*t)

> rfc :: Homog -> CF -> CF
> rfc h = unfoldr geth . foldl astleh h

> geth :: Homog -> Maybe (Integer, Homog)
> geth (q,r,s,t)
> | s /= 0 = Just (n, emit (q,r,s,t) n)
> | otherwise = Nothing
> where n = q ‘div‘ s

> gets :: Homog -> Maybe (Integer, Homog)
> gets = guard same geth
> where same (q,r,s,t) = s*t>0 && (q+r) ‘div‘ (s+t) == q ‘div‘ s

> rfc’ :: Homog -> CF -> CF
> rfc’ h = fstream gets astleh (unfoldr geth) h

> rf :: Homog -> CF -> CF
> rf h [] = rfc h []
> rf h (n:x) = rfc (astleh h n) x

A.11 Code from Section 6.1

> pi = stream prod mm identh lfts where
> lfts = [(k, 4*k+2, 0, 2*k+1) | k <- [1..]]
> prod h
> | floor (absh h 4) == n = Just (n, mm (10, -10*n, 0, 1) h)
> | otherwise = Nothing
> where n = floor (absh h 3)
> mm (q,r,s,t) (q’,r’,s’,t’)
> = (q*q’+r*s’,q*r’+r*t’,s*q’+t*s’,s*r’+t*t’)

50

A.12 Code from Section 6.2

> type Interval = (Rational, Rational)

> unit :: Interval
> unit = (0,1)

> m ‘within‘ (l,r) = l<=m && m<r

> narrow :: Interval -> Interval -> Interval
> narrow (l,r) (p,q) = (l+(r-l)*p, l+(r-l)*q)

> model :: Char -> Interval
> model c = maybe undefined id (lookup c table)
> table :: [(Char, Interval)]
> table = zip chars ints where
> chars = "abcde"
> weights = [4,3,2,3,5] :: [Rational]
> cumul = scanl (+) 0 (map (/ sum weights) weights)
> ints = zip cumul (tail cumul)

> encode, encode’ :: [Char] -> [Bool]
> encode = unfoldr nextBit . foldl narrow unit . map model
> encode’ = stream nextBit narrow unit . map model
> nextBit (l,r)
> | r <= 1/2 = Just (False, narrow (0,2) (l,r))
> | 1/2 <= l = Just (True, narrow (-1,1) (l,r))
> | otherwise = Nothing

> decode :: [Bool] -> [Char]
> decode = unfoldr nextChar . centre . foldl narrow unit . map follow
> follow b = if b then (1/2,1) else (0,1/2)
> centre (l,r) = (l+r)/2
> nextChar x = lookup True (invert x table)
> invert x t = [(x ‘within‘ (p,q),(c, (x-p)/(q-p))) | (c,(p,q)) <- t]

A.13 Code from Section 7.1

> data Functor f => Generic f a = Gen (Maybe (a, f (Generic f a)))

51

