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Abstract—Health informatics is a field in which the disci-
plines of software engineering and machine learning necessarily
co-exist. This discussion paper considers the interaction of
software engineering and machine learning, set within the con-
text of health informatics, where the scale of clinical practice
requires new engineering approaches from both disciplines. We
introduce applications implemented in large on-going research
programmes undertaken between the Departments of Engi-
neering Science and Computer Science at Oxford University,
the Oxford University Hospitals NHS Trust, and the Guy’s and
St Thomas’ NHS Foundation Trust, London.

I. INTRODUCTION

A. Health Informatics

Health informatics is a broad field [1]–[3], involving
the acquisition and manipulation of healthcare-related data.
Modern healthcare practice involves the acquisition of ever-
larger quantities of data from all aspects of a patient’s life:
“primary care” datasets comprise information from patients’
interactions with general practitioners; clinical datasets may
exist from patient stays in hospitals or clinics; social-care
datasets may record the support for patients with long-term
conditions, which typically takes place within their own
homes. This increase in the quantity of patient data occurs
alongside a similar increase in the complexity of the data.

Patient data can be derived from many sources, including
genomic data, the results of medical tests, notes taken from
consultations, and sensor-data acquired automatically from
medical instruments and monitors. Patient data vary in their
perceived quality: some data are “clinically validated” (i.e.,
recorded by trained healthcare workers), while others are
“patient-owned”, having been acquired by the patients them-
selves. Finally, additional complexity arises from the reso-
lution of patient data, which varies between high-resolution
data from images and patient-worn sensors, to the low-
resolution data acquired by manual clinical observation of a
patient.

This great increase in the scale and complexity of
healthcare-related data presents a challenge for clinical prac-
tice and medical research, where conventional approaches
cannot exploit the information potentially available. The
field of health informatics therefore aims to provide large-
scale linkage of disparate, potentially incomplete and noisy,

healthcare datasets, and then perform large-scale inference
using the linked datasets to support clinical practice and
medical research. This first task of dataset linkage tradi-
tionally falls within the discipline of software engineering;
the second task of inference falls within the discipline of
machine learning.

B. Machine Learning

Machine learning is sometimes seen as a development of
the “artificial intelligence” movement; modern practitioners
often see their work as having overlap with statistics, applied
mathematics, statistical physics, electrical and information
engineering, and computational biology. The goal of ma-
chine learning is, as its name suggests, to identify patterns
in data, and then to perform useful inference using those
patterns that have been learned.

Such inference typically takes the form of classification,
in which previously-unseen data are determined as belonging
to one of a number of classes; or regression, in which
previously-unseen data are used to predict the behaviour
of one or more random variables. An example of classi-
fication within healthcare informatics is the determination
of whether a hospital patient is “physiologically stable” or
“physiologically deteriorating” based on their vital signs [4],
[5]; an example of regression is the prediction of a patient’s
respiration rate based on physiological data acquired from
sensors [6].

Inference is often set within a statistical framework, in
which statistical models are learned from training sets of ex-
ample data. The generally tendency in machine learning has
been towards adoption of Bayesian methodology, in which
reasoning is performed within the principled framework
of Bayesian probabilistic inference. This approach offers
many advantages over conventional “frequentist” techniques,
which were the norm in machine learning in the 1980s and
1990s, at which time the field was more commonly referred
to as “artificial intelligence”. Since that period, advances
in computational power and numerical algorithms have
allowed the (typically high-dimensional) integrations that are
a necessary part of Bayesian inference to be performed in
real-time, and hence Bayesian methods have rapidly become
popular. Bayesian methods provide many advantages over



conventional frequentist techniques, which we will describe
in the coming sections, where they will prove relevant
to the interaction between machine learning and software
engineering.

C. Case Studies

The case studies discussed within this paper are set within
the context of the Hospital of the Future programme [7],
one of three “Grand Challenge” programmes in information-
driven healthcare, funded by the RCUK “Digital Economy”
scheme. The aim of the programme is to create a new model
of hospital care built on integrated patient monitoring and
management. The “digital hospital” includes new software
systems that wirelessly collate continuous real-time patient
information from a number of sources (including wearable
Bluetooth sensors), integrate the data to generate a patient
status index, and make the results available to clinicians via
hand-held devices such as wireless PDAs. The new system
helps to guide and prioritise hospital activity in response
to the patient status, and provides early warning of patient
deterioration. Clinicians therefore obtain relevant, real-time
information at the point of care, ensuring a reduction in ad-
verse events such as unexpected cardiac arrests or unplanned
admissions to Intensive Care.

II. SOFTWARE ENGINEERING IN MACHINE LEARNING

A. The State of Software in Machine Learning

The production of quality machine learning software is
currently in a state of infancy, and therefore has much to
learn from advances in software engineering, for example
in model-driven engineering. A large proportion of pub-
lished work in machine learning comprises investigations
of algorithms and projects that are not deployed at scale in
actual practice. Typical articles in the literature will consider
innovations in algorithms, with retrospective application
to existing datasets; sometimes the latter are real-world
datasets collected for the project, but often they are simple
“library” datasets used for benchmarking algorithms. This
is beginning to change, as machine learning tackles the
challenges of inference in large-scale datasets, and the large-
scale deployments that these ultimately entail.

Furthermore, it has become increasingly common for
machine learning researchers to adopt the strategy that
the algorithms they produce should be available to other
researchers, so that their work might be disseminated, eval-
uated, and further improved. This is becoming increasingly
common with the novelty of “full disclosure” journals, in
which data and algorithms must be published (typically as
appendices available on-line) alongside scientific articles.
Machine learning algorithms often take the form of modules
written in MATLAB or C / C++ / C#. The majority of these
modules are written in an ad hoc manner, by small teams of
researchers (often individuals), for use by other small teams
or individuals.

B. Large-Scale Deployment

Such practices must change with the increase in scope
of machine learning, as occurs in health informatics, in
which the databases of entire hospitals and the surrounding
healthcare infrastructure are linked, and inference performed
on the results. If machine learning is to make a significant
contribution to practice, its outputs must be robust and
reliable. While much progress has been made, particularly
in Bayesian inference, in ensuring that the algorithms are
statistically robust, the quality of the software can be a
significant factor, and is not an aspect usually considered
by machine learning researchers. Progress has been made,
for example, in the area of agent-based reasoning, whereby
software failures in individual agents can be compensated
by the decentralised decision-making abilities of the greater
network of agents [8]–[10].

As projects begin to scale up to the demands of modern
practice, it is inevitable that machine learning researchers
need to work more closely with software engineers. In the
development of systems for use in health informatics, the
Food and Drug Administration (FDA) certifies systems for
use in medical practice in the USA. This requires fully
traceable, auditable procedures for software development
of the kind developed by software engineers over the past
few decades. Recent work on algorithms for the health
monitoring of jet engines, deployed in the engines of the
Eurofighter Typhoon, the Airbus A380, and the Boeing 787
“Dreamliner” [11], [12], require equally rigorous approval
from bodies such as the Civil Aviation Authority (CAA)
before they can be used in practice, and are therefore also
dependent on the successful interaction between machine
learning and software engineering.

C. Re-use of Machine Learning Algorithms.

As more modules for machine learning algorithms are
produced, the prospect of re-using code becomes possible.
While the majority of machine learning modules are stand-
alone entities constructed by individuals or small teams,
there are some platforms that have become more widely
adopted, such as the WinBUGS framework for Bayesian
inference using Markov chain Monte Carlo techniques [13]
and Microsoft’s infer.net [14]. These platforms offer APIs
and suitably abstracted data types for the performance of
inference in their own respective frameworks; users are en-
couraged to develop and share modules for these platforms,
which the producers then make available for distribution.
Sometimes, toolboxes gain sufficient popularity such that
their data types become more widely accepted, allowing
code re-use; a popular example is the NETLAB toolbox of
algorithms [15].

It is an unfortunate consequence of the infancy of the state
of machine learning software that code re-use is minimal,
and that the majority of projects are re-implemented from
scratch. There is scope, then, for a more formal approach to



modular code abstraction, design, and specification, based
on the methods developed within software engineering.
While adoption of a standard specification of data types
and functions for machine learning may be impossible,
given the disparate, individualised nature of research, larger
projects, such as those in health informatics and equivalent
areas, could evolve standardised forms of their own. As
these large-scale programmes get closer to maturity, and
as they begin to interact with other programmes in the
same field, across multiple research institutions, techniques
from software engineering will play an important role in
determining these forms.

D. Increasing the Robustness of Machine Learning Software

The robustness of machine learning software, and hence
its capacity for re-use and implementation at scale, is
strongly dependent on the individual machine learning re-
searcher’s training in software engineering. Typically, such
researchers come from scientific disciplines where some
formal software engineering teaching has occurred, but this
varies greatly in both quality and quantity by discipline and
by institution. Therefore, the quantity of testing and formal
code design that will have occurred in the production of
machine learning software varies in a similar manner.

However, the nature of machine learning code makes
it particularly difficult to test using traditional software
engineering methods. Many machine learning algorithms
perform “on-line” inference; i.e., they construct and adapt
models in real-time, often while the process of data acqui-
sition is taking place. Such systems change their state, and
sometimes even modify their own structure, in a complex
manner that makes it difficult to test them a priori. Many
of the input data are uncertain, in both quantity and quality,
which imposes further difficulties for testing modules before
release. We note in passing that this facility to change
structure during execution, and its consequences for code
testing, can make certification (by, for example, the FDA or
CAA) a complex and challenging process. Techniques for
code testing are therefore required that take this adaptive,
uncertain nature into consideration.

E. Intelligent Storage of Metadata

Due to the ad hoc nature of machine learning software
design, and the consequent reinvention of algorithms for
new projects, it can be difficult to repeat experiments and
verify results previously obtained by other researchers, or
even those results gained from past projects within the
same research group. The ability to repeat experiments is
at the heart of the scientific process; as projects become
larger in scale and complexity, existing methods employed
by machine learning researchers will become ever more
unsuitable in allowing the verification of past results.

The scientific approach is further hindered by the fact
that many real-world datasets are hard to acquire, and often

impossible to share. For example, the datasets acquired in
health informatics are typically subject to strict patient con-
fidentiality legislation, whereby access to the data is tightly
controlled (even when the data are in anonymised form,
where patient-confidential details have been replaced by
anonymising identifiers). Patients in the UK must typically
individually give consent for use of their data, and those
researchers that can access it must be listed, with their
access approved by medical ethics committees. The problem
is similar when the data are commercially or militarily
confidential, as in the case of datasets acquired for jet engine
monitoring.

However, statistical models constructed from confidential
data may often be shared (as in health informatics), as
may be the results of analyses. There is therefore scope
for intelligent storage of metadata and models derived from
confidential datasets, alongside the algorithms that produced
the data. Software engineering has much to offer machine
learning in this large-scale linking of metadata to algorithms,
which would enable previous experiments to be quickly
reproduced, because the data and the original state of
the algorithms are stored together. The sharing of these
metadatasets would then be possible, allowing collaboration
across multiple centres with researchers who do not have
the ethical permissions required to access the underlying
confidential data.

III. MACHINE LEARNING IN SOFTWARE ENGINEERING

A. Coping with Incomplete Real-World Data

The large-scale datasets that are linked in health infor-
matics are often acquired from a variety of sources, with a
corresponding variety of robustness. This uncertainty in the
data can make linkage difficult. One of the advantages of
the Bayesian approach to machine learning is the capacity
to cope with incomplete and noisy datasets in a principled
manner. While fuzzy logical approaches to data manipula-
tion have been used in many software engineering systems
[16], [17], such methods have largely been superceded by
probabilistic approaches [18]–[20], which remain an active
topic of research. In the latter, the interface between machine
learning and software engineering is explicit, allowing sta-
tistical techniques to be employed in linking, sorting, and
ranking uncertain data within real-world databases.

If the fields within records are treated as random variables
(being either continuous or discrete), then probability distri-
butions can be defined over these fields within records. Miss-
ing fields may be “integrated out” of incomplete records, us-
ing the marginalisation property that is one of the hallmarks
of Bayesian inference. This allows missing random variables
to be treated in a principled manner, using the probabilistic
identity of the form

p(x1, x2, x4, . . . , xN ) =

∫
p(x1, x2, x3, x4, . . . , xN )dx3

(1)



in which the joint probability distribution over the complete
set of N random variables x1 . . . xN is p(x1, . . . , xN ),
and where we have removed x3 by integrating over all
of its possible values. The result is the joint probability
distribution over all variables except x3, where the removal
of x3 has taken into account all possible values of x3. This
marginalised distribution may then be used to compare the
incomplete record with other records.

This offers an alternative to the standard approach used
in, for example, conventional medical data manipulation, in
which a large cohort of patients are initially identified, but a
(typically much smaller) subset, consisting of those patients
with complete data, is identified for actual use. The Bayesian
approach allows us to use even those patients for whom we
have limited information, in a principled approach based on
the axioms of probability.

B. Predicting Missing Values

Bayesian inference allows us to determine the likely
values of missing data. Following the above example, the
distribution of the missing random variable x3 may be
estimated by finding the conditional distribution p(x3 |
x1, x2, x4, . . . , xN ); i.e., the distribution over our missing
variable x3 given the variables for which we have values,
x1, x2, x4, . . . , xN . This conditional distribution may be
obtained directly from the joint distribution over all variables
that we have formed from our knowledge of the whole
dataset:

p(x3 | x1, x2, x4, . . . , xN ) =
p(x1, . . . , xN )

p(x1, x2, x4, . . . , xN )
(2)

The result is a distribution over x3, which defines the likely
values of this missing variable. We could therefore select
a point estimate of the value of x3 as being the mode of
the distribution. Exploiting the fact that we have the full
distribution over x3, we could then determine “error bars”
around that value, indicating our belief in where we expect
the value of x3 to lie (to some degree of belief, such as
P = 0.99).

This can be particularly useful in health informatics, in
which clinicians can view incomplete data records, and
where the missing data may have their values estimated
(with appropriate error bars) conditioned on those data that
are present in the record.

C. Visualisation

If each record has N fields, then a record can be consid-
ered to correspond to a point in an N -dimensional space. In
health informatics, for example, N can be very large, such
as N = 500. Conventional methods would find it difficult to
plot data for a large set records of such high dimensionality,
unless each field is plotted independently. This obscures any
correlation that may exist between fields.

Machine learning offers principled techniques [21], [22]
for exploring the structure of complex datasets. The aim is

to map the original N -dimensional records down into a 2-
dimensional form, so that they may be visualised. If every
record corresponds to a point in the original N -dimensional
space, then each record subsequently corresponds to a sin-
gle projected point in the 2-dimensional visualisation map.
Records that are similar (and are therefore close together
in the original N -dimensional space) will appear close to
one another in the 2-dimensional visualisation; conversely,
records that are dissimilar (and are therefore far from one an-
other in the N -dimensional space) will appear significantly
separated in the 2-dimensional visualisation. This typically
causes clusters of similar records to form in the visualisation,
with “outliers” corresponding to highly dissimilar records.

This approach can be useful for exploring the structure
of records in very high-dimensional datasets, comprising
many hundreds of thousands of patient records, where each
comprises thousands of fields.

D. Security

Software engineers often create layered levels of access
(user, superuser, admin, etc.) for complex datasets, partic-
ularly when the access to those datasets is sensitive, as in
health informatics. Access patterns must be tracked so that
patients and clinicians can accurately determine who has
viewed the data, and what, if any, actions have been taken
after the access.

The number of such accesses will typically scale up
with the system, so that large numbers of users may be
interacting with a health informatics system within a single
healthcare region. Machine learning offers the ability to
model “normal” access patterns for each of the user groups,
and automatically track and detect “abnormal” accesses that
could be a result of patient or clinician misuse.

This approach in machine learning is termed “novelty de-
tection” [23], and involves construction of statistical models
of “normal” behaviour, such that deviations from the model
may be identified as being “abnormal”. Novelty detection is
particularly suitable when the quantity of “normal” data is
very large, and where there is insufficient “abnormal” data to
be able to model the “abnormal” class. It is therefore often
used in the analysis of data from critical systems, which
function “normally” for the majority of their operation, and
where examples of “abnormality” are rare.

Novelty detection has been used for determining abnormal
spending patterns for the detection of fraud [24], or in
accessing computer systems [25], which typically involves
on-line learning of access patterns from a complex system,
updating its behaviour in real-time, and communicating the
results of “suspicious” activity to human experts for further
investigation. This allows software and security engineers to
focus their attention on cases of potentially unsafe access,
helping them to make sense out of the large number of
complex access patterns that take place.



IV. CONCLUSIONS

Machine learning and software engineering are becom-
ing complementary disciplines as applications scale up to
become (i) too large for the existing software practices of
machine learning and (ii) too complex, noisy, and potentially
inconsistent for the existing deterministic approaches of soft-
ware engineering. These problems are particularly evident in
applications involving the manipulation and analysis of very
large datasets of different types and qualities, as occurs in
health informatics and related fields. We have introduced
ways in which the complementary disciplines of machine
learning and software engineering have been contributing to
improvements in “best practice”, each of which is an active
area for current research, with scope for considerable future
contribution in each discipline.
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