
Modularising Inductive Families

Hsiang-Shang Ko and Jeremy Gibbons

Department of Computer Science, University of Oxford

November 19, 2012

Abstract

Dependently typed programmers are encouraged to use inductive families to inte-

grate constraints with data construction. Different constraints are used in different

contexts, leading to different versions of datatypes for the same data structure. For

example, sequences might be constrained by length or by an ordering on elements,

giving rise to different datatypes “vectors” and “sorted lists” for the same underly-

ing data structure of sequences. Modular implementation of common operations for

these structurally similar datatypes has been a longstanding problem. We propose a

datatype-generic solution, in which we axiomatise a family of isomorphisms between

datatypes and their more refined versions as datatype refinements, and show that

McBride’s ornaments can be translated into such refinements. With the ornament-

induced refinements, relevant properties of the operations can be separately proven

for each constraint, and after the programmer selects several constraints to impose

on a basic datatype and synthesises a new datatype incorporating those constraints,

the operations can be routinely upgraded to work with the synthesised datatype.

1 Introduction

Dependently typed programmers are encouraged to use inductive families [7], i.e., data-
types with fancy indices, to integrate various constraints with data construction. Cor-
rectness proofs are built into and manipulated simultaneously with the data, and in ideal
cases correct programs can be written in blissful ignorance of the proofs. We might char-
acterise this approach as internalist, suggesting that data constraints are internalised.
In contrast, the more traditional approach which favours using only basic datatypes and
expressing constraints through separate predicates on those datatypes might be described
as externalist.

The internalist approach quickly leads to an explosion in differently indexed versions
of the same data structure. For example, as well as ordinary lists, in different contexts we
may need vectors (lists indexed with their length), sorted lists, or sorted vectors, ending
up with four slightly different but structurally similar datatypes. The problem, then, is
how the common operations are implemented for these different versions of the datatype.
Current practice is to completely reimplement the operations for each version, causing

1

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/people/jeremy.gibbons/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/

serious code duplication and dreadful reusability. The externalist approach, in contrast,
responds to this problem very well. We would have only one basic list datatype, with
one predicate stating that a list has a certain length and another predicate asserting
that a list is sorted. The list datatype is upgraded to the vector datatype, the sorted
list datatype, or the sorted vector datatype by simply pairing the list datatype with
the sortedness predicate, the length predicate, or the pointwise conjunction of the two
predicates, respectively. The common operations are implemented for ordinary lists only,
and their properties regarding ordering or length are separately proven and invoked when
needed. Can we somehow introduce this beneficial composability to internalism as well?
Yes, we can! There is an isomorphism between externalist and internalist datatypes to
be exploited.

To illustrate, let us go through a case study on function upgrading. The dependently
typed language Agda [12] will be used throughout the paper, whose syntax is explained
in an appendix. We start with the following function insert on lists and try to upgrade
it to work on more refined list datatypes:

insert : Val → List Val → List Val

insert y [] = y :: []
insert y (x :: xs) with y 6? x

insert y (x :: xs) | yes = y :: x :: xs
insert y (x :: xs) | no = x :: insert y xs

where Val is assumed to be a datatype on which there is a decidable total order 6 . We
might need to be precise about how the length of the list changes. The internalist would
use vectors, and reimplement a new version

vinsert : Val → ∀ {n} → Vec Val n → Vec Val (suc n)

whose body is exactly the same as that of insert . On the other hand, the externalist
might define a relation

data Length {A : Set} : Nat → List A → Set where

nil : Length zero []
cons : ∀ x {n xs} → Length n xs → Length (suc n) (x :: xs)

such that a list xs has length n if and only if there is a proof of type Length n xs , and
then prove the following:

insert-length : ∀ y {n xs} → Length n xs → Length (suc n) (insert y xs)
insert-length y nil = cons y nil

insert-length y (cons x l) with y 6? x

insert-length y (cons x l) | yes = cons y (cons x l)
insert-length y (cons x l) | no = cons x (insert-length y l)

Afterwards, the externalist can just pair lists with their length proofs and pass the pairs
around:

insert-l : Val → ∀ {n} → Σ (List Val) (Length n) → Σ (List Val) (Length (suc n))
insert-l y = insert y × insert-length y

2

where × is defined by (f × g) (x , y) = (f x , g y) (and is later also overloaded to
denote the product type). The two approaches to type refinement are interchangeable,
however, since for each n there is an isomorphism

Vec A n ∼= Σ (List A) (Length n)

whose two directions are

ℜVec-to : ∀ {A n} → Vec A n → Σ (List A) (Length n)
ℜVec-to [] = [], nil
ℜVec-to (x :: xs) = (:: x × cons x) (ℜVec-to xs)

ℜVec-from : ∀ {A n} → Σ (List A) (Length n) → Vec A n

ℜVec-from (. , nil) = []
ℜVec-from (. , cons x l) = x :: ℜVec-from (, l)

and we can prove that the two directions are indeed inverse to each other:

ℜVec-to-from-inverse :
∀ {A n} → {s : Σ (List A) (Length n)} → ℜVec-to (ℜVec-from s) ≡ s

ℜVec-to-from-inverse {s = (. , nil)} = refl

ℜVec-to-from-inverse {s = (. , cons x l)} = cong (:: x × cons x)
(ℜVec-to-from-inverse {s = , l})

ℜVec-from-to-inverse :
∀ {A n} → {v : Vec A n} → ℜVec-from (ℜVec-to v) ≡ v

ℜVec-from-to-inverse {v = []} = refl

ℜVec-from-to-inverse {v = x :: xs} = cong (:: x) (ℜVec-from-to-inverse {v = xs})

With the help of this family of isomorphisms, vinsert and insert-l can be defined in terms
of each other. For example, the externalist can get vinsert by

vinsert : Val → ∀ {n} → Vec Val n → Vec Val (suc n)
vinsert y xs = ℜVec-from (insert-l y (ℜVec-to xs))

which is, in effect, like supplying an additional proof insert-length to upgrade insert to
the more precisely typed vinsert .

The same story is repeated when we wish to say that insert produces a sorted list if
the input list is sorted. The internalist would define another version of lists

data SList : Val → Set where

snil : ∀ {b} → SList b

scons : (x : Val) → ∀ {b} → b 6 x → SList x → SList b

which are sorted lists indexed by a lower bound, and reimplement the insert function on
this datatype.

sinsert : (y : Val) → ∀ {b} → SList b → SList (b ⊓ y)

The relation that the externalist uses this time might be

3

data Sorted : Val → List Val → Set where

nil : ∀ {b} → Sorted b []
cons : ∀ {x b} → b 6 x → ∀ {xs} → Sorted x xs → Sorted b (x :: xs)

They need to prove

insert-sorted : ∀ y {b xs} → Sorted b xs → Sorted (b ⊓ y) (insert y xs)

to get their function

insert-s :
(y : Val) → ∀ {b} → Σ (List Val) (Sorted b) → Σ (List Val) (Sorted (b ⊓ y))

insert-s y = insert y × insert-sorted y

Again, the internalist and externalist datatypes are intimately related: for each b there
is an isomorphism

SList b ∼= Σ (List Val) (Sorted b)

so the externalist can define the internalist version sinsert in terms of the externalist
version insert-s , and vice versa for the internalist.

Things get more interesting when we move on to dealing with ordering and length
information simultaneously. The internalist would repeat the story for a third time,
defining yet another new version of lists

data SVec : Val → Nat → Set where

svnil : ∀ {b} → SVec b zero

svcons : (x : Val) → ∀ {b} → b 6 x → ∀ {n} → SVec x n → SVec b (suc n)

and reimplement insert as

svinsert : (y : Val) → ∀ {b n} → SVec b n → SVec (b ⊓ y) (suc n)

The externalist, however, needs no more new datatypes or proofs this time. To them,
a sorted vector is simply a list with proofs that it both has a particular length and is
sorted, so they can reuse and assemble the previous proofs to get

insert-sv : (y : Val) → ∀ {b n} →
Σ [xs : List Val] Sorted b xs × Length n xs →
Σ [xs : List Val] Sorted (b ⊓ y) xs × Length (suc n) xs

insert-sv y = insert y × (insert-sorted y × insert-length y)

Furthermore, through the family of isomorphisms

SVec b n ∼= Σ [xs : List Val] Sorted b xs × Length n xs

they can get the internalist version svinsert without additional effort.

This case study suggests that we can switch between internalist and externalist repre-
sentations to modularly synthesise internalist functions from externalist proofs, making

4

use of the relevant representation-changing isomorphisms. Without the excursion into the
externalist world, it would have been less straightforward for the internalist to synthesise
svinsert from vinsert and sinsert . The reusability problem is thus reduced to writing
the representation-changing isomorphisms. Based on previous work on ornaments by
McBride and Dagand [10, 6], we propose in this paper a framework in which such iso-
morphisms can be synthesised datatype-generically. We axiomatise the isomorphisms
between internalist and externalist datatypes as refinements, and show that ornaments1

translate into a particular class of refinements, so the isomorphisms can be generated by
inspecting the ornamental structure of datatypes. Ornaments also help to reveal the same
composable structure of internalist datatypes corresponding to that of their externalist
brethren — new internalist datatypes can be computed by composing the ornaments
about existing internalist datatypes. For example, we would be able to synthesise SVec

from the ornaments that describe how Vec and SList differ from List, and obtain all the
isomorphisms relating the four datatypes for free, including the one saying that SVec

is isomorphic to the externalist representation and allowing us to get svinsert from its
modularly produced externalist version.

Here is an outline of the paper. Section 2 defines refinements and gives a motivation
for a finer analysis of refinements, which is achieved by ornaments. Before ornaments
and their (parallel) composition are defined in Section 4, we first introduce index-first
datatypes [5, 6], which can result in more efficient representations of data, and construct
a universe for them in Section 3. The main result of this paper is presented in Section 5,
where ornaments are translated into refinements and parallel composition of ornaments
is shown to give rise to useful composable structure of refinements, enabling modular
function upgrading. We give an extended example — leftist heaps [13] — in Section 6.
Finally, Section 7 discusses related work and some future directions. Our Agda source
code is available at http://www.cs.ox.ac.uk/people/hsiang-shang.ko/pcOrn/.

2 Refinements

From the case study in Section 1, we see that isomorphisms such as

Vec A n ∼= Σ (List A) (Length n)

are the key to moving between internalist and externalist datatypes. In this section we
axiomatise these isomorphisms as refinements.

2.1 Definition of refinements

We say that a type family Y : J → Set refines another type family X : I → Set if the
members of Y (i.e., the individual types Y j where j : J) are partitioned such that each
partition refines a member of X , say X i for some i : I , which means that an object of
type X i can possibly and only be promoted to a type in that partition. The partitioning

1Readers familiar with previous developments on ornaments should note that our terminologies deviate

from those in previous works. For a comparison and justification of the deviation, see Section 7.

5

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/pcOrn/

is specified by a function e : J → I from finer indices to coarser ones, assigning to (the
index of) each member of Y (the index of) a member of X which it refines. We can put
this more formally with the help of the inverse image datatype:

data −1 {J I : Set} (e : J → I) : I → Set where

ok : (j : J) → e −1 (e j)

If X is refined by Y , an object of type X i can possibly and only be promoted to
Y (und j) for some j : e −1 i , where the function

und : ∀ {J I } {e : J → I } {i} → e −1 i → J

und (ok j) = j

extracts the underlying index that is guaranteed to be mapped to i by e. The possibility
of promotion is captured by the promotion predicate

P : ∀ {i} (j : e −1 i) → X i → Set

which states the condition under which an object x of type X i can be converted to one
of type Y (und j) — a “promotion proof” of type P j x contains necessary information
that augments x to an object of type Y (und j). The conversion, then, is an isomor-
phism ℜ between Y (und j) and Σ (X i) (P j), and a refinement consists of the index
transformation e, the promotion predicate P , and the refinement isomorphism ℜ:

record Refinement {I J : Set} (X : I → Set) (Y : J → Set) : Set1 where

field

e : J → I

P : ∀ {i} (j : e −1 i) → X i → Set

ℜ : ∀ {i} (j : e −1 i) → Iso (Y (und j)) (Σ (X i) (P j))

where the type of isomorphisms is defined as an inverse pair of functions, as usual:

record Iso (A B : Set) : Set where

field

to : A → B

from : B → A

to-from-inverse : ∀ {y} → to (from y) ≡ y

from-to-inverse : ∀ {x} → from (to x) ≡ x

When the more refined type family in a refinement is an inductive family, i.e., an inter-
nalist datatype, the refinement then provides a lossless conversion between the internalist
datatype and its externalist representation, which is all one needs in order to achieve func-
tion upgrading, as shown in Section 1. For example, we have all the ingredients for a re-
finement from const (List A) : ⊤ → Set (where const = λ X → X : Set → ⊤ → Set)
to Vec A : Nat → Set in Section 1, and we can just put them together:

List-Vec : (A : Set) → Refinement (const (List A)) (Vec A)
List-Vec A =

6

record

{e = !
;P = λ {(ok n) → Length n}
;ℜ = λ {(ok n) →

record

{to = ℜVec-to
; from = ℜVec-from
; to-from-inverse = ℜVec-to-from-inverse
; from-to-inverse = ℜVec-from-to-inverse}}}

where the partitioning function is

! : {A : Set} → A → ⊤
! = tt

As the partitioning is trivial, a list xs : List A can be promoted to a vector of type
Vec A n for “any” n, provided that P (ok n) xs , i.e., Length n xs , has a proof. Given this
refinement, the vinsert function in Section 1 can be reimplemented as

vinsert : Val → ∀ {n} → Vec Val n → Vec Val (suc n)
vinsert y {n} xs =
Iso.from (Refinement.ℜ (List-Vec Val) (ok (suc n)))
(insert-l y (Iso.to (Refinement.ℜ (List-Vec Val) (ok n)) xs))

where ℜVec-to and ℜVec-from are simply replaced with appropriate fields in List-Vec Val.

It is worth noting that the notion of refinements is in general proof-relevant — dif-
ferent promotion proofs can lead to different completed objects. A classic example is the
refinement from natural numbers to lists,

Nat-List : (A : Set) → Refinement (const Nat) (const (List A))

in which the promotion predicate is λ → Vec A, meaning that to augment a natural
number n : Nat to a list of type List A we need to supply a vector of type Vec A n,
i.e., n elements of type A, and the isomorphism is the usual one between List A and
Σ Nat (Vec A). A natural number n can be promoted to different lists of length n, which
is determined by the choice of promotion proof, i.e., the vector specifying what elements
are to be associated with the suc nodes in n.

2.2 Predicate swapping

Sometimes we want to swap the promotion predicate P in a refinement for an isomorphic
one that better suits our needs. For example, instead of the predicate Length, it is more
economical to use

λ n xs → length xs ≡ n

which does not have a recursive structure. We hence define a record Swap containing
a new predicate Q and a proof that it is isomorphic to the old one, i.e., that P j x is
isomorphic to Q j x for all j and x .

7

record Swap {I J : Set} {X : I → Set} {Y : J → Set}
(r : Refinement X Y) : Set1 where

field

Q : ∀ {i} (j : Refinement.e r −1 i) → (x : X i) → Set

s : ∀ {i} (j : Refinement.e r −1 i) → (x : X i) →
Iso (Refinement.P r j x) (Q j x)

A new refinement can then be obtained by chaining the isomorphisms together:

Y (und j) ∼= Σ (X i) (P j) ∼= Σ (X i) (Q j)

This is implemented by

toRefinement : ∀ {I J} {X : I → Set} {Y : J → Set} {r : Refinement X Y } →
Swap r → Refinement X Y

There is an identity swap which simply takes Q = P and uses the identity isomorphism,
whose type is

idSwap : ∀ {I J} {X : I → Set} {Y : J → Set} {r : Refinement X Y } → Swap r

For example, we can define a predicate swap for the refinement List-Vec A as follows:

LengthSwap : (A : Set) → Swap (List-Vec A)
LengthSwap A =
record

{Q = λ {(ok n) xs → length xs ≡ n}
; s = λ {(ok n) xs →

record

{to = to

; from = from

; to-from-inverse = UIP

; from-to-inverse = ULP}}}
where

to : ∀ {n xs} → Length n xs → length xs ≡ n

to nil = refl

to (cons x l) = cong suc (to l)
from : ∀ {xs n} → length xs ≡ n → Length n xs

from {[]} refl = nil

from {x :: xs} refl = cons x (from refl)
ULP : ∀ {n} {xs : List A} → {l l ′ : Length n xs} → l ≡ l ′

ULP {l = nil} {l ′ = nil} = refl

ULP {l = cons x l} {l ′ = cons .x l ′} = cong (cons x) ULP

where the term

UIP : {A : Set} {x y : A} {eq eq ′ : x ≡ y} → eq ≡ eq ′

UIP {eq = refl} {refl} = refl

8

is uniqueness of identity proofs. Then

toRefinement (LengthSwap A)

is a refinement that gives us for each n an isomorphism

Vec A n ∼= Σ [xs : List A] length xs ≡ n

This predicate swapping mechanism will be used in Section 5.2.

2.3 Problems with refinements

All we have done so far is merely identify the essential ingredients for modular function
upgrading and axiomatise them as refinements. Refinements still have to be prepared
individually and manually, which requires considerable effort. Another problem is that,
although it is possible to define some sort of refinement composition directly, this ap-
proach would not go very far. In Section 1, we get externalist modularity for the inter-
nalist datatype SVec because the promotion predicate from lists to sorted vectors is the
pointwise conjunction of the promotion predicates from lists to vectors and sorted lists.
In general, given two refinements r : Refinement X Y and s : Refinement X Z , we
wish to construct a new type family W and a refinement of type Refinement X W whose
promotion predicate is the pointwise product of the promotion predicates of r and s .
Without knowing the internal structure of Y and Z , all one can do is, roughly speaking,
take W to be the pullback of the two maps from Y and Z to X . But this is a very
inefficient representation. For example, let X , Y , and Z be const (List Val), Vec Val,
and SList, respectively. Then an object of type W k for some k would be a pair of a
vector and a sorted list with the same elements, meaning that the recursive structure and
the elements are duplicated. To avoid such duplication, we need to somehow extract the
parts that encode length and ordering information in Vec Val and SList and bake them
into a single datatype, but this cannot be done if we work solely with refinements. Hence
in the rest of the paper we seek to exploit the structure of datatypes to induce nontrivial
refinements systematically — in particular, refinements whose promotion predicate is the
pointwise product of the promotion predicates of some other refinements. Such structure
can be exposed by ornaments, which provide a datatype-generic framework for talking
about the relationship between structurally similar datatypes.

3 Index-first datatypes

Central to datatype-generic programming is the idea that the structure of datatypes can
be coded as first-class entities and thus become ordinary parameters to programs. The
same idea is also found in Martin-Löf’s Type Theory [9], in which a set of codes for
datatypes is called a universe (à la Tarski), and there is a decoding function translating
codes to actual types. Type theory being the foundation of dependently typed languages,
universe construction can be done directly in such languages, so datatype-generic pro-
gramming becomes just ordinary programming in the dependently typed world [1]. In

9

this section we construct a universe of index-first datatypes [5, 6], on which a second
universe of ornaments, to be constructed in Section 4, will depend.

3.1 An introduction to index-first datatypes

Traditionally, the index in the type of an object is synthesised in a bottom-up fashion
following the construction of the object. Consider vectors as an example: the construc-
tor :: takes a vector at some index n and constructs a vector at suc n — the final index
is computed from the index of the sub-object. This approach, however, can yield redun-
dant representations. For example, the :: constructor for vectors has to store the index
of the sub-vector, so the representation of a vector would be cluttered with all the inter-
mediate lengths. If we switch to the opposite perspective, determining from the targeted
index what data should be supplied, then the representations can usually be significantly
cleaned up. For a vector, if the targeted index is given as suc n for some n, then we know
that the constructor choice can only be :: , and that the index of the sub-vector must
be n. All we need to supply is the head element and the sub-vector; everything else is
determined from the targeted index. This is exactly what Brady’s detagging optimisa-
tion does [4]. With index-first datatypes, however, detagged representations are available
directly, rather than arising from a compiler optimisation.

Dagand and McBride [6] designed a new notation for index-first datatypes to reflect
this fundamental change to the notion of datatypes. For reasons of presentation, we
describe here a slightly more Agda-like variation of their notation. Here is the index-first
vector datatype in the new notation:

indexfirst data Vec (A : Set) : Nat → Set where

Vec A zero ∋ []
Vec A (suc n) ∋ :: (x : A) (xs : Vec A n)

The header remains the same except for the keyword indexfirst. For the constructor
part, since constructor choices and what data to supply are now determined by the indices
of the requested types, we write the types first. We do pattern matching on the targeted
index to determine the constructor choice. If a Vec A zero is requested, the only thing
that can be supplied is the nil constructor; if a Vec A (suc n) is requested, it can only
be constructed by a cons, which takes a head element x of type A and a vector xs of
type Vec A n. Another example is the datatype of sorted lists, which is also more cleanly
expressed index-first:

indexfirst data SList : Val → Set where

SList b ∋ snil

| scons (x : Val) (le : b 6 x) (xs : SList x)

This time the targeted index b is not analysed, and there are always two constructor
choices snil and scons. We can also describe the traditional bottom-up vector datatype
in this new notation:

indexfirst data Vec (A : Set) : Nat → Set where

Vec A n ∋ [] { : n ≡ zero}
| :: {m : Nat} { : n ≡ suc m} (x : A) (xs : Vec A m)

10

When a vector of type Vec A n is demanded, we are “free” to choose between supplying
a nil or a cons regardless of the index n — however, the two constructors now require
implicit proofs of equality constraints, indirectly forcing us into a particular choice.

Later on in this paper, the indexfirst data definitions are shown to aid readability of
the elements of the universe defined in Section 3.2, i.e., the codes for index-first datatypes,
and for this purpose only. They should not be confused with actual datatype definitions
in Agda.

3.2 A universe for index-first datatypes

Now we proceed to construct the universe. An inductive family of type I → Set is
constructed by taking the least fixed point of a base endofunctor on I → Set. For
example, to get index-first vectors, we would define a (parametrised) base functor

VecF : Set → (Nat → Set) → (Nat → Set)
VecF A X zero = ⊤
VecF A X (suc n) = A × X n

and take its least fixed point. If we flip the order of arguments of VecF A,

VecF : Set → Nat → (Nat → Set) → Set

VecF A zero = λ X → ⊤
VecF A (suc n) = λ X → A × X n

we see that VecF A consists of two different “responses” to the index request, each of
type (Nat → Set) → Set. It suffices to construct for such responses a universe

data RDesc (I : Set) : Set1

with decoding function

[[]] : ∀ {I } → RDesc I → (I → Set) → Set

The codes for the responses are called response descriptions. A function of type I →
RDesc I , then, can be decoded to an endofunctor on I → Set, so the type I → RDesc I

acts as a universe for index-first datatypes.

We now define the datatype of response descriptions and its decoding function:

data RDesc (I : Set) : Set1 where

: RDesc I
v : (i : I) → RDesc I

σ : (S : Set) (D : S → RDesc I) → RDesc I

∗ : (D E : RDesc I) → RDesc I

[[]] : ∀ {I } → RDesc I → (I → Set) → Set

[[]] X = ⊤
[[v i]] X = X i

11

[[σ S D]] X = Σ [s : S] [[D s]] X
[[D ∗ E]] X = [[D]] X × [[E]] X

Given X : I → Set, we are allowed to produce the unit type (via the description ,
suggesting a terminal), fetch a member of X (via v, suggesting a variable position in the
base functor), or form a dependent sum (σ) or a binary product (∗). As for the actual
universe of datatypes I → RDesc I , to aid type inference in Agda, we wrap the function
type in a datatype

data Desc (I : Set) : Set1 where

wrap : (I → RDesc I) → Desc I

and define a deconstructor for it:

at : ∀ {I } → Desc I → I → RDesc I

(wrap D) at i = D i

Inhabitants of type Desc I will be called datatype descriptions, or descriptions for short.
Least fixed points can then be taken by

data µ {I } (D : Desc I) : I → Set where

con : F D (µ D) ⇒ µ D

where F decodes a description of type Desc I to an endofunctor on I → Set,

F : ∀ {I } → Desc I → (I → Set) → (I → Set)
F D X i = [[D at i]] X

and X ⇒ Y is a collection of arrows between corresponding components of X and Y ,

⇒ : ∀ {I } (X Y : I → Set) → Set

X ⇒ Y = ∀ {i} → X i → Y i

For example, the code for the base functor of the index-first vector datatype would be

VecD : Set → Desc Nat

VecD A = wrap λ {zero →
; (suc n) → σ [: A] v n}

and µ (VecD A) : Nat → Set gives us the actual datatype to program with.

We can define functions on such vectors by pattern matching. For example,

head : ∀ {A n} → µ (VecD A) (suc n) → A

head (con (x , xs)) = x

To improve readability, we frequently substitute sugared names of datatypes and con-
structors for their encodings in function definitions. For example, the above function is
sugared into

12

head : ∀ {A n} → Vec A (suc n) → A

head (x :: xs) = x

Direct function definitions by pattern matching work fine for individual datatypes, but
later when we need to define operations and to state properties for all the datatypes
encoded by the universe, it is necessary to have a generic fold operator parametrised
by the codes. There is also a generic induction operator, which is more powerful and
subsumes generic fold, but fold is much easier to use when the full power of induction
is not required. The two operators are shown in Figure 1. Their implementations are
adapted for the index-first universe from those in McBride’s original work [10] and are
essentially the same. Note the two-level structure of the definitions of the two operators:
the top-level fold and induction are parametrised by D : Desc I , and the actual analysis
of D at i : RDesc I happens in a helper function after i is known. This is of course
due to the two-level construction of Desc, and this pattern will be followed by all related
definitions later.

It is helpful to form a two-dimensional image of our datatype manufacturing scheme:
we manufacture a datatype by first defining a base functor, and then recursively du-
plicating the structure of the functor by taking its least fixed point. The shape of the
base functor can be imagined to stretch horizontally, whereas the recursive structure
generated by the least fixed point grows vertically. This image works directly when the
recursive structure is linear, like lists. (Otherwise one resorts to the abstraction of functor
composition.) For example, we can typeset a list two-dimensionally like

con (true, a,
con (true, a ′,

con (false, tt)))

Things following con on each line are shaped by the base functor of lists, whereas the con

nodes, aligned vertically, are generated by the least fixed point. This two-dimensional
metaphor will be used in later explanations.

4 Ornaments

To establish relationships between datatypes, one idea that comes to mind might be to
write conversion functions. For some kinds of simple structural conversion like projecting
away or assigning default values to fields, however, we may instead state the conversion at
the level of datatypes and later translate the statement to the actual conversion function
on values that we need. For example, a list is a Peano-style natural number whose
successor nodes are decorated with elements, and to convert a list to its length, one
simply discards those elements. To be more precise: given the descriptions of the two
datatypes,

indexfirst data Nat : Set where

Nat ∋ zero

| suc (n : Nat)

NatD : Desc ⊤

13

Figure 1: The fold and induction operators.

mutual

fold : ∀ {I X } {D : Desc I } → F D X ⇒ X → µ D ⇒ X

fold {D = D} ϕ {i} (con ds) = ϕ (mapFold D (D at i) ϕ ds)

mapFold : ∀ {I } (D : Desc I) (D ′ : RDesc I) →

∀ {X } → (F D X ⇒ X) → [[D ′]] (µ D) → [[D ′]] X

mapFold D ϕ = tt

mapFold D (v i) ϕ d = fold ϕ d

mapFold D (σ S D ′) ϕ (s , ds) = s ,mapFold D (D ′ s) ϕ ds

mapFold D (D ′ ∗ D ′′) ϕ (ds , ds ′) = mapFold D D ′ ϕ ds,mapFold D D ′′ ϕ ds ′

All : ∀ {I } (D : RDesc I) {X : I → Set} (P : ∀ {i} → X i → Set) → [[D]] X → Set

All P = ⊤

All (v i) P x = P x

All (σ S D) P (s , xs) = All (D s) P xs

All (D ∗ E) P (xs , xs ′) = All D P xs × All E P xs ′

mutual

induction :

∀ {I } (D : Desc I) (P : ∀ {i} → µ D i → Set) →

(ih : ∀ {i} (ds : F D (µ D) i) → All (D at i) P ds → P (con ds)) →

∀ {i} (d : µ D i) → P d

induction D P ih {i} (con ds) = ih ds (everywhereInduction D (D at i) P ih ds)

everywhereInduction :

∀ {I } (D : Desc I) (D ′ : RDesc I) (P : ∀ {i} → µ D i → Set) →

(ih : ∀ {i} (ds : F D (µ D) i) → All (D at i) P ds → P (con ds)) →

(ds : [[D ′]] (µ D)) → All D ′ P ds

everywhereInduction D P ih = tt

everywhereInduction D (v i) P ih d = induction D P ih d

everywhereInduction D (σ S D ′) P ih (s , ds) = everywhereInduction D (D ′ s) P ih ds

everywhereInduction D (D ′ ∗ D ′′) P ih (ds , ds ′) = everywhereInduction D D ′ P ih ds,

everywhereInduction D D ′′ P ih ds ′

14

NatD = wrap λ → σ Bool λ {false →
; true → v tt}

indexfirst data List (A : Set) : Set where

List A ∋ []
| :: (x : A) (xs : List A)

ListD : Set → Desc ⊤
ListD A = wrap λ → σ Bool λ {false →

; true → σ [: A] v tt}

to state the conversion from a list to its length, the essential information is just that the
elements associated with cons nodes should be discarded, which is described by the fol-
lowing natural transformation between the two base functors F (ListD A) and F NatD :

erase : ∀ {A} → ∀ {X } → F (ListD A) X ⇒ F NatD X

erase (false, tt) = false, tt -- unchanged
erase (true , (a, x)) = true , x -- a discarded

The transformation can then be lifted to work on the least fixed points.

length : ∀ {A} → µ (ListD A) ⇒ µ NatD

length = fold (con ◦ erase {X = µ NatD})

Our goal in this section is to construct a second universe for such natural transformations
between the base functors that arise as decodings of descriptions. The inhabitants of this
second universe are called ornaments. By encoding the relationship between datatype
descriptions as a universe, we will not only be able to derive conversion functions between
datatypes, but even compute new datatypes that are related to old ones in prescribed
ways, which is something we cannot do if we simply write the conversion functions directly.

4.1 The universe of ornaments

The definition of ornaments, shown in Figure 2, has the same two-level structure as that
of datatype descriptions: we have an upper-level datatype Orn of ornaments that refers to
a lower-level datatype ROrn of response ornaments, which contains the actual encoding
details and is decoded by the function erase. Parametrised by a partitioning function
e : J → I , the datatype Orn relates two datatype descriptions D : Desc I and
E : Desc J such that from an inhabitant O : Orn e D E we can derive a forgetful map

forget O : µ E ⇒ µ D ◦ e

By design, this forgetful map necessarily preserves the recursive structure of its input. In
terms of the two-dimensional metaphor mentioned at the end of Section 3, an ornament
describes only how the horizontal shapes change, and the forgetful map simply applies
the changes to each vertical level by a fold — it never alters the vertical structure. For
example, the length function discards elements associated with cons nodes, shrinking the
list horizontally to a natural number, but keeps the vertical structure — the con nodes
— intact. Look more closely: given y : µ E j , we should transform it into an object of

15

type µ D (e j). Deconstructing y into con ys where ys : [[E at j]] (µ E) and assuming
that the (µ E)–objects in ys have been inductively transformed into (µ D ◦ e)–objects,
we horizontally modify the resulting structure of type [[E at j]] (µ D ◦ e) to one of
type [[D at (e j)]] (µ D), which can then be wrapped by con to an object of type
µ D (e j). The above steps are performed by the ornamental algebra induced by O ,
whose implementation is shown as ornAlg in Figure 2, where the horizontal modification
— a transformation from [[E at j]] (X ◦ e) to [[D at (e j)]] X , natural in X — is
decoded by erase from a response ornament relating D at (e j) and E at j . Hence an
inhabitant of Orn e D E contains for each requested index j a response ornament of type
ROrn e (D at (e j)) (E at j) to cope with all possible horizontal structures that can
occur in a (µ E)–object.

Now we look at each case of the definitions of ROrn and erase. The v case says that
[[v j]] (X ◦ e) can be transformed into [[v i]] X if e j ≡ i — since the former type
reduces to X (e j) and the latter to X i , their indices had better be equal. There are
three other cases , σ, and ∗ mirroring the rest of the response description constructors,
each of which declares that the same constructor is present in the two related response
descriptions, and the structure of the constructor is preserved by erase. The remaining
two cases deal with addition and deletion of fields inserted by σ and prompt erase to
perform nontrivial transformations. The ∆ case says that the more refined response
description, σ T E , has an additional field of type T with respect to the response
description D being refined. The ∆ case of erase should transform [[σ T E]] (X ◦ e)
— which expands to Σ [t : T] [[E t]] (X ◦ e) — into [[D]] X , and it discards the
value t of the additional field and continues to transform the remaining structure of type
[[E t]] (X ◦ e) into [[D]] X , which is guaranteed to succeed since the ∆ constructor
also demands that D is related to the trailing response description E t for every possible
value t : T of the additional field. Conversely, the ∇ case says that σ S D , having a
field of type S , can be refined to E by deleting the field, if E refines D s for some s : S .
This s acts as a default value to be installed into the field when the field is restored by
erase.

For an example, the ornament from natural numbers to lists is

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)
NatD-ListD A = wrap λ → σ Bool λ {false →

; true → ∆ [: A] v refl}

The ∆ constructor is used to indicate that the field of type A is new in ListD A, whereas
the other parts are copied from NatD as indicated by the mirroring constructors. The
forgetful map induced by this ornament discards the field in every cons node of a list,
and is exactly length. Another example is the ornament from lists to vectors, in which
deletion is involved.

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)
ListD-VecD A = wrap λ {zero → ∇ false

; (suc n) → ∇ true (σ [: A] v refl)}

We analyse the targeted index: if it is zero, then the constructor choice should be false,
so we install that choice with ∇; if it is suc n for some n, then we install the constructor

16

Figure 2: The universe of ornaments.

data ROrn {I J} (e : J → I) : RDesc I → RDesc J → Set1 where

: ROrn e

v : ∀ {j i} (idx : e j ≡ i) → ROrn e (v i) (v j)

σ : (S : Set) → ∀ {D E} (O : ∀ s → ROrn e (D s) (E s)) → ROrn e (σ S D) (σ S E)

∆ : (T : Set) → ∀ {D E} (O : ∀ t → ROrn e D (E t)) → ROrn e D (σ T E)

∇ : {S : Set} (s : S) → ∀ {D E} (O : ROrn e (D s) E) → ROrn e (σ S D) E

∗ : ∀ {D E} (O : ROrn e D E) → ∀ {D ′ E ′} (O ′ : ROrn e D ′ E ′) → ROrn e (D ∗ D ′) (E ∗ E ′)

erase : ∀ {I J} {e : J → I } {D E} → ROrn e D E → ∀ {X } → [[E]] (X ◦ e) → [[D]] X

erase = tt

erase (v refl) x = x

erase (σ S O) (s , xs) = s , erase (O s) xs

erase (∆ T O) (t , xs) = erase (O t) xs

erase (∇ s O) xs = s , erase O xs

erase (O ∗ O ′) (x , x ′) = erase O x , erase O ′ x ′

data Orn {I J : Set} (e : J → I) (D : Desc I) (E : Desc J) : Set1 where

wrap : (∀ j → ROrn e (D at (e j)) (E at j)) → Orn e D E

unwrap : ∀ {I J} {e : J → I } {D E} → Orn e D E → ∀ j → ROrn e (D at (e j)) (E at j)

unwrap (wrap O) = O

ornAlg : ∀ {I J} {e : J → I } {D E} (O : Orn e D E) → F E (µ D ◦ e) ⇒ µ D ◦ e

ornAlg {D = D} (wrap O) {j} = con ◦ erase (O j)

forget : ∀ {I J} {e : J → I } {D E} (O : Orn e D E) → µ E ⇒ µ D ◦ e

forget O = fold (ornAlg O)

choice true by ∇, copy the element with σ, and finally affirm by v refl that a request of
a sub-vector at index n is legitimate with respect to the (trivial) partitioning function
! : Nat → ⊤.

4.2 Ornamental descriptions

The apparent similarity between the description ListD and the ornament NatD-ListD is
typical: frequently we define a new datatype, intending it to be a more refined version of
an existing one, and then immediately write an ornament from the latter to the former.
The structures of the new datatype and of the ornament are essentially the same, however,
so the effort is duplicated. It would be more efficient if we could just write one “relative”
description with respect to the existing description, specifying the “patches” that need to
be made, and afterwards from this relative description extract a new description and an
ornament from the existing description to it. We call such relative descriptions ornamental
descriptions, whose definition is shown in Figure 3 and again has a two-level structure.
The lower-level ROrnDesc datatype almost looks like a copy of the ROrn datatype, except
that ROrnDesc is indexed by only one response description rather than two — it does not
connect two response descriptions like ROrn does, but creates a new response description

17

whose structure is guided by an existing one. From an ornamental description O :
OrnDesc J e D , we can extract a new description ⌊O ⌋ : Desc J , which is a more refined
version of D , and an ornament ⌈O ⌉ : Orn e D ⌊O ⌋ from the reference description D to
the new description ⌊O ⌋. For example, rather than defining ListD and then NatD-ListD ,
we can simply write

ListO : Set → OrnDesc ⊤ ! NatD

ListO A = wrap λ → σ Bool λ {false →
; true → ∆ [: A] v (ok tt)}

Then ⌊ ListO A ⌋ : Desc ⊤ is a description of the list datatype and ⌈ ListO A ⌉ :
Orn ! NatD ⌊ListO A⌋ is an ornament from natural numbers to lists. By defining the list
datatype in a more informative language that allows us to mark the differences between
lists and natural numbers, we get the length function — the forgetful map induced by
the ornament ⌈ListO A⌉ — for free. For another example, we can define sorted lists by
making modifications to lists,

SListO : OrnDesc Val ! (ListD Val)
SListO = wrap λ b → σ Bool λ {false →

; true → σ [x : Val] ∆ [: b 6 x] v (ok x)}

An ornament ⌈ SListO ⌉ from ListD Nat to ⌊ SListO ⌋ can then be decoded from the
ornamental description, and subsequently we obtain a forgetful map

forget ⌈SListO ⌉ : ∀ {b} → SList b → List Val

that converts a sorted list to a plain list.

4.3 Parallel composition of ornaments

Functions are not the only entities that can be computed from ornaments. Since we have
built a universe for datatypes, we can also compute new datatypes from ornaments by
computing codes for the new datatypes. A particularly powerful construction is parallel
composition of ornaments, which plays a central role in this paper. The generic scenario is
illustrated in Figure 4: given three descriptions D : Desc I , E : Desc J , and F : Desc K
and two ornaments O : Orn e D E and P : Orn e D F independently specifying how
D is refined to E and F , we can compute an ornamental description

O ⊗ P : OrnDesc (e ⊲⊳ f) pull D

incorporating all the modifications to D recorded in O and P . Also we get two difference
ornaments from E and F to the new description ⌊O ⊗ P ⌋ computed by diffOrn-l O P

and diffOrn-r O P , through which we can partially forget the modifications. For example,
the ornament from lists to vectors adds length information, while the ornament from lists
to sorted lists enforces ordering; composing the two ornaments in parallel, we get a
datatype of lists that keep track of their length and stay ordered at the same time —
that is, we get sorted vectors, which can be demoted to vectors or to sorted lists by the
forgetful maps induced by the two difference ornaments as needed.

18

Figure 3: Ornamental descriptions.

data ROrnDesc {I : Set} (J : Set) (e : J → I) : RDesc I → Set1 where

: ROrnDesc J e

v : ∀ {i} (j : e −1 i) → ROrnDesc J e (v i)

σ : (S : Set) → ∀ {D} (O : ∀ s → ROrnDesc J e (D s)) → ROrnDesc J e (σ S D)

∆ : (S : Set) → ∀ {D} (O : S → ROrnDesc J e D) → ROrnDesc J e D

∇ : {S : Set} (s : S) → ∀ {D} (O : ROrnDesc J e (D s)) → ROrnDesc J e (σ S D)

∗ : ∀ {D} (O : ROrnDesc J e D) → ∀ {D ′} (O ′ : ROrnDesc J e D ′) → ROrnDesc J e (D ∗ D ′)

data OrnDesc {I : Set} (J : Set) (e : J → I) (D : Desc I) : Set1 where

wrap : (∀ j → ROrnDesc J e (D at (e j))) → OrnDesc J e D

toRDesc : ∀ {I J} {e : J → I } {D} → ROrnDesc J e D → RDesc J

toRDesc =

toRDesc (v (ok j)) = v j

toRDesc (σ S O) = σ [s : S] toRDesc (O s)

toRDesc (∆ S O) = σ [s : S] toRDesc (O s)

toRDesc (∇ s O) = toRDesc O

toRDesc (O ∗ O ′) = toRDesc O ∗ toRDesc O ′

⌊_⌋ : ∀ {I J} {e : J → I } {D} → OrnDesc J e D → Desc J

⌊wrap O ⌋ = wrap λ j → toRDesc (O j)

toROrn : ∀ {I J} {e : J → I } {D} → (O : ROrnDesc J e D) → ROrn e D (toRDesc O)

toROrn =

toROrn (v (ok j)) = v refl

toROrn (σ S O) = σ [s : S] toROrn (O s)

toROrn (∆ S O) = ∆ [s : S] toROrn (O s)

toROrn (∇ s O) = ∇ s (toROrn O)

toROrn (O ∗ O ′) = toROrn O ∗ toROrn O ′

⌈_⌉ : ∀ {I J} {e : J → I } {D} → (O : OrnDesc J e D) → Orn e D ⌊O ⌋

⌈wrap O ⌉ = wrap λ i → toROrn (O i)

Figure 4: Parallel composition of ornaments.

e ⊲⊳ f

J K

I

e f

pull

π1 π2

⌊O ⊗ P ⌋ : Desc (e ⊲⊳ f)

E : Desc J F : Desc K

D : Desc I

O P

⌈O ⊗ P ⌉

diffOrn-l O P diffOrn-r O P

19

The new index set e ⊲⊳ f is the pullback of e and f . (See the left half of Figure 4
for the commutative diagram.) Set-theoretically, the elements are pairs of the form (j , k)
such that e j equals f k , or putting it another way, for which there exists i such that j

is in the inverse image of i under e and k is in the inverse image of i under f . Hence we
define pullbacks using the inverse image datatype from Section 2:

data ⊲⊳ {I J K : Set} (e : J → I) (f : K → I) : Set where

, : {i : I } → e −1 i → f −1 i → e ⊲⊳ f

We have a function pull which extracts the common value

pull : ∀ {I J K} {e : J → I } {f : K → I } → e ⊲⊳ f → I

pull (, {i}) = i

and projections

π1 : ∀ {I J K} {e : J → I } {f : K → I } → e ⊲⊳ f → J

π1 (j ,) = und j

π2 : ∀ {I J K} {e : J → I } {f : K → I } → e ⊲⊳ f → K

π2 (, k) = und k

It is interesting to think about why the new index set is a pullback: the differences
recorded in O are only between corresponding responses of D and E as specified by e,
and they are indexed by J — for each j : J we get a difference between E at j and
D at (e j). The same goes for P . Now, parallel composition computes an ornamental
description based on D by mixing O and P . To retrieve the differences recorded in O

and P , we need a pair of indices (j , k) to access both ornaments. Not all pairs would
do, however, since the two differences retrieved must be based on a common description,
otherwise they would have no common structure and could not be mixed. By requiring
that e j equals f k , we ensure that the two differences have a common base description.
Hence the use of pullbacks.

The full definition of parallel composition is shown in Figure 5, again possessing a two-
level structure. The definition of left difference ornaments is shown in Figure 6, which is
similar to that of parallel composition but records only modifications from the right-hand
side ornament; right difference ornaments have an analogous definition, which is therefore
omitted. We look at some representative cases of pcROrn. When both ornaments use σ,
both of them retain the field in the common base description — no modification is made.
Consequently, the field is retained in the resulting ornamental description as well.

pcROrn (σ S O) (σ .S P) = σ [s : S] pcROrn (O s) (P s)

When one of the ornaments uses ∆ to mark the addition of a field, that additional field
would be inserted into the resulting ornamental description, like in

pcROrn (∆ T O) P = ∆ [t : T] pcROrn (O t) P

If one of the ornaments copies a field by σ and the other deletes it, then the field is deleted
in the resulting ornamental description, like in

20

pcROrn (σ S O) (∇ s P) = ∇ s (pcROrn (O s) P)

The most interesting case is when both ornaments perform deletion: we would put in an
equality field demanding that the default values supplied in the two ornaments be equal,

pcROrn (∇ s O) (∇ s ′ P) = ∆ (s ≡ s ′) (pcROrn-double∇ O P)

pcROrn-double∇ {s = s} O P refl = ∇ s (pcROrn O P)

and then pcROrn-double∇ puts the deletion into the resulting ornamental description
after matching the proof of the equality field with refl. It might seem bizarre that two
deletions results in an insertion (and a deletion), but consider this informally described
scenario: in a base description there is a field σ S , which is refined by two independent
ornaments

∆ [t : T] ∇ (g t) and ∆ [u : U] ∇ (h u)

That is, instead of S -values, the two ornaments use T - and U -values at this position,
which can be erased to an underlying S -value by g : T → S and h : U → S .
Composing these two ornaments in parallel, we get

∆ [t : T] ∆ [u : U] ∆ [: g t ≡ h u] ∇ (g t)

where the added equality field completes the construction of a pullback of g and h. Here
indeed we need a pullback: when we have an actual value for the field σ S , which gets
refined to values of types T and U , the easiest way to mix the two refining values is to
store them both, as a product. If we wish to retrieve the underlying value of type S , we
can either extract the value of type T and apply g to it or extract the value of type U

and apply h to it, and through either path we should get the same underlying value. So
the product should really be a pullback to ensure this.

For an example, we mentioned that sorted vectors arise out of the parallel composition
of the ornaments from lists to vectors and sorted lists. The datatype declaration for
index-first sorted vectors is

indexfirst data SVec : Val → Nat → Set where

SVec b zero ∋ svnil

SVec b (suc n) ∋ svcons (x : Val) (le : b 6 x) (xs : SVec x n)

and the ornamental description from lists to sorted vectors would simply be

SVecO : OrnDesc (! ⊲⊳ !) pull (ListD Val)
SVecO = ⌈SListO ⌉ ⊗ ListD-VecD Val

where the first ! has type Val → ⊤ and the second Nat → ⊤ (and hence the index set
is essentially just a plain product Val × Nat, justifying the way we index the sugared
datatype SVec). Expanding the definition of SVecO , we get

wrap λ {(ok b, ok zero) → ∇ false

; (ok b, ok (suc n)) → ∇ true (σ [x : Val] ∆ [: b 6 x] v (ok x , ok n))}

where a lighter box indicates modifications recorded in ⌈ SListO ⌉ and a darker box in
ListD-VecD Val.

21

Figure 5: Parallel composition.

from≡ : ∀ {J I } {e : J → I } {j i} → e j ≡ i → e −1 i

from≡ {j = j} refl = ok j

to≡ : ∀ {J I } {e : J → I } {i} → (j : e −1 i) → e (und j) ≡ i

to≡ (ok j) = refl

mutual

pcROrn : ∀ {I J K} {e : J → I } {f : K → I } {D E F} →

ROrn e D E → ROrn f D F → ROrnDesc (e ⊲⊳ f) pull D

pcROrn =

pcROrn (∆ T P) = ∆ [t : T] pcROrn (P t)

pcROrn (v idx) (v idx ′) = v (ok (from≡ idx , from≡ idx ′))

pcROrn (v idx) (∆ T P) = ∆ [t : T] pcROrn (v idx) (P t)

pcROrn (σ S O) (σ .S P) = σ [s : S] pcROrn (O s) (P s)

pcROrn (σ f O) (∆ T P) = ∆ [t : T] pcROrn (σ f O) (P t)

pcROrn (σ S O) (∇ s P) = ∇ s (pcROrn (O s) P)

pcROrn (∆ T O) P = ∆ [t : T] pcROrn (O t) P

pcROrn (∇ s O) (σ S P) = ∇ s (pcROrn O (P s))

pcROrn (∇ s O) (∆ T P) = ∆ [t : T] pcROrn (∇ s O) (P t)

pcROrn (∇ s O) (∇ s ′ P) = ∆ (s ≡ s ′) (pcROrn-double∇ O P)

pcROrn (O ∗ O ′) (∆ T P) = ∆ [t : T] pcROrn (O ∗ O ′) (P t)

pcROrn (O ∗ O ′) (P ∗ P ′) = pcROrn O P ∗ pcROrn O ′ P ′

pcROrn-double∇ : ∀ {I J K S} {e : J → I } {f : K → I } {D E F} {s s ′ : S} →

ROrn e (D s) E → ROrn f (D s ′) F → s ≡ s ′ → ROrnDesc (e ⊲⊳ f) pull (σ S D)

pcROrn-double∇ {s = s} O P refl = ∇ s (pcROrn O P)

⊗ : ∀ {I J K} {e : J → I } {f : K → I } {D E F} →

Orn e D E → Orn f D F → OrnDesc (e ⊲⊳ f) pull D

⊗ {e = e} {f } {D} {E} {F} (wrap O) (wrap P) =

wrap λ {(j , k) → pcROrn (subst (λ i → ROrn e (D at i) (E at (und j))) (to≡ j) (O (und j)))

(subst (λ i → ROrn f (D at i) (F at (und k))) (to≡ k) (P (und k)))}

22

Figure 6: Left difference ornaments.

mutual

diffROrn-l : ∀ {I J K} {e : J → I } {f : K → I } {D E F}

(O : ROrn e D E) (P : ROrn f D F) → ROrn π1 E (toRDesc (pcROrn O P))

diffROrn-l =

diffROrn-l (∆ T P) = ∆ [t : T] diffROrn-l (P t)

diffROrn-l (v refl) (v idx ′) = v refl

diffROrn-l (v refl) (∆ T P) = ∆ [t : T] diffROrn-l (v refl) (P t)

diffROrn-l (σ S O) (σ .S P) = σ [s : S] diffROrn-l (O s) (P s)

diffROrn-l (σ S O) (∆ T P) = ∆ [t : T] diffROrn-l (σ S O) (P t)

diffROrn-l (σ S O) (∇ s P) = ∇ s (diffROrn-l (O s) P)

diffROrn-l (∆ T O) P = σ [t : T] diffROrn-l (O t) P

diffROrn-l (∇ s O) (σ S P) = diffROrn-l O (P s)

diffROrn-l (∇ s O) (∆ T P) = ∆ [t : T] diffROrn-l (∇ s O) (P t)

diffROrn-l (∇ s O) (∇ s ′ P) = ∆ (s ≡ s ′) (diffROrn-l -double∇ O P)

diffROrn-l (O ∗ O ′) (∆ T P) = ∆ [t : T] diffROrn-l (O ∗ O ′) (P t)

diffROrn-l (O ∗ O ′) (P ∗ P ′) = diffROrn-l O P ∗ diffROrn-l O ′ P ′

diffROrn-l -double∇ :

∀ {I J K} {e : J → I } {f : K → I } {S} {D E F} {s s ′ : S} →

(O : ROrn e (D s) E) (P : ROrn f (D s ′) F) (eq : s ≡ s ′) →

ROrn π1 E (toRDesc (pcROrn-double∇ {D = D} O P eq))

diffROrn-l -double∇ O P refl = diffROrn-l O P

diffOrn-l : ∀ {I J K} {e : J → I } {f : K → I } {D E F}

(O : Orn e D E) (P : Orn f D F) → Orn π1 E ⌊O ⊗ P ⌋

diffOrn-l {e = e} {f } {D} {E} {F} (wrap O) (wrap P) =

wrap λ {(j , k) → diffROrn-l (subst (λ i → ROrn e (D at i) (E at (und j))) (to≡ j) (O (und j)))

(subst (λ i → ROrn f (D at i) (F at (und k))) (to≡ k) (P (und k)))}

23

5 Refinement semantics of ornaments

In this section we present the main result of this paper: every ornament O : Orn e D E

induces a refinement from µ D to µ E . That is, we can construct a function

RSem : ∀ {I J} {e : J → I } {D E} → Orn e D E → Refinement (µ D) (µ E)

which is called the refinement semantics of ornaments — broadly speaking, we are treat-
ing ornaments as a universe for refinements, with RSem as the decoding function. We
construct in Section 5.1 a canonical predicate for every ornament, which is crafted to
allow promotion proofs to have efficient representations, and prove that the associated
isomorphism holds. When an ornament is a parallel composition, say O ⊗ P , its canoni-
cal predicate can be shown to be isomorphic to the pointwise conjunction of the canonical
predicates for O and P — this decomposition of a canonical predicate into existing ones
is key to modular function upgrading like the one from insert to svinsert in Section 1.
We express this decomposition as a predicate swap (introduced in Section 2.2) for the
refinement RSem (O ⊗ P) in Section 5.2.

5.1 Canonical predicates

We start with constructing a promotion predicate

[] : ∀ {I J} {e : J → I } {D E} →
∀ {i} (j : e −1 i) (x : µ D i) → (O : Orn e D E) → Set

which is called the canonical predicate for the ornament O . Given x : µ D i , a proof
of type [j] x O would provide the necessary data for complementing x and forming
an object y of type µ E (und j) with the same recursive structure — the proof is the
“horizontal” difference between the two objects y and x , speaking in terms of the two-
dimensional metaphor sketched in Section 4.1. Such proofs should have the same vertical
recursive structure as that of x , and at each recursive node store horizontally only those
data marked as modified by the ornament. For example, if we are promoting the natural
number

two = con (true,
con (true,
con (false, tt))) : µ NatD tt

to a list, a promotion proof should look like

r = con (a,
con (a ′,

con tt)) : [ok tt] two ⌈ListO A⌉

where a and a ′ are some elements of type A, so we get a list by zipping together two

and r node by node:

24

con (true, a,
con (true, a ′,

con (false, tt))) : µ ⌊ListO A⌋ tt

Note that r contains only values of the field marked as additional by ∆ in the ornament
⌈ListO A ⌉. The boolean constructor choices are essential for determining the recursive
structure of r , but instead of being stored in r , they are derived from two, which is part of
the index of the type of r . So, in general, here is how we compute an ornamental descrip-
tion of the base functor for such proofs relative to D : we incorporate the modifications
made by O , and delete the fields that already exist in D , whose default values are derived
in the index-first fashion from the object that we are promoting, which appears in the
index of the type of a proof. The deletion is independent of O and can be performed by
the singleton ornament for D , whose definition singOrn D is shown below, so the desired
ornamental description is the parallel composition of O and singOrn D :

cpD : ∀ {I J} {e : J → I } {D E} → (O : Orn e D E) → Desc (e ⊲⊳ proj1)
cpD {D = D} O = ⌊O ⊗ ⌈singOrn D ⌉⌋

where proj1 here has type Σ I (µ D) → I . The canonical predicate, then, is the least
fixed point of the described base functor.

[] : ∀ {I J} {e : J → I } {D E} →
∀ {i} (j : e −1 i) (x : µ D i) → (O : Orn e D E) → Set

[j] x O = µ (cpD O) (j , (ok (, x)))

Now we define the singleton ornament singOrn D for a description D , which describes a
datatype additionally indexed by µ D .

singOrn : ∀ {I } (D : Desc I) → OrnDesc (Σ I (µ D)) proj1 D
singOrn D = wrap λ {(i , con xs) → erode (D at i) xs}

erode : ∀ {I } (D : RDesc I) → ∀ {J} → [[D]] J → ROrnDesc (Σ I J) proj1 D
erode =
erode (v i) j = v (ok (i , j))
erode (σ S D) (s , js) = ∇ s (erode (D s) js)
erode (D ∗ E) (js , js ′) = erode D js ∗ erode E js ′

An inhabitant of the new datatype is devoid of any horizontal contents, which are deleted
by erode — only the vertical structure remains. For any type µ ⌊singOrn D ⌋ (i , x), there
is only one single inhabitant (which has the same recursive structure as x), hence the
name of the ornament [11].

For an example, the promotion predicate for the ornament NatD-ListD A from µ NatD

to µ (ListD A) would be the datatype of index-first vectors. Expanding the definition of
the ornamental description NatD-ListD A ⊗ ⌈singOrn NatD ⌉,

wrap λ {(ok tt, ok (tt, zero)) → ∇ false

; (ok tt, ok (tt, suc n)) → ∇ true ∆ [: A] v (ok tt , ok (tt, n))}

where lighter box indicates modifications from the ornament NatD-ListD A and darker
box from the singleton ornament ⌈ singOrn NatD ⌉, we see that it indeed yields the

25

datatype of index-first vectors (indexed by a more heavy-weight datatype of natural
numbers).

We have just determined the promotion predicate for the refinement semantics of
ornaments.

RSem : ∀ {I J} {e : J → I } {D E} → Orn e D E → Refinement (µ D) (µ E)
RSem {e = e} O =
record

{e = e

;P = λ j x → [j] x O

;ℜ = ?}

The next step is to prove that µ E (und j) and Σ [x : µ D i] [j] x O are isomorphic
for any j : e −1 i . The backward direction is easy: the canonical predicate datatype
[j] x O is defined as a parallel composition with O as a component, so there is a
difference ornament from the description E , which is the more refined end of O , to the
canonical predicate datatype. Hence we define

cpOrn : ∀ {I J} {e : J → I } {D E} → (O : Orn e D E) → Orn π1 E (cpD O)
cpOrn {D = D} O = diffOrn-l O ⌈singOrn D ⌉

and the map forget (cpOrn O) ◦ proj2 does the job. For the forward direction, from an
object y : µ E j we need to compute an object x : µ D i and a proof of [ok j] x O .
We take x to be forget O y , and the proof is computed by a separate function

remember : ∀ {I J} {e : J → I } {D E} (O : Orn e D E) →
∀ {j} (y : µ E j) → [ok j] forget O y O

whose implementation is by induction. The translation can be completed after proving
that the two directions are indeed inverse to each other, again by induction. The proofs
are tedious but standard, and hence are omitted.

RSem : ∀ {I J} {e : J → I } {D E} → Orn e D E → Refinement (µ D) (µ E)
RSem {e = e} O =
record

{e = e

;P = λ j x → [j] x O

;ℜ = λ {{. } (ok j) →
record

{to = 〈 forget O , remember O 〉
; from = forget (cpOrn O) ◦ proj2
; to-from-inverse = remember -forget-inverse O

; from-to-inverse = forget-remember -inverse O}}}

5.2 Predicate swap for parallel composition

An ornament describes differences between two datatypes, and the canonical predicate
for the ornament is the datatype of differences between objects of the two datatypes. To

26

promote an object from the coarser end to the more refined end of the ornament using its
refinement semantics, we give a promotion proof that the object satisfies the canonical
predicate for the ornament. If, however, the ornament is a parallel composition, say
⌈O ⊗ P ⌉, then the differences recorded in the ornament are simply collected from the
component ornaments O and P . Consequently, it should suffice to give proofs that the
object satisfies the canonical predicates for O and P , instead of the canonical predicate
directly induced by ⌈O ⊗ P ⌉. We are thus led to prove that the canonical predicate for
⌈O ⊗ P ⌉ amounts to the pointwise conjunction of the canonical predicates for O and P .
In the language of refinements, we provide a predicate swap (introduced in Section 2.2)
that allows us to use the pointwise conjunction of the canonical predicates for O and P

as the promotion predicate in RSem ⌈ O ⊗ P ⌉, instead of the canonical predicate for
⌈ O ⊗ P ⌉. We should allow predicate swapping to propagate, though: the canonical
predicate for ⌈O ⊗ P ⌉ can be swapped for the pointwise conjunction of any predicates
that are isomorphic to the canonical predicates for O and P , so, for example, the canonical
predicate for ⌈ O ⊗ ⌈ P ⊗ Q ⌉ ⌉ can be swapped for the pointwise conjunction of the
canonical predicates for O , P , and Q . Hence the predicate swap we provide is:

Swap-⊗ : ∀ {I J K} {e : J → I } {f : K → I } {D E F}
(O : Orn e D E) (P : Orn f D F) →
Swap (RSem O) → Swap (RSem P) → Swap (RSem ⌈O ⊗ P ⌉)

Swap-⊗ O P s t =
record

{Q = λ {{. } (ok (j , k)) x → Swap.Q s j x × Swap.Q t k x}
; s = ?}

For the field s , we need only prove that the canonical predicate for ⌈O ⊗ P ⌉ is isomorphic
to the pointwise conjunction of the canonical predicates for O and P , whose forward
direction is

project : ∀ {I J K} {e : J → I } {f : K → I } {D E F}
(O : Orn e D E) (P : Orn f D F) →
∀ {i} (x : µ D i) {j : e −1 i} {k : f −1 i} →
[ok (j , k)] x ⌈O ⊗ P ⌉ → [j] x O × [k] x P

The implementation proceeds by induction on x and distributes the data in the composite
proof to the two component proofs that we are constructing. The function project can
be shown to be injective and surjective, so we get an isomorphism which we can then
chain with the product of the two given isomorphisms Swap.s s j x and Swap.s t k x by
transIso. That is, we can indeed form an isomorphism

[ok (j , k)] x ⌈O ⊗ P ⌉ ∼= [j] x O × [k] x P
∼= Swap.Q s j x × Swap.Q t k x

which is what we fill into the field s of Swap-⊗.

For an example, the key isomorphisms used to modularly upgrade insert to svinsert

in Section 1

SVec b n ∼= Σ [xs : List Val] Sorted b xs × Length n xs

27

can be provided by the refinement

toRefinement (Swap-⊗ ⌈SListO ⌉ (ListD-VecD Val) idSwap idSwap)

If, instead of the inductive predicate Length n xs , we wish to program with the equality
length xs ≡ n, then we use the refinement

toRefinement (Swap-⊗ ⌈SListO ⌉ (ListD-VecD Val) idSwap (LengthSwap Val))

which gives us the family of isomorphisms

SVec b n ∼= Σ [xs : List Val] Sorted b xs × length xs ≡ n

6 Example: leftist heaps

In this section we give an extended example: leftist heaps. In Okasaki’s words [13],
“[l]eftist heaps [. . .] are heap-ordered binary trees that satisfy the leftist property : the
rank of any left child is at least as large as the rank of its right sibling. The rank of a
node is defined to be the length of its right spine (i.e., the rightmost path from the node
in question to an empty node).” From this description we can immediately decompose
the concept of leftist heaps into three: leftist heaps (i) are binary trees that (ii) are heap-
ordered and (iii) satisfy the leftist property. This suggests that there is a basic datatype
of binary trees together with two ornamentations. The datatype of binary trees is

indexfirst data Tree : Set where

Tree ∋ tip

| fork (t : Tree) (u : Tree)

TreeD : Desc ⊤
TreeD = wrap λ → σ Bool λ {false →

; true → v tt ∗ v tt}

Leftist trees — binary trees satisfying the leftist property — are then an ornamented
version of Tree.

indexfirst data LTree : Nat → Set where

Tree zero ∋ tip

Tree (suc r) ∋ fork (l : Nat) (r6l : r 6 l) (t : Tree l) (u : Tree r)

LTreeO : OrnDesc Nat ! TreeD

LTreeO = wrap λ {zero → ∇ false

; (suc r) → ∇ true (∆ [l : Nat] ∆ [: r 6 l] v (ok l) ∗ v (ok r))}

Independently, heap-ordered trees are also an ornamented version of Tree.

indexfirst data Heap : Val → Set where

Heap b ∋ tip

| fork (x : Val) (b6x : b 6 x) (t : Heap x) (u : Heap x)

28

HeapO : OrnDesc Val ! TreeD

HeapO =
wrap λ b → σ Bool λ {false →

; true → ∆ [x : Val] ∆ [: b 6 x] v (ok x) ∗ v (ok x)}

(One can see from the indexing pattern that heap-ordered trees can be regarded as a
generalisation of sorted lists: in a heap-ordered tree, every path from the root to a tip is
a sorted list.) Composing the two ornaments in parallel gives us exactly leftist heaps.

indexfirst data LHeap : Val → Nat → Set where

LHeap b zero ∋ tip

LHeap b (suc r) ∋ fork (x : Val) (b6x : b 6 x)
(l : Nat) (r6l : r 6 l) (t : Heap x l) (u : Heap x r)

LHeapD : Desc (! ⊲⊳ !)
LHeapD = ⌊⌈HeapO ⌉ ⊗ ⌈LTreeO ⌉⌋

The decomposition gives us the ability to talk about heap-ordering and the leftist property
of leftist heaps independently. For example, a useful operation on heap-ordered trees is
to relax the lower bound. If we implement it in predicate form, stating explicitly in the
type that the underlying binary tree structure is unchanged,

relax : ∀ {b b ′} → b ′ 6 b → ∀ {t} → [ok b] t ⌈HeapO ⌉ → [ok b ′] t ⌈HeapO ⌉
relax b ′6b {tip} p = con tt

relax b ′6b {fork } (con (x , b6x , t , u)) = con (x ,6-trans b ′6b b6x , t , u)

where 6-trans is transitivity of 6 , then we can lift it so as to modify only the heap-
ordering portion of a leftist heap:

lhrelax : ∀ {b b ′} → b ′ 6 b → ∀ {r} → LHeap b r → LHeap b ′ r

lhrelax {b} {b ′} b ′6b {r} =
Iso.from (Refinement.ℜ re (ok (ok b ′, ok r))) ◦
(id × (relax b ′6b × id)) ◦ Iso.to (Refinement.ℜ re (ok (ok b, ok r)))

where

re : Refinement (µ TreeD) (µ LHeapD)
re = toRefinement (Swap-⊗ ⌈HeapO ⌉ ⌈LTreeO ⌉ idSwap idSwap)

In general, non-modifying heap operations do not depend on the leftist property and can
be implemented for heap-ordered trees and later lifted to work with leftist heaps, relieving
us of the unnecessary work of dealing with the leftist property when it is simply to be left
alone. For another example, converting a leftist heap to a list of its elements has nothing
to do with the leftist property. In fact, it even has nothing to do with heap-ordering, but
only with the internal labelling. Hence we define the internally labelled trees

indexfirst data ITree (A : Set) : Set where

ITree A ∋ tip

| fork (x : A) (t : ITree A) (u : ITree A)

ITreeO : Set → OrnDesc ⊤ ! TreeD

29

ITreeO A = wrap λ → σ Bool λ {false →
; true → ∆ [: A] v (ok tt) ∗ v (ok tt)}

on which we can do pre-order traversal:

preorder : ∀ {A} → ITree A → List A

preorder tip = []
preorder (fork x t u) = x :: preorder t ++ preorder u

We have an ornament from internally labelled trees to heap-ordered trees:

ITreeD-HeapD : Orn ! ⌊ITreeO Val⌋ ⌊HeapO ⌋
ITreeD-HeapD =
wrap λ b → σ Bool λ {false →

; true → σ [x : Val] ∆ [: b 6 x] v refl ∗ v refl}

So, to get a list of the elements of a leftist heap (with the first element of the list, if any,
being the minimum one in the heap), we convert the leftist heap to an internally labelled
tree and then invoke preorder .

toList : ∀ {b r} → LHeap b r → List Val

toList = preorder ◦ forget ITreeD-HeapD ◦ forget (diffOrn-l ⌈HeapO ⌉ ⌈LTreeO ⌉)

For modifying operations, however, we need to consider both heap-ordering and the
leftist property at the same time, so we should program directly with the composite
datatype of leftist heaps. For example, the key modifying operation is merging two
heaps,

merge : ∀ {b r} → LHeap b r → ∀ {b ′ r ′} → LHeap b ′ r ′ → Σ Nat (LHeap (b ⊓ b ′))

with which we can easily implement insertion of a new element and deletion of the mini-
mum element. The definition of merge is shown in Figure 7. It is a more precisely typed
version of Okasaki’s implementation, split into two mutually recursive functions to make
the two-level induction clear to Agda’s termination checker, and conversions are added
to establish the correct bounds.

Another advantage of separating the leftist property and heap-ordering is that we can
swap the leftist property for another balancing property. The non-modifying operations,
previously defined for heap-ordered trees, can be upgraded to work with the new balanced
heap datatype in the same way, while the modifying operations are reimplemented with
respect to the new balancing property. For example, the leftist property requires that
the rank of the left subtree is at least that of the right one; we can replace “rank” with
“size” in its statement and get the weight-biased leftist property. This is again codified as
an ornamentation of binary trees

indexfirst data WLTree : Nat → Set where

WLTree zero ∋ tip

WLTree (suc n) ∋ fork (l : Nat) (r : Nat) (r6l : r 6 l) (n≡l+r : n ≡ l + r)
(t : WLTree l) (u : WLTree r)

30

Figure 7: Merging two leftist heaps.

-- We assume the existence of the function �-invert : ∀ {x y} → x � y → y 6 x

-- (which makes 6 a total ordering).

-- Various proof terms about equalities/inequalities are not essential and
-- thus omitted; instead, the holes {! !} are filled with the expected types only.

makeT : (x : Nat) → ∀ {r} (t : LHeap x r) → ∀ {r ′} (t ′ : LHeap x r ′) → Σ Nat (LHeap x)

makeT x {r} t {r ′} t ′ with r 6? r
′

makeT x {r} t {r ′} t ′ | yes r6r ′ = suc r , fork x 6-refl r ′ r6r ′ t ′ t

makeT x {r} t {r ′} t ′ | no r�r ′ = suc r ′, fork x 6-refl r (�-invert r�r ′) t t ′

mutual

merge : ∀ {b r} → LHeap b r → ∀ {b′ r ′} → LHeap b′ r ′ → Σ Nat (LHeap (b ⊓ b′))

merge {b} {zero } h {b′} h ′ = , lhrelax {! b ⊓ b′ 6 b′ !} h ′

merge {b} {suc r} h {b′} h ′ = merge ′ h h ′

merge ′ : ∀ {b r} → LHeap b (suc r) → ∀ {b′ r ′} → LHeap b′ r ′ → Σ Nat (LHeap (b ⊓ b′))

merge ′ {b} {r} h {b′} {zero} h ′ =

, lhrelax {! b ⊓ b′ 6 b !} (subst (LHeap b) {! suc r ≡ suc r + zero !} h)

merge ′ {b} {r} (fork x b6x l r6l t u) {b′} {suc r ′} (fork x ′ b′6x ′ l ′ r ′6l ′ t ′ u ′)

with x 6? x
′

merge ′ {b} {r} (fork x b6x l r6l t u) {b′} {suc r ′} (fork x ′ b′6x ′ l ′ r ′6l ′ t ′ u ′)

| yes x6x ′ = , lhrelax (6-trans {! b ⊓ b′ 6 b !} b6x)

(proj2 (makeT x t (lhrelax {! x 6 x ⊓ x !}

(proj2 (merge u (fork x ′ x6x ′ l ′ r ′6l ′ t ′ u ′))))))

merge ′ {b} {r} (fork x b6x l r6l t u) {b′} {suc r ′} (fork x ′ b′6x ′ l ′ r ′6l ′ t ′ u ′)

| no x�x ′ = , lhrelax (6-trans {! b ⊓ b′ 6 b′ !} b′6x ′)

(proj2 (makeT x ′ t ′ (lhrelax {! x ′ 6 x ′ ⊓ x ′ !}

(proj2 (merge ′ (fork x (�-invert x�x ′) l r6l t u) u ′)))))

31

WLTreeO : OrnDesc Nat ! TreeD

WLTreeO =
wrap λ {zero → ∇ false

; (suc n) → ∇ true (∆ [l : Nat] ∆ [r : Nat] ∆ [: r 6 l] ∆ [: n ≡ l + r]
v (ok l) ∗ v (ok r))}

which can be composed in parallel with the heap-ordering ornament and give us weight-
biased leftist heaps.

indexfirst data WLHeap : Val → Nat → Set where

WLHeap b zero ∋ tip

WLHeap b (suc n) ∋ fork (x : Val) (b6x : b 6 x)
(l : Nat) (r : Nat) (r6l : r 6 l) (n≡l+r : n ≡ l + r)
(t : WLHeap x l) (u : WLHeap x r)

WLHeapD : Desc (! ⊲⊳ !)
WLHeapD = ⌊⌈HeapO ⌉ ⊗ ⌈WLTreeO ⌉⌋

Switching to the weight-biased leftist property makes it possible to reimplement merge

in a single, top-down pass rather than two passes: with the original rank-biased leftist
property, recursive calls to merge are determined top-down by comparing root elements,
and the helper function makeT swaps the recursive result with the other subtree if the
rank of the former is larger; the rank of the result, however, is not known before the
recursive call returns, so during the whole merging process makeT does the swapping in
a second bottom-up pass. On the other hand, with the weight-biased leftist property, the
size of the recursive result is known before the merging is actually performed, so makeT

can determine whether to do the swapping or not before the recursive call, and the whole
merging process requires only one top-down pass. The new implementation is similar to
the one for rank-biased leftist heaps and is thus omitted.

7 Discussion

This paper is a heavily revised version of the one that the authors previously published
in the Workshop of Generic Programming (WGP) [8]. The WGP version was the first
to use the terms “internalism” and “externalism” for naming different ways of expressing
constraints known by the dependently typed programming community, the former using
inductive families with fancy indices and the latter using separately defined predicates,
and to show that there is a connection between internalism and externalism: whereas ex-
ternalist constraints are expressed by predicates, internalist constraints can be expressed
by ornaments, and we can derive a predicate from every ornament, thereby translating
internalist constraints to externalist ones. This connection is axiomatised in this pa-
per in terms of refinements. The axiomatisation greatly streamlines the presentation,
as it makes a clear logical separation between how (modular) function upgrading can be
achieved by having isomorphisms between internalist and externalist datatypes and how a
particular class of such isomorphisms can be induced by capturing structural similarities
between datatypes with ornaments.

32

We might say that ornaments form a universe for refinements (in a broader sense).
Even though it is obvious that ornaments encode only a small collection of refinements,
what we have achieved is typical of universe constructions: refinements on their own do
not have a very useful compositional structure, but we can identify a collection of more
composable refinements by reflecting their deeper structure as codes, i.e., ornaments. This
collection of ornament-induced refinements can be composed at the level of ornaments by
parallel composition so the resulting promotion predicate is the pointwise conjunction of
the promotion predicates of the component refinements. Such composable structure is the
key to modular function upgrading, and is made possible because we can manipulate the
deeper structure of refinements through ornaments. (Parallel composition is not an initial
structure of ornaments, however, so strictly speaking we will need to construct a higher
universe for an algebra of ornaments, one of whose constructors is parallel composition.
It is premature to carry out this higher universe construction, though, before such an
algebra of ornaments is properly defined.)

Parallel composition has been fully implemented in this paper, whereas the WGP

version merely implemented a specialised version. We are thus able to give canonical
predicates a concise definition and to define leftist heaps by composing the heap-ordering
ornament in parallel with the leftist ornament, neither of which could have been done
without the full power of parallel composition. Also we give projection an efficient im-
plementation by directly distributing the content of a composite promotion proof, as
opposed to the inefficient composition of forgetful and remembering maps used in the
WGP version.

The idea of viewing vectors as promotion predicates was first proposed by Bernardy [2,
p 82], who refers to the realisability transformation defined for pure type systems by
Bernardy and Lasson [3]. He started with the list type in which the element-type pa-
rameter is marked as “first-level”, whereas the list type itself is “second-level”. Applying
the “projecting transformation”, which removes first-level terms and demotes second-level
terms to first-level, the second-level type of lists is transformed to the first-level type of
natural numbers. And then, applying their realisability transformation, the list type is
transformed to a second-level vector type indexed by first-level natural numbers. Our
WGP paper can be seen as an adaptation of Bernardy’s idea into the language of or-
naments without introducing levels, but also adopting the realisability terminology. We
have abandoned the realisability terminology in this paper, though, as we feel that the
departure from the theory of realisability is now so great that an explicit analogy seems
inappropriate.

Ornaments were first proposed by McBride [10] and later adapted to index-first da-
tatypes by Dagand and McBride [6], who also proposed reornaments as a more efficient
representation of promotion predicates, taking full advantage of index-first datatypes.
Following their suggestion, we have also adapted our work to index-first datatypes. Their
reornaments are reimplemented in this paper as canonical predicates using parallel com-
position. Dagand and McBride [6] also extended the notion of ornaments to functional
ornaments. Our axiomatisation of refinements and their functional ornaments are com-
plementary and await integration: their functional ornaments can be seen as a universe for
refinements generalised for function types, which will automate the insertion of isomor-
phisms for function upgrading as shown in their work and make the refinement approach

33

truly worthwhile.

We have redefined ornaments to be relations between descriptions, whereas what
are called “ornaments” in both works above correspond to our ornamental descriptions.
Separation of ornaments from ornamental descriptions gives us the ability to state orna-
mental relationship between two existing datatypes. This ability is essential to forming
the “pullback square” for parallel composition — in the WGP version we had only orna-
mental descriptions, and thus were forced to make the two difference ornaments produce
two redundant new datatypes that are isomorphic to the one manufactured by paral-
lel composition. Separating ornaments from ornamental descriptions also opens up the
possibility of structuring descriptions and ornaments as a category with descriptions as
objects and ornaments as arrows: after defining sequential composition of ornaments

⊙ : ∀ {I J K} {e : J → I } {f : K → J} {D E F} →
Orn e D E → Orn f E F → Orn (e ◦ f) D F

and determining a suitable equivalence for ornaments, we should then be able to formulate
parallel composition as a pullback in this category. Then, for example, we can take
advantage of the fact that the canonical predicates are defined by parallel composition, so
as to derive operations and properties about canonical predicates easily from the universal
property of pullbacks. We should also be able to show that µ and RSem constitute a
pullback-preserving functor, completing the theory.

Practically, how do we structure our libraries with ornaments and refinements for bet-
ter reusability? As McBride suggested [10], the datatypes should be delivered as codes
and ornaments. The datatypes on which operations are defined should be as general as
possible, and other versions of the operations on more specialised types should be imple-
mented in the form of promotion predicates. For example, insert should be defined for
plain lists, and implemented for sorted lists and vectors as functions on proofs about or-
dering and length respectively. Delivered in this way, then, insert for sorted lists, vectors,
and sorted vectors can all be derived routinely by the refinement mechanism, as we have
seen. This is the reusability and modularity offered by externalism. On the other hand,
some operations are best defined on more specialised datatypes, so datatype constraints
can be manipulated with data in an integrated fashion and guide the implementation,
an example being the merge operation for leftist heaps. This is due to the precision
offered by internalism. So here is the development pattern we have in mind: once a rich
collection of ornaments is provided, programmers will have the freedom to choose which
constraints they wish to impose on a basic type, compose the relevant ornaments and
decode the composite ornament to a suitable datatype. Existing operations are upgraded
to work with the new datatype routinely by refinements. And then, operations specific
to the new datatype can be programmed directly on it, benefiting from the precision of
programming with inductive families.

Acknowledgements

The first author is supported by the University of Oxford Clarendon Fund Scholarship,
and both authors by the UK Engineering and Physical Sciences Research Council project

34

Reusability and Dependent Types. The authors would like to thank Conor McBride for
offering an introduction to index-first datatypes in a Reusability and Dependent Types
project meeting, where Thorsten Altenkirch and Peter Morris also provided very helpful
comments, and the anonymous reviewers for their valuable suggestions.

References

[1] Thorsten Altenkirch and Conor McBride. Generic programming within dependently
typed programming. In IFIP TC2/WG2.1 Working Conference on Generic Pro-
gramming, pages 1–20. Kluwer, B.V., 2003.

[2] Jean-Philippe Bernardy. A Theory of Parametric Polymorphism and an Application.
PhD thesis, Chalmers University of Technology, 2011.

[3] Jean-Philippe Bernardy and Mark Lasson. Realizability and parametricity in pure
type systems. In Martin Hofmann, editor, Foundations of Software Science and
Computation Structures, volume 6604 of Lecture Notes in Computer Science, pages
108–122. Springer-Verlag, 2011.

[4] Edwin Brady. Practical Implementation of a Dependently Typed Functional Pro-
gramming Language. PhD thesis, University of Durham, 2005.

[5] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The
gentle art of levitation. In International Conference on Functional Programming,
ICFP’10, pages 3–14. ACM, 2010.

[6] Pierre-Évariste Dagand and Conor McBride. Transporting functions across orna-
ments. In International Conference on Functional Programming, ICFP’12, pages
103–114. ACM, September 2012.

[7] Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

[8] Hsiang-Shang Ko and Jeremy Gibbons. Modularising inductive families. In Jaakko
Järvi and Shin-Cheng Mu, editors, Workshop on Generic Programming, WGP’11,
pages 13–24. ACM, September 2011.

[9] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[10] Conor McBride. Ornamental algebras, algebraic ornaments. To appear in Journal
of Functional Programming.

[11] Stefan Monnier and David Haguenauer. Singleton types here, singleton types there,
singleton types everywhere. In Programming Languages meets Program Verification,
PLPV’10, pages 1–8. ACM, January 2010.

[12] Ulf Norell. Dependently typed programming in Agda. In Pieter Koopman, Rinus
Plasmeijer, and Doaitse Swierstra, editors, Advanced Functional Programming, vol-
ume 5832 of Lecture Notes in Computer Science, pages 230–266. Springer-Verlag,
2009.

35

[13] Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.

Appendix: Agda syntax

This appendix provides a whistle-stop tour of Agda syntax.

Function types

Let us look at a practical example of simplifying the type of the elimination (induction)
principle for lists, which should help the reader to grasp the Agda syntax for function
types. (The datatype definition of lists will be shown and explained later.)

1. In dependent function types, we give names to parameters, so the result type can
refer to the values of those parameters. If a parameter is not referred to later, its
name can be omitted. Thus, the first argument A : Set below (where Set is the
type of all small types) needs to be named, because its value A is used in the result
type, but in the type of the fourth parameter ind -case, the third argument of type
P xs need not be named, because nothing depends on its value.

list-elim :
(A : Set) → (P : List A → Set) →
(base-case : P []) →
(ind -case : (x : A) → (xs : List A) → P xs → P (x :: xs)) →
(xs : List A) → P xs

We sometimes give names even to parameters that are not referred to later in the
code, just so that we can mention the parameters in the text.

2. Arrows between named parameters can be abbreviated, forming a telescope, high-
lighted below.

list-elim :
(A : Set) (P : List A → Set) →

(base-case : P []) →
(ind -case : (x : A) (xs : List A) → P xs → P (x :: xs)) →

(xs : List A) → P xs

If parameters in a telescope are of the same type, e.g., (x : A) (y : A), then the
telescope can be further condensed into (x y : A).

3. Inferrable parameters can be marked as implicit by putting them into curly braces.

list-elim :

{A : Set} {P : List A → Set} →

(base-case : P []) →

36

(ind -case : (x : A) (xs : List A) →
P xs → P (x :: xs)) →

(xs : List A) → P xs

A function with implicit parameters can be applied as if the implicit parameters
were ignored. For example, when applying list-elim, we do not have to mention
A and P if they are truly inferrable. If Agda cannot infer the argument to an
implicit parameter, the programmer can explicitly supply an argument by putting
it in curly braces, like list-elim {A} {P}. If we only wish to supply P and let
Agda infer A, we can write list-elim {P = P}, in which the first P is the name of
the formal parameter and the second P is the actual parameter we supply. On the
other hand, if an explicit argument can be inferred, we can place an underscore to
instruct Agda to infer it.

4. Parameters whose type is inferrable can be quantified by ∀ and subsequently omit
their type. ∀-quantified parameters can also be collected in a telescope, and their
type can still be displayed if needed.

list-elim :
∀ {A} {P : List A → Set} →

(base-case : P []) →
(ind -case : ∀ x xs → P xs → P (x :: xs)) →
∀ xs → P xs

Datatype definitions

Agda datatype definitions employ the syntax of generalised algebraic datatypes (GADTs),
the most notable feature being that the types of constructors are explicitly written. For
example, the booleans are defined by

data Bool : Set where

false : Bool
true : Bool

and the natural numbers by

data Nat : Set where

zero : Nat
suc : Nat → Nat

The definition of lists is slightly more interesting:

data List (A : Set) : Set where

[] : List A
:: : A → List A → List A

The cons constructor is given a name :: which contains two underscores indicating
where its two arguments can go — we can write x :: xs for :: x xs . This mixfix operator

37

syntax works for any name, be it the name of a constructor, a function, or a datatype.
There are very few restrictions on what constitutes a name in Agda — almost all unicode
characters are allowed, with just a few exceptions like whitespace and parentheses. The
underlined (A : Set), which appears to the left of the colon, is a “uniform” parameter
which can be used throughout the declaration. Compare this with the declaration of
vectors,

data Vec (A : Set) : Nat → Set where

[] : Vec A zero

:: : A → ∀ {n} → Vec A n → Vec A (suc n)

in which the highlighted Nat, appearing to the right of the colon, is a type whose elements
are used as indices of the types in the inductive family Vec A. Constructor names can be
overloaded for different datatypes.

The dependent pair type is defined by

data Σ (A : Set) (B : A → Set) : Set where

, : (x : A) → B x → Σ A B

An element of Σ A B is a pair where the type of the second component depends on the
value of the first component. Projections are then defined by

π1 : {A : Set} {B : A → Set} → Σ A B → A

π1 (x , y) = x

and

π2 : {A : Set} {B : A → Set} → (p : Σ A B) → B (π1 p)
π2 (x , y) = y

The usual non-dependent pair type is a special case of Σ.

× : Set → Set → Set

A × B = Σ A (λ → B)

Frequently we write types of the form Σ A (λ x → E) where the second argument is a
λ-expression (in which the body E is an expression that can refer to x). We can sugar
such types into Σ [x : A] E if we provide the following syntax declaration

syntax Σ A (λ x → E) = Σ [x : A] E

With this syntax, we can regard Σ [x : A] as a binder, whose scope extends as far
as possible, so Σ [x : A] B x is parsed as Σ [x : A] (B x). In general such syntax
declarations can be provided for the application of any (simple) names to λ-expressions.

The propositional equality type is defined by

data ≡ {A : Set} (x : A) : A → Set where

refl : x ≡ x

The type x ≡ y has a proof if and only if x and y can somehow be shown to be equal,
as demanded by the type of its only constructor refl.

38

Function definitions

Functions can be defined by pattern matching as usual. For example,

not : Bool → Bool

not false = true

not true = false

What is unusual is that performing pattern matching on a variable whose type depends
on another variable may determine the value of the latter variable. For example,

sym : {A : Set} {x y : A} → (eq : x ≡ y) → y ≡ x

sym {x = x ′} {.x ′} refl = refl

First we see that implicit parameters can be explicitly mentioned if needed. We skip A

and match the parameter x with the pattern variable x ′. Then notice that the value
of y is determined to be x ′ because eq is matched with refl, causing x ′ and y to be
unified. This fact is shown by the dot pattern .x ′ appearing in y ’s position — it indicates
that the value of y is determined by unification instead of pattern matching. The goal
type is thus x ′ ≡ x ′ and can be solved simply by refl. (This example can actually be
completed without mentioning the implicit parameters; we mention them for the purpose
of illustration.)

To perform pattern matching on intermediate terms, we use the with construct. For
example, let us look at the insert function used in Section 1:

insert : Val → List Val → List Val

insert y [] = y :: []
insert y (x :: xs) with y 6? x

insert y (x :: xs) | yes = y :: x :: xs
insert y (x :: xs) | no = x :: insert y xs

In the x :: xs case, we need to compare y and x to determine how to carry on, so we put
the term y 6? x after with as if adding it as a new argument, which is then matched
with yes or no. The result of y 6? x is either yes p for some p : y 6 x or no q for some
q : y � x . We have no use of the proofs p and q , though, so underscores are placed after
yes and no to save the trouble giving names to the unused proofs.

39

	Introduction
	Refinements
	Definition of refinements
	Predicate swapping
	Problems with refinements

	Index-first datatypes
	An introduction to index-first datatypes
	A universe for index-first datatypes

	Ornaments
	The universe of ornaments
	Ornamental descriptions
	Parallel composition of ornaments

	Refinement semantics of ornaments
	Canonical predicates
	Predicate swap for parallel composition

	Example: leftist heaps
	Discussion

