
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL

Enumerating the Rationals

Jeremy Gibbons∗, David Lester† and Richard Bird∗
∗University of Oxford and†University of Manchester

1 Introduction

Every lazy functional programmer knows about the followingapproach to enumerating the
positive rationals: generate a two-dimensional matrix (aninfinite list of infinite lists), then
traverse its finite diagonals (an infinite list of finite lists). Each row of the matrix has the
positive rationals with a given denominator, and each column those with a given numerator:

1/1
2/1

3/1 · · ·
m/1 · · ·

1/2
2/2

3/2 · · ·
m/2 · · ·

...
1/n

2/n
3/n · · ·

m/n · · ·
...

Since each row is infinite, the rows cannot simply be concatenated. However, each of the di-
agonals from upper right to lower left, containing rationals with numerator and denominator
of a given sum, is finite, so these can be concatenated:

rats1 :: [Rational]
rats1 = concat(diags[[m/n |m← [1. .]] | n← [1. .]])

diags= diags′ []
where diags′ xss(ys:yss) = map head xss:diags′ (ys:map tail xss) yss

Equivalently, one can deforest the matrix altogether, and generate the diagonals directly:

rats2 :: [Rational]
rats2 = concat[[m/d−m |m← [1. .d−1]] | d← [2. .]]

All very well, but the resulting enumeration of the positiverationals contains duplicates —
in fact, infinitely many duplicates of every rational.

One could enumerate the rationals without duplication indirectly, by filtering the co-
prime pairs from those generated as above. In this paper, however, we explain an elegant
technique for enumerating the positive rationalsdirectly, without duplicates. Moreover,
we show how to do so as a simpleiteration, generating each element of the enumeration
from the previous one alone, with constant cost (in terms of number of arbitrary-precision
simple arithmetic operations) per element. Best of all, theresulting programs are extremely
simple — simpler even than the two programs above. The mathematical results are not
new (Calkin & Wilf, 2000; Newman, 2003); however, we believethat they deserve wider

2 Jeremy Gibbons, David Lester and Richard Bird

appreciation in the functional programming community. Besides, the exercise provides
some compelling examples of unfolds on infinite trees.

2 Greatest common divisor

The diagonalization approach to enumerating the rationalsis based on generating the pairs
of positive integers. The essence of the problem with this approach is that the natural
correspondence via division between integer pairs and rationals is not a bijection: although
every rational is represented, many integer pairs represent the same rational. Obviously,
therefore, enumerating the rationals by generating the integer pairs yields duplicates.

Equally obviously, a solution to the problem can be obtainedby finding a simple-to-
enumerate set with a simple-to-compute bijection to the rationals. Both constraints on
simplicity are necessary. The naturals are simple to enumerate, and there clearly exists a
bijection between the naturals and the rationals; but this bijection is not simple to compute.
On the other hand, there is a simple bijection from the rationals to themselves, but that still
begs the question of how to enumerate the rationals.

The crucial insight is the relationship between rationals and greatest common divisors.
Recall Euclid’s subtractive algorithm for computing greatest common divisor:

gcd :: (Integer, Integer)→ Integer
gcd(m,n) = if m<n then gcd(m,n−m) else

if m>n then gcd(m−n,n) else m

Consider the following ‘instrumented version’, that returns not only the greatest common
divisor, but also a trace of the execution by which it is computed:

igcd :: (Integer, Integer)→ (Integer, [Bool])
igcd (m,n) = if m<n then step False(igcd (m,n−m)) else

if m>n then step True(igcd (m−n,n)) else (m, [])

where step b(d,bs) = (d,b :bs)

Given a pair(m,n), the functionigcd returns a pair(d,bs), whered is gcd(m,n) andbs is
the list of booleans recording the ‘execution path’ — that is, a list of the branches taken —
when evaluatinggcd(m,n). Let us introduce the functionpgcd, so thatbs= pgcd(m,n).
These two pieces of data together are sufficient to invert thecomputation and reconstruct
mandn — that is, given:

ungcd:: (Integer, [Bool])→ (Integer, Integer)
ungcd(d,bs) = foldr undo(d,d) bs

where undo False(m,n) = (m,n+m)

undo True(m,n) = (m+n,n)

thenungcdandigcd are each other’s inverses, and so there is a bijection between integer
pairs(m,n) and their images(d,bs) underigcd.

Now,gcd(m,n) is exactly what is superfluous in the mapping from(m,n) to the rational
m/n, andpgcd(m,n) is exactly what is relevant in this mapping, since two pairs(m,n) and
(m′,n′) represent the same rational iff they have the samepgcd:

m/n = m′/n′ ⇐⇒ pgcd(m,n) = pgcd(m′,n′)

Functional pearl 3

1/1

1/2
2/1

1/3
2/3

3/2
3/1

1/4
2/5

3/5
3/4

4/3
5/3

5/2
4/1

0/1
1/0

Fig. 1. The first few levels of the Stern-Brocot tree.

Moreover,pgcd is surjective: every finite boolean sequence is thepgcdof some pair. The
functionungcdgives a constructive proof of this, by reconstructingsuch pairs. Therefore we
can enumerate the rationals by enumerating the finite boolean sequences: the enumeration
is easy enough, and the bijection to the rationals is simple to compute, viaungcd:

rats3 :: [Rational]
rats3 = map(mkRat◦curry ungcd1) boolseqs
boolseqs = [] : [b :bs| bs← boolseqs,b← [False,True]]

mkRat(m,n) = m/n

3 The Stern-Brocot tree

A standard way of representing a mapping from finite strings over some alphabet is with a
trie: a tree of degree equal to the size of the alphabet, in which the paths form the (prefixes
of all the) strings in the domain of the mapping, and the imageof every string is located in
the tree at the end of the corresponding path (Knuth, 1998; Thue, 1912). In this case, the
alphabet is binary, with the two symbolsFalseandTrue, so the tree is binary too; and every
finite string is in the domain of the mapping, so every node of the tree is the location of some
rational. The first few levels are shown in Figure 1 (the significance of the two pseudo-nodes
labelled0/1 and1/0 will be made clear shortly). For example,pgcd(3,4) is [False,True,True],
so the rational3/4 appears at the end of the path[L,R,R], that is, as the rightmost grandchild
of the left child of the root; the root is labelled1/1, since(1,1) yields the empty execution
path. This tree turns out to be well-known; Graham, Knuth andPatashnik (1994, §4.5) call
it theStern-Brocot tree, after its two independent nineteenth-century discoverers. It enjoys
the following two properties, among many others:

• The tree is an infinite binary search tree, so any finite pruning has an increasing
inorder traversal.

For example, pruning to include the level with1/3 and3/1 but nothing deeper yields a tree
with inorder traversal1/3,1/2,

2/3,
1/1,

3/2,
2/1,

3/1, which is increasing.

• Every node is labelled with a rationalm+m′/n+n′ , the ‘intermediary’ ofm/n, the label of
its rightmost left ancestor, andm

′
/n′ , that of its leftmost right ancestor.

4 Jeremy Gibbons, David Lester and Richard Bird

For example, the node labelled3/4 has ancestors2/3,1/2,
1/1,

0/1,
1/0, of which1/1 and1/0 are to

the right and the others to the left. The rightmost left ancestor is 2/3, and the leftmost right
ancestor1/1, and indeed3/4 = 2+1/3+1. That is why we included the two pseudo-nodes0/1
and1/0 in Figure 1: they are needed to make this relationship work for nodes like1/3 and3/1
on the boundary of the tree proper.

The latter property explains how to generate the tree directly, dispensing with the se-
quences of booleans. The seed from which the tree is grown consists of its rightmost left
and leftmost right ancestors, initially the two pseudo-nodes. The tree root is their interme-
diary, which then acts as one half of the seed for each subtree.

data Tree a = Node(a,Tree a,Tree a)
foldt f (Node(a,x,y)) = f (a, foldt f x, foldt f y)
unfoldt f x = let (a,y,z) = f x in Node(a,unfoldt f y,unfoldt f z)

rats4 :: [Rational]
rats4 = bf (unfoldt step((0,1),(1,0)))

where step(l, r) = let m= adj l r in
(mkRat m,(l,m),(m, r))

adj (m,n) (m′,n′) = (m+m′,n+n′)
bf = concat◦ foldt glue

where glue(a,xs,ys) = [a] :zipWith(++) xs ys

Alternatively, one could deforest the tree itself and generate the levels directly. Start with the
first level, consisting of the two pseudo-nodes, and repeatedly insert new nodesm+m′/n+n′

between each existing adjacent pairm/n,
m′/n′ .

rats5 :: [Rational]
rats5 = concat(unfolds infill[(0,1),(1,0)])

unfolds f a = let (b,a′) = f a in b :unfolds f a′

infill xs = (map mkRat ys, interleave xs ys)
where ys= zipWith adj xs(tail xs)

interleave(x :xs) ys= x : interleave ys xs
interleave[] [] = []

An additional interesting property of the Stern-Brocot tree is that it forms the basis for
a number representation system (credited by Graham, Knuth and Patashnik to Minkowski
in 1904, exactly a century ago at the time of writing). Every rational is represented by the
unique finite boolean sequence recording the path to it in thetree. An irrational number is
represented by the unique infinite boolean sequence that converges on where it belongs; for
example,5/2 <e< 3/1, soe has a representation starting[True,True,False,True, . . .].

4 The Calkin-Wilf tree

The Stern-Brocot tree is the trie of the mapping from booleansequencespgcd(m,n) to
rationalsm/n. But since all boolean sequences appear in the domain of thismapping (the
tree is complete), so do their reverses, and we might just as well build the mapping from
the reverse ofpgcd(m,n) to the same rationalm/n. We call this tree the Calkin-Wilf tree,
after its two explorers (Calkin & Wilf, 2000), whose work is promoted as one of Aigner and

Functional pearl 5

1/1

1/2
2/1

1/3
3/2

2/3
3/1

1/4
4/3

3/5
5/2

2/5
5/3

3/4
4/1

Fig. 2. The first few levels of the Calkin-Wilf tree.

Ziegler’sProofs from The Book(2004, Chapter 16). The first few levels of the Calkin-Wilf
tree are shown in Figure 2.

Whereas in the Stern-Brocot tree the path from the root to a nodem/n records the trace
of the computation ofgcd(m,n), in the Calkin-Wilf tree it is the pathto the rootfrom that
node that records the trace. One might argue that this orientation is more natural.

Of course, a given levelk of the Calkin-Wilf tree and of the Stern-Brocot tree containthe
same collection of rationals (namely, those on which Euclid’s subtractive algorithm takesk
steps); but the two collections are generally in a differentorder: the Calkin-Wilf tree is not
a binary search tree.

In fact, each level of the Calkin-Wilf tree is thebit-reversal permutation(Hinze, 2000;
Bird et al., 1999) of the corresponding level of the Stern-Brocot tree.For example, if the
elements of the lowest level shown in Figure 1 are numbered inbinary 000 to 111 from left
to right, they appear in Figure 2 in the order 000,100,010,110,001,101,011,111, which
are the reversals of the binary numbers 000 to 111. Bit-reversal of the levels arises naturally
from reversal of the paths.

The binary search tree property of the Stern-Brocot tree is appealing, so it is a shame
to lose it. However, the loss has its compensations. For one thing, indexing the tree by
the reverses of the execution paths means that executions with common endings, rather
than common beginnings, are grouped together. A consequence of this is that the ancestors
in the Calkin-Wilf tree of a rationalm/n record all the states that Euclid’s algorithm visits
when starting at the pair(m,n). For example, one execution path of Euclid’s algorithm is the
sequence of pairs(3,4),(3,1),(2,1),(1,1), and indeed the ancestors in the Calkin-Wilf tree
of 3/4 are3/1,

2/1,
1/1. (Compare this with the Stern-Brocot tree, in which there isno obvious

relationship between parents and children.) Thus, a rational m/n with m<n is the left child
of the rationalm/n−m, whereas ifm>n it is the right child ofm−n/n. Equivalently, a rational
m/n has left childm/m+n and right childn+m/n. This shows how to generate the Calkin-Wilf
tree:

rats6 :: [Rational]
rats6 = bf (unfoldt step(1,1))

where step(m,n) = (m/n,(m,m+n),(n+m,n))

6 Jeremy Gibbons, David Lester and Richard Bird

x

x−1 1/(1/x−1)

1/(1/x +1) x+1

(a)

x = x0 x′0 = 1/2k+1−x

x−1 = x1 x′1 = 1/2k−x

x−k = xk x′k = 1/k+1−x

y = 1/(1/x−k−1)

(b)

Fig. 3. The neighbours (a) and successor (b) of an elementx in the Calkin-Wilf tree.

5 Iterating through the rationals

However, there is an even better compensation for the loss ofthe ordering property in
moving from the Stern-Brocot to the Calkin-Wilf tree: it becomes possible to deforest the
tree altogether, and generate the rationals directly, maintaining no additional state beyond
the ‘current’ rational. This startling observation is due to Moshe Newman (Newman, 2003).
In contrast, it is not at all obvious how to do this for the Stern-Brocot tree; the best we can
do seems to be to deforest the tree as far as its levels, but this still entails additional state of
increasing size.

We will generate the rationals using theiterateoperator, computing each fromthe previous
one.

iterate :: (a→ a)→ a→ [a]

iterate f x= x : iterate f (f x)

It is clear how to do this in some cases; for example, ifm/n is a left child, thenm<n, the
parent ism/n−m, and the successor is the right child of the parent, namelyn/n−m. In terms
of x = m/n < 1, the parent is 1/ (1/x− 1), and the successor is the right child of this, or
1+1/ (1/x−1) = 1/1−x. (The relationship between a node and its possible neighbours is
illustrated in Figure 3(a).)

More generally,x and its successorx′ have a more distant ancestor in common. This
situation is illustrated in Figure 3(b). Here,x0 = x is a right child of a parentx1 = x−1,
itself the right child ofx2 = x1−1 = x−2, and so on up toxk = x−k, which is a left child.
Thereforexk <1, and sok = bxc, the integer part ofx. Elementxk is the left child of the
common ancestory= 1/ (1/x−k−1), whose right child isx′k = 1/1−(x−k) = 1/k+1−x. Element
x′k has left childx′k−1 = 1/ 1/x′k+1 = 1/k+2−x, which has left childx′k−2 = 1/k+3−x, and so on
down tox′ = x′0 = 1/2×k+1−x = 1/bxc+1−{x} (where{x}= x−bxc is the fractional part ofx),
which is the successor ofx.

The formulax′ = 1/bxc+1−{x} for the successor ofx even works in the last remaining case,
whenx is on the right boundary andx′ on the left boundary one level lower: thenx is an
integer, sobxc = x and{x}= 0, and indeedx′ = 1/bxc+1−{x}. This motivates the following

Functional pearl 7

enumeration of the rationals:

rats7 :: [Rational]
rats7 = iterate next1
next x= recip(fromInteger n+1−y) where (n,y) = properFraction x

Each term is generated from its predecessor with a constant number of rational arithmetic
operations. (The Haskell standard library functionsproperFractionand recip take x to
(bxc,{x}) and1/x, respectively.)

Could there be any simpler way to enumerate the positive rationals?
Calkin and Wilf (Calkin & Wilf, 2000) discuss some additional properties of this enumer-

ation. It is not hard to show that the numerator of the successor next xof a rationalx is the
denominator ofx, so in fact the sequence of numerators 1,1,2,1,3,2,3. . . determines the
sequence of rationals. This sequence is actually the solution to a natural counting problem:
the ith element, starting from zero, counts the number of ways to write i in a redundant
binary representation in which each digit may be 0, 1 or 2. Forexample, the fourth element
is 3, and indeed there are three such ways of writing 4, namely100, 20 and 12. Dijkstra
also explored this sequence (Dijkstra, 1982a; Dijkstra, 1982b), which he calledfusc; he
showed, among other things, thatfusc n= fusc n′ wheren′ is the bit-reversal ofn — another
connection with bit-reversal permutations.

Of course, it is not difficult to generate all the rationals, zero and negative as well as
positive, in the same way — zero is a special initial case, andafter that the positive rationals
alternate with their negations:

rats8 :: [Rational]
rats8 = iterate next′ 0

where next′ 0 = 1
next′ x | x>0 = negate x

| otherwise= next(negate x)

6 The continued fraction connection

Some additional insights into these algorithms for enumerating the rationals maybe obtained
by considering the continued fraction representation of the rationals. We write the finite
continued fraction:

a0 +
1

a1 +
1

· · ·+
1
an

as the sequence of integer coefficients[a0,a1, . . . ,an]. For example,3/4 is 0+1/(1+1/3), so
is represented by[0,1,3]. Every rational has a unique normal form as aregular continued
fraction; that is, as a finite sequence[a0,a1, . . . ,an] under the constraints thatai >0 for i >0
and thatan > 1 if n> 0. Figure 4 shows the first few levels of the Calkin-Wilf tree with
rationals expressed as continued fractions.

We have shown that the positive rationals are the iterates ofthe function takingx to
1/bxc+1−{x}, whose computation requires a constant number of arithmetic operations on
rationals. Division is required in order to computebxc. However, if we represent rationals

8 Jeremy Gibbons, David Lester and Richard Bird

[1]

[0,2] [2]

[0,3] [1,2] [0,1,2] [3]

[0,4] [1,3] [0,1,1,2] [2,2] [0,2,2] [1,1,2] [0,1,3] [4]

Fig. 4. The first few levels of the Calkin-Wilf tree, as continued fractions.

by regular continued fractions, then this division can be avoided: the integer part of a rational
is simply the first term of the continued fraction. In fact, most of the required operations
are easy to implement: the fractional part is obtained by setting the first term to zero,
incrementing is a matter of incrementing the first term, and reciprocating either removes a
leading zero (if present) or prefixes a leading zero (if not).Only negation is not so obvious.
However, it turns out that a straightforward case analysis suffices, as the reader may check:

negatecf[n0] = [−n0]

negatecf[n0,2] = [−n0−1,2]

negatecf(n0 : 1 :n2 : ns) = (−n0−1) : (n2 +1) :ns
negatecf(n0 : n1 :ns) = (−n0−1) : 1 :(n1−1) :ns

Given this implementation of negation, it is straightforward to derive the following data
refinement ofrats7. That is, ifc is the continued fraction representation of rationalx, then
nextcf cis the continued fraction representation ofbxc+1−{x}.

type CF = [Integer]
rats9 :: [CF]

rats9 = iterate(recipcf ◦nextcf) [1]

where nextcf [n0] = [n0 +1]

nextcf [n0,2] = [n0,2]

nextcf(n0 : 1 :n2 :ns) = n0 : (n2 +1) :ns
nextcf(n0 :n1 : ns) = n0 : 1 :(n1−1) :ns
recipcf (0 :ns) = ns
recipcf ns = 0 :ns

For example, consider the third clause fornextcf. If x is represented byc = n0 : 1 :n2 : ns,
thenbxc = n0, and{x} is represented by 0 : 1 :n2 : ns; this negates to(−1) : (n2 + 1) : ns,
which when increased byn0 +1 yieldsn0 : (n2 +1) :ns.

This uses a constant number of arbitrary-precision integeradditions and subtractions per
term, but no divisions or multiplications. Of course, the result will be a list of continued
fractions. These can be converted to rationals with the following function:

cf2rat:: CF→ Rational
cf2rat= mkRat◦ foldr op(1,0)

where op m(n,d) = (m×n+d,n)

Functional pearl 9

This uses additions and multiplications linear in the size of the continued fraction, but again
no divisions (because coprimality of the pairs(n,d) is invariant underop m).

An additional thing that strikes the observer here is that the coefficients of the continued
fractions on every level of the Calkin-Wilf tree sum to the same value, which is also the
depth of that level. This is easy to justify when one considers the translation of Figure 3
to continued fractions: an elementx has right childx+ 1 (and incrementing a continued
fraction is a matter of incrementing the first term, and henceincrementing the sum) and left
child 1/ (1/x +1) (and reciprocating a continued fraction is a matter of either prefixing or
removing a leading zero, neither of which changes the sum). As a corollary, note that there
are exactly 2k−1 regular positive continued fractions that sum tok.

Graham, Knuth and Patashnik (1994, §6.7) present a connection between the continued-
fraction Stern-Brocot tree and Euclid’s algorithm; we translate their observations here to
the Calkin-Wilf tree. They show that the path to an elementx in the tree is directly related
to the continued fraction ofx: if the path tox is LanRan−1Lan−2 · · ·Ra0, thenx is represented
by the continued fraction[a0,a1, . . . ,an+1] (which is not regular ifan = 0, but normalizes
then to[a0,a1, . . . ,an−1 +1]). For example, the rational3/4 appears at the end of the path
L0R2L1R0, so has the continued fraction representation[0,1,2,0+1], which normalizes to
[0,1,3] as expected.

This view of paths, in which consecutive steps in the same direction are grouped to-
gether, conforms to the usual presentation of Euclid’s algorithm using division instead of
subtraction:

gcd :: (Integer, Integer)→ Integer
gcd(m,n) = if m<n then gcd(m,nmodm) else

if m>n then gcd(mmodn,n) else m

Each modulus computation casts out a certain number of multiples of the modulus, which
corresponds in the Calkin-Wilf tree to a certain number of consecutive steps in the same
direction. Graham, Knuth and Patashnik’s observation therefore demonstrates a connection
between the number of terms in the continued fraction representation ofm/n and the number
of steps taken to computegcd(m,n) by Euclid’s division-based algorithm.

Acknowledgements

The authors would like to express their thanks to members andfriends of the Algebra
of Programming group at Oxford (especially Roland Backhouse, Sharon Curtis, Graham
Hutton, Andres Löh and Bruno Oliveira), Cristian Calude, and the anonymous JFP referees,
who made numerous suggestions for improving the presentation of this paper.

We would especially like to thank Boyko Bantchev, who in a personal communication
showed us an alternative construction

sb= zipW mkRat(t,u)

where t = Node(1, t,zipW(uncurry(+)) (t,u))

u = mirror t

of the Stern-Brocot tree, where

zipW f= unfoldt(apply f)
where apply f (Node(a, t,u),Node(b,v,w)) = (f (a,b),(t,v),(u,w))

10 Jeremy Gibbons, David Lester and Richard Bird

and

mirror = foldt switchwhere switch(a, t,u) = Node(a,u, t)

That is, the denominator tree is the mirror image of the numerator tree; the numerator tree
has 1 at the root, itself as its left child, and the element-wise sum of the numerator and
denominator trees as its right child.

Boyko Bantchev and Cristian Calude brought to our attentionwork by D. N. Andreev
(n.d.) and Shen Yu-Ting (1980), respectively. They define yet another enumeration of the
positive rationals; although neither mentions trees, theydescribe in effect the construction

rats10 :: [Rational]
rats10 = bf (unfoldt step(1,1))

where step(m,n) = (m/n,(n+m,n),(n,n+m))

The elements on each level are the same as in the Stern-Brocotand Calkin-Wilf trees, but
a different order again; like the Stern-Brocot tree, this tree also does not give rise to an
iterative enumeration of the rationals.

We would never have embarked upon this problem at all withoutthe inspiration of Aigner
and Ziegler’s beautiful book (Aigner & Ziegler, 2004), promoting, among others, the elegant
work of Calkin and Wilf (Calkin & Wilf, 2000) and Newman (Newman, 2003). The code
is formatted with Andres Löh’s and Ralf Hinze’s wonderful lhs2TEX.

References

Aigner, Martin, & Ziegler, Günter M. (2004).Proofs from The Book. Third edn. Springer-Verlag.

Andreev, D. E.On a remarkable enumeration of the positive rational numbers. In Russian. Available
at ftp://ftp.mccme.ru/users/vyalyi/matpros/i2126134.pd f.zip .

Bird, Richard, Gibbons, Jeremy, & Jones, Geraint. (1999). Program optimisation, naturally.Pages
13–21 of:Davies, Jim, Roscoe, A. W., & Woodcock, Jim (eds),Millenial perspectives in computer
science. Palgrave.

Calkin, Neil, & Wilf, Herbert. (2000). Recounting the rationals. American mathematical monthly,
107(4), 360–363. http://www.math.upenn.edu/˜wilf/website/recounting.
pdf .

Dijkstra, Edsger W. (1982a). EWD 570: An exercise for Dr R. M.Burstall.Pages 215–216 of: Selected
writings on computing: A personal perspective. Springer-Verlag.

Dijkstra, Edsger W. (1982b). EWD 578: More about function ‘fusc’. Pages 230–232 of: Selected
writings on computing: A personal perspective. Springer-Verlag.

Graham, Ronald L., Knuth, Donald E., & Patashnik, Oren. (1994). Concrete mathematics: A founda-
tion for computer science. Second edn. Addison-Wesley.

Hinze, Ralf. (2000). Perfect trees and bit-reversal permutations.Journal of functional programming,
10(3), 305–317.

Knuth, Donald E. (1998).The art of computer programming. Second edn. Vol. 3. Addison-Wesley.

Newman, Moshe. (2003). Recounting the rationals, continued. Credited inAmerican mathematical
monthly, 110, 642–643.

Thue, Axel. (1912). Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.Skrifter
udgivne af Videnskabs-Selskabet i Christiana, 1, 1–67. Reprinted inSelected Mathematical Papers
of Axel Thue, Universitetsforlaget, Oslo, 1977, p413–477.

Yu-Ting, Shen. (1980). A ‘natural’ enumeration of non-negative rational numbers.American mathe-
matical monthly, 87(1), 25–29.

