Under consideration for publication in J. Functional Pragnming 1

FUNCTIONAL PEARL
Enumerating the Rationals

Jeremy Gibboris David Lestef and Richard Bird
*University of Oxford and University of Manchester

1 Introduction

Every lazy functional programmer knows about the followapgproach to enumerating the
positive rationals: generate a two-dimensional matrixiginite list of infinite lists), then

traverse its finite diagonals (an infinite list of finite list&ach row of the matrix has the
positive rationals with a given denominator, and each colthmse with a given numerator:

1/12/13/1...m/1...
1/22/23/2...m/2...

1/n2/n3/n...m/n...

Since each row is infinite, the rows cannot simply be con@desh However, each of the di-
agonals from upper rightto lower left, containing ratianaith numerator and denominator
of a given sum, is finite, so these can be concatenated:

rats; :: [Rational
rats; = concat(diags[["n | m«— [1..]]|n+<[1..]])
diags= diags []
where diags xss(ys:ysg = map head xsgliags (ys: map tail xs$ yss

Equivalently, one can deforest the matrix altogether, arkgate the diagonals directly:

rats, :: [Rational
rats, = concat][Vg_m | m« [1..d—1]] | d « [2..]]

All very well, but the resulting enumeration of the positiationals contains duplicates —
in fact, infinitely many duplicates of every rational.

One could enumerate the rationals without duplicationraatly, by filtering the co-
prime pairs from those generated as above. In this papegveywve explain an elegant
technique for enumerating the positive rationdigectly, without duplicatesMoreover,
we show how to do so as a simpteration, generating each element of the enumeration
from the previous one alone, with constant cost (in termaafilber of arbitrary-precision
simple arithmetic operations) per element. Best of ally#salting programs are extremely
simple — simpler even than the two programs above. The mattiesmh results are not
new (Calkin & Wilf, 2000; Newman, 2003); however, we belighat they deserve wider

2 Jeremy Gibbons, David Lester and Richard Bird

appreciation in the functional programming community. iBes, the exercise provides
some compelling examples of unfolds on infinite trees.

2 Greatest common divisor

The diagonalization approach to enumerating the ratiage#lased on generating the pairs
of positive integers. The essence of the problem with thizr@gch is that the natural
correspondence via division between integer pairs ananals is not a bijection: although
every rational is represented, many integer pairs reptéBersame rational. Obviously,
therefore, enumerating the rationals by generating tlegertpairs yields duplicates.

Equally obviously, a solution to the problem can be obtaibgdinding a simple-to-
enumerate set with a simple-to-compute bijection to themats. Both constraints on
simplicity are necessary. The naturals are simple to enat@eand there clearly exists a
bijection between the naturals and the rationals; but tijggtion is not simple to compute.
On the other hand, there is a simple bijection from the ratfi®to themselves, but that still
begs the question of how to enumerate the rationals.

The crucial insight is the relationship between rationald greatest common divisors.
Recall Euclid’s subtractive algorithm for computing gessitcommon divisor:

gcd :: (Integer,Intege) — Integer
ged(m,n) = if m<nthen ged(m,n—m) else
if m>nthengcd(m—n,n) elsem

Consider the following ‘instrumented version’, that retsinot only the greatest common
divisor, but also a trace of the execution by which it is coteplu

igcd :: (Integer, Integer) — (Integer, [Bool])
iged (m,n) = if m< nthen step Fals€igcd (m,n—m)) else
if m>nthen step True (igcd (m—n,n)) else (m,[])
wherestep b(d,bs) = (d,b:bs)

Given a pair(m, n), the functionigcd returns a paitd, bs), whered is gcd (m, n) andbsis
the list of booleans recording the ‘execution path’ — thasifist of the branches taken —
when evaluatingicd (m,n). Let us introduce the functiopgcd so thatbs= pgcd(m,n).
These two pieces of data together are sufficient to inverttimeputation and reconstruct
mandn — that is, given:

ungcd: (Integer,[Bool]) — (Integer, Integen
ungcd(d, bs) = foldr undo(d,d) bs
whereundo Falsgm,n) = (m,n+m)
undo Trugm,n) = (m+n,n)

thenungcdandigcd are each other’s inverses, and so there is a bijection batimésger
pairs(m,n) and their image$d, bs) underigcd.

Now, gcd (m, n) is exactly what is superfluous in the mapping frémn) to the rational
", andpged(m, n) is exactly what is relevant in this mapping, since two péinsn) and
(m',n’) represent the same rational iff they have the spouet

My =" <= pged(mn) = pged(m',n')

Functional pearl 3

gy

/\2

s % 3, 3
/ N\ / N\ VRN / N\
Ya %I ¥ %, Ys % % 4

Fig. 1. The first few levels of the Stern-Brocot tree.

Moreover,pgcdis surjective: every finite boolean sequence ispgedof some pair. The
functionungcdgives a constructive proof of this, by reconstructing suaing Therefore we
can enumerate the rationals by enumerating the finite bnslequences: the enumeration
is easy enough, and the bijection to the rationals is singp®mpute, viaingcd

ratss :: [Rational
ratss = map(mkRat curry ungcdl) boolseqgs
boolseqs =1]:[b:bs|bs«< boolseqsh — [False True]]

mkRat(m,n) =",

3 The Stern-Brocot tree

A standard way of representing a mapping from finite strings some alphabet is with a
trie: a tree of degree equal to the size of the alphabet, in whiepaiths form the (prefixes
of all the) strings in the domain of the mapping, and the imafgesery string is located in
the tree at the end of the corresponding path (Knuth, 1998e,Th912). In this case, the
alphabetis binary, with the two symbdialseandTrue so the tree is binary too; and every
finite string is in the domain of the mapping, so every nodéettee is the location of some
rational. The first few levels are shown in Figure 1 (the digance of the two pseudo-nodes
labelled%; andYo will be made clear shortly). For exampfrgcd(3,4) is [False True, True],

so the rationa¥/; appears at the end of the pathR R], that is, as the rightmost grandchild
of the left child of the root; the root is labelléd, since(1,1) yields the empty execution
path. This tree turns out to be well-known; Graham, KnuthRBathshnik (1994, 84.5) call
it the Stern-Brocot tregafter its two independent nineteenth-century discogeteenjoys
the following two properties, among many others:

e The tree is an infinite binary search tree, so any finite piias an increasing
inorder traversal.

For example, pruning to include the level witg and®; but nothing deeper yields a tree
with inorder traversal, Y2,%4, Y1, %>, %1, %1, which is increasing.

e Every node is labelled with a ration8t™,..y, the ‘intermediary’ of7;, the label of
its rightmost left ancestor, arfjy, that of its leftmost right ancestor.

4 Jeremy Gibbons, David Lester and Richard Bird

For example, the node labelléd has ancestorg, Y2, Y1, %, Y, of whichY; and¥j are to
the right and the others to the left. The rightmost left atareis %5, and the leftmost right
ancestor/;, and indeed/s = 2t 1. That is why we included the two pseudo-nodés
andYp in Figure 1: they are needed to make this relationship warkdales like'/s and3/l
on the boundary of the tree proper.

The latter property explains how to generate the tree djsesispensing with the se-
guences of booleans. The seed from which the tree is growsisterof its rightmost left
and leftmost right ancestors, initially the two pseudo-e®d he tree root is their interme-
diary, which then acts as one half of the seed for each subtree

dataTree a = Node(a, Tree aTree g

foldt f (Node(a,x,y)) =f (a,foldtf x foldt f y)

unfoldt f x =let (a,y,z) = f xin Node(a, unfoldt f yunfoldtf 2
ratss :: [Rational

ratsq = bf (unfoldt ste((0, 1), (1,0)))

wherestep(l,r) =letm=adjlrin
(mkRat m(l,m), (m,r))
adj (m,n) (m',n) = (m+m,n+n)
bf = concab foldt glue
whereglue(a,xsys) = [a] : zipWith(++) xs ys

Alternatively, one could deforest the tree itself and gatesthe levels directly. Start with the
first level, consisting of the two pseudo-nodes, and repiatesert new node@*"”{/nm
between each existing adjacent g ™/y.

ratss :: [Rational

ratss = concat(unfolds infill[(0,1),(1,0)])
unfoldsf a =let (b,a) =f ainb:unfoldsf &
infill xs = (map mkRat ygnterleave xs ys

whereys= zipWith adj xtail xs)
interleave(x: xs) ys= x: interleave ys xs
interleave]] [1=1]

An additional interesting property of the Stern-Brocottie that it forms the basis for
a number representation system (credited by Graham, KmatiPatashnik to Minkowski
in 1904, exactly a century ago at the time of writing). Eveatianal is represented by the
unique finite boolean sequence recording the path to it inréee An irrational number is
represented by the unique infinite boolean sequence the¢ges on where it belongs; for
example, < e< 3, soe has a representation startifijue, True, False True, .. .].

4 The Calkin-Wilf tree

The Stern-Brocot tree is the trie of the mapping from boolseguencepgcd (m,n) to
rationals™)y,. But since all boolean sequences appear in the domain ofrtiaing (the
tree is complete), so do their reverses, and we might justedisowild the mapping from
the reverse opgcd(m, n) to the same rationdl,. We call this tree the Calkin-Wilf tree,
after its two explorers (Calkin & Wilf, 2000), whose work isgpnoted as one of Aigner and

Functional pearl 5

1/1

/\2

2 el

Y % %3 ¥
/ N\ / \ /\ / N\
Ya Ya %5 % %5 % ¥ %

Fig. 2. The first few levels of the Calkin-Wilf tree.

Ziegler'sProofs from The Book2004, Chapter 16). The first few levels of the Calkin-Wilf
tree are shown in Figure 2.

Whereas in the Stern-Brocot tree the path from the root tode fia records the trace
of the computation oficd (m,n), in the Calkin-Wiilf tree it is the patto the rootfrom that
node that records the trace. One might argue that this atientis more natural.

Of course, a given levddof the Calkin-Wilf tree and of the Stern-Brocot tree conthie
same collection of rationals (namely, those on which Elgctidbtractive algorithm takds
steps); but the two collections are generally in a diffeggder: the Calkin-Wilf tree is not
a binary search tree.

In fact, each level of the Calkin-Wilf tree is thst-reversal permutatioriHinze, 2000;
Bird et al,, 1999) of the corresponding level of the Stern-Brocot tFe®.example, if the
elements of the lowest level shown in Figure 1 are numberbihiary 000 to 111 from left
to right, they appear in Figure 2 in the order 0000,010,110,001,101,011,111, which
are the reversals of the binary numbers 000 to 111. Bit-saef the levels arises naturally
from reversal of the paths.

The binary search tree property of the Stern-Brocot tre@peealing, so it is a shame
to lose it. However, the loss has its compensations. For loing,tindexing the tree by
the reverses of the execution paths means that executith@ammon endings, rather
than common beginnings, are grouped together. A consequétiais is that the ancestors
in the Calkin-Wilf tree of a rationdl), record all the states that Euclid’s algorithm visits
when starting at the pajm, n). For example, one execution path of Euclid’s algorithmés th
sequence of pair$,4), (3,1),(2,1),(1,1), and indeed the ancestors in the Calkin-Wilf tree
of %, are%1,%1,%. (Compare this with the Stern-Brocot tree, in which thenedobvious
relationship between parents and children.) Thus, a raltinwith m< n is the left child
of the rational,_m, whereas ifn> nit is the right child of™",. Equivalently, a rational
™ has left childm.n and right child™,. This shows how to generate the Calkin-Wilf
tree:

ratss :: [Rational
ratss = bf (unfoldt step(1,1))
wherestep(m,n) = (", (m,m+n), (n+m,n))

6 Jeremy Gibbons, David Lester and Richard Bird
y=1/Chx—1)

x—1 1/(h—1) / \

X—k=x X, = Yh1-x

N : /

\ /
\ /

/ \ x—1 :\.xl /

/1
Y01 x4l T

X0 %= Yokr1-x
@) ()

Fig. 3. The neighbours (a) and successor (b) of an elerierthe Calkin-Wilf tree.

5 Iterating through therationals

However, there is an even better compensation for the loskeobrdering property in
moving from the Stern-Brocot to the Calkin-Wilf tree: it lmemes possible to deforest the
tree altogether, and generate the rationals directly, taiging no additional state beyond
the ‘current’ rational. This startling observation is daétoshe Newman (Newman, 2003).
In contrast, it is not at all obvious how to do this for the &t8rocot tree; the best we can
do seems to be to deforest the tree as far as its levels, bugtithentails additional state of
increasing size.

We will generate the rationals using fkerateoperator, computing each from the previous
one.

iterate : (a—a)—a—|[a]
iterate f x= x:iterate f (f x)

It is clear how to do this in some cases; for exampl&}fis a left child, therm< n, the
parent is"/n_m, and the successor is the right child of the parent, nafiely. In terms

of x =", < 1, the parent is I (Y% — 1), and the successor is the right child of this, or
141/ (% —1) = Y%1_«. (The relationship between a node and its possible neigistisu
illustrated in Figure 3(a).)

More generallyx and its successof have a more distant ancestor in common. This
situation is illustrated in Figure 3(b). Heng, = x is a right child of a parent; = x— 1,
itself the right child ofx; = x; — 1 =x—2, and so on up t& = x—k, which is a left child.
Thereforexs < 1, and sk = | x|, the integer part ok. Elementx is the left child of the
common ancestyr= 1/ (%« — 1), whose right child is¢, = %1 x_k) = Ykt1-x. Element
X has left childx,_; =1/ l/x’k+1 = Yr2-x, which has left child(,_, = Y%;3-x, and so on
down tox' = X = Yoxki1-x = Yxj+1-{x (Where{x} =x— |x] is the fractional part of),
which is the successor af

The formulax’ =Y 11-{x for the successor ofeven works in the last remaining case,
whenx is on the right boundary and on the left boundary one level lower: th&ns an
integer, so x| = x and{x} =0, and indeed’ = Y|y 1_{x. This motivates the following

Functional pearl 7

enumeration of the rationals:

rats; :: [Rational
rats; = iterate nextl
next x= recip (frominteger n+ 1 —y) where (n,y) = properFraction x

Each term is generated from its predecessor with a constamber of rational arithmetic
operations. (The Haskell standard library functigmeperFractionand recip take x to
(1x],{x}) and¥%, respectively.)

Could there be any simpler way to enumerate the positiverrals?

Calkin and Wilf (Calkin & Wilf, 2000) discuss some additidipaoperties of this enumer-
ation. Itis not hard to show that the numerator of the suazessxt xof a rationalx is the
denominator ok, so in fact the sequence of numerator$,2,1,3,2,3. .. determines the
sequence of rationals. This sequence is actually the saltdia natural counting problem:
theith element, starting from zero, counts the number of waysrtewin a redundant
binary representation in which each digit may be 0, 1 or 2 &xample, the fourth element
is 3, and indeed there are three such ways of writing 4, nat@ly 20 and 12. Dijkstra
also explored this sequence (Dijkstra, 1982a; Dijkstr&32t), which he calledusg he
showed, among other things, thiasc n= fusc il wheren' is the bit-reversal af — another
connection with bit-reversal permutations.

Of course, it is not difficult to generate all the rationalsr@and negative as well as
positive, in the same way — zero is a special initial case adigdl that the positive rationals
alternate with their negations:

ratss :: [Rational
ratsg = iterate next0
wherenext 0 =1
nextx | x>0 = negate X
| otherwise= next(negate X

6 The continued fraction connection

Some additionalinsights into these algorithms for enutirey#he rationals may be obtained
by considering the continued fraction representation efrtitionals. We write the finite

continued fraction:

ag + 1

a;+

1

an
as the sequence of integer coefficidais ay, . . ., an]. For example¥y is 0+1/ (1+Y4), so
is represented b0, 1, 3]. Every rational has a unique normal form asggular continued
fraction; thatis, as a finite sequerieg, a1, . . .,an] under the constraints that> 0 fori >0
and thata, > 1 if n> 0. Figure 4 shows the first few levels of the Calkin-Wilf tre@hw
rationals expressed as continued fractions.

We have shown that the positive rationals are the iterateheofunction takingx to

Yixj+1- 13, whose computation requires a constant number of aritienogterations on
rationals. Division is required in order to computd. However, if we represent rationals

8 Jeremy Gibbons, David Lester and Richard Bird

/ g \
[0.2] 2]
RN e \
[0,3] [1,2] [0,1,2]

/N \ / N\ /\

[0,4] 1,3 [0,1,1,2] [2,2] [0,2,2] [1,1,2] [0,1,3 [4]

Fig. 4. The first few levels of the Calkin-Wilf tree, as contad fractions.

by regular continued fractions, then this division can heded: the integer part of a rational
is simply the first term of the continued fraction. In fact, shof the required operations
are easy to implement: the fractional part is obtained btingethe first term to zero,
incrementing is a matter of incrementing the first term, araiprocating either removes a
leading zero (if present) or prefixes a leading zero (if n@t)ly negation is not so obvious.
However, it turns out that a straightforward case analysdfices, as the reader may check:

negatecf[ng] [—np]

negatecf[ng, 2] [—np—1,2]
negatecfing:1:np:ns)=(—ng—1):(nz+1):n
negatecf(np: ny:ns) (—np—1):1 (nlfl).ns

Given this implementation of negation, it is straightfordidao derive the following data
refinement ofats;. That is, ifc is the continued fraction representation of rationahen
nextcf ds the continued fraction representation &f + 1 — {x}.

type CF = [Integer]

ratsy:: [CF]
ratsy = iterate (recipcfo nextcf) [1]
wherenextcf[ng) =[ng+1]

nextcf[ng, 2] =[np, 2]
nextcf(ng:1:n2:ns) =ng:(n2+1):ns
nextcf(ng:ni:ns) =np:1l:(n1—1):ns
recipcf (0:ns) =ns
recipcf ns =0:ns

For example, consider the third clause faaxtcf If X is represented bg=np:1:n2:ns
then|x| = ng, and{x} is represented by 0: h3:ns this negates t¢—1): (n2+1):ns
which when increased by + 1 yieldsng: (n2+ 1) :ns

This uses a constant number of arbitrary-precision intagditions and subtractions per
term, but no divisions or multiplications. Of course, theuk will be a list of continued
fractions. These can be converted to rationals with theatig function:

cf2rat:; CF — Rational
cf2rat= mkRat foldr op (1, 0)
whereop m(n,d) = (mx n+d,n)

Functional pearl 9

This uses additions and multiplications linear in the sizhe continued fraction, but again
no divisions (because coprimality of the pairsd) is invariant undeop m.

An additional thing that strikes the observer here is thatibefficients of the continued
fractions on every level of the Calkin-Wilf tree sum to thergavalue, which is also the
depth of that level. This is easy to justify when one considee translation of Figure 3
to continued fractions: an elemexhas right childx+ 1 (and incrementing a continued
fraction is a matter of incrementing the first term, and hénceementing the sum) and left
child 1/ (Y +1) (and reciprocating a continued fraction is a matter of eighefixing or
removing a leading zero, neither of which changes the susa @orollary, note that there
are exactly 81 regular positive continued fractions that sunkto

Graham, Knuth and Patashnik (1994, 86.7) present a coondmitween the continued-
fraction Stern-Brocot tree and Euclid’s algorithm; we state their observations here to
the Calkin-Wilf tree. They show that the path to an elemeintthe tree is directly related
to the continued fraction of. if the path tox is L3 Ré-1] @-2...R% thenx is represented
by the continued fractiofeg, as, . ..,an+ 1] (which is not regular ifi, = 0, but normalizes
then to[ap, a, ...,an_1 + 1]). For example, the rationdly appears at the end of the path
L°R2L'RY, so has the continued fraction representaiya, 2,0+ 1], which normalizes to
[0,1,3] as expected.

This view of paths, in which consecutive steps in the samection are grouped to-
gether, conforms to the usual presentation of Euclid’sritlym using division instead of
subtraction:

gcd :: (Integer, Integen — Integer

gcd(m,n) = if m<nthen ged (m, nmodm) else

if m>nthen gcd (mmodn,n) elsem

Each modulus computation casts out a certain number of pledtpf the modulus, which
corresponds in the Calkin-Wilf tree to a certain number afsaxutive steps in the same
direction. Graham, Knuth and Patashnik’s observatiorefioee demonstrates a connection
between the number of terms in the continued fraction regtasion of"), and the number
of steps taken to compuged (m,n) by Euclid’s division-based algorithm.

Acknowledgements

The authors would like to express their thanks to membersfiaends of the Algebra
of Programming group at Oxford (especially Roland Backleo@haron Curtis, Graham
Hutton, Andres Léh and Bruno Oliveira), Cristian Calude] e anonymous JFP referees,
who made numerous suggestions for improving the presentatithis paper.
We would especially like to thank Boyko Bantchev, who in agoeeral communication
showed us an alternative construction
sh=zipW mkRatt, u)
wheret = Node(1,t,zipW (uncurry(+)) (t,u))
u = mirror t

of the Stern-Brocot tree, where

zipW f= unfoldt(apply f)
whereapply f (Node(a, t,u),Node(b,v,w)) = (f (a,b), (t,v), (u,w))

10 Jeremy Gibbons, David Lester and Richard Bird

and
mirror = foldt switchwhereswitch(a,t,u) = Node(a, u,t)

That is, the denominator tree is the mirror image of the natoetree; the numerator tree
has 1 at the root, itself as its left child, and the elemersievdum of the numerator and
denominator trees as its right child.

Boyko Bantchev and Cristian Calude brought to our attentiork by D. N. Andreev
(n.d.) and Shen Yu-Ting (1980), respectively. They defineap®ther enumeration of the
positive rationals; although neither mentions trees, thescribe in effect the construction

ratso :: [Rational
ratsio = bf (unfoldt step(1,1))
wherestep(m,n) = (T, (n+m.n), (n,n+m)

The elements on each level are the same as in the Stern-Brod@@alkin-Wilf trees, but
a different order again; like the Stern-Brocot tree, theetalso does not give rise to an
iterative enumeration of the rationals.

We would never have embarked upon this problem at all wittimiinspiration of Aigner
and Ziegler's beautiful book (Aigner & Ziegler, 2004), protimg, among others, the elegant
work of Calkin and Wilf (Calkin & Wilf, 2000) and Newman (Newan, 2003). The code
is formatted with Andres Loh's and Ralf Hinze’s wonderfus HIgX.

References

Aigner, Martin, & Ziegler, Giinter M. (2004)Proofs from The BooKThird edn. Springer-Verlag.

Andreev, D. EOn a remarkable enumeration of the positive rational nurabker Russian. Available
atftp://ftp.mccme.ru/users/vyalyi/matpros/i2126134.pd f.zip

Bird, Richard, Gibbons, Jeremy, & Jones, Geraint. (1999pgRam optimisation, naturallyPages
13-21 of:Davies, Jim, Roscoe, A. W., & Woodcock, Jim (edd)llenial perspectives in computer
science Palgrave.

Calkin, Neil, & Wilf, Herbert. (2000). Recounting the ratials. American mathematical monthly
107(4), 360-363. http://www.math.upenn.edu/ wilf/website/recounting.
pdf .

Dijkstra, Edsger W. (1982a). EWD 570: An exercise for Dr RB¥rstall.Pages 215-216 of: Selected
writings on computing: A personal perspecti&pringer-Verlag.

Dijkstra, Edsger W. (1982b). EWD 578: More about functifust. Pages 230-232 of: Selected
writings on computing: A personal perspecti&pringer-Verlag.

Graham, Ronald L., Knuth, Donald E., & Patashnik, Oren. f98oncrete mathematics: A founda-
tion for computer sciencé&econd edn. Addison-Wesley.

Hinze, Ralf. (2000). Perfect trees and bit-reversal peatinns.Journal of functional programming
10(3), 305-317.

Knuth, Donald E. (1998)The art of computer programmin&econd edn. Vol. 3. Addison-Wesley.

Newman, Moshe. (2003). Recounting the rationals, contin@redited inAmerican mathematical
monthly 110, 642—643.

Thue, Axel. (1912). Uber die gegenseitige Lage gleicheteTgewisser ZeichenreiherSkrifter
udgivne af Videnskabs-Selskabet i Christighd—67. Reprinted iSelected Mathematical Papers
of Axel ThueUniversitetsforlaget, Oslo, 1977, p413-477.

Yu-Ting, Shen. (1980). A ‘natural’ enumeration of non-ndégarational numbersAmerican mathe-
matical monthly87(1), 25-29.

