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Abstract. The selection monad has proven useful for modelling exhaus-
tive search algorithms. It is well studied in the area of game theory as
an elegant way of expressing algorithms that calculate optimal plays
for sequential games with perfect information; composition of moves is
modeled as a ‘product’ of selection functions. This paper aims to expand
the application of the selection monad to other classes of algorithms.
The structure used to describe exhaustive search problems can easily be
applied to greedy algorithms; with some changes to the product function,
the behaviour of the selection monad can be changed from an exhaus-
tive search behaviour to a greedy one. This enables an algorithm design
framework in which the behaviour of the algorithm can be exchanged
modularly by using different product functions.
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1 Introduction

In 2010 Mart́ın Escardó and Paulo Oliva first describe the selection monad in
their paper Selection Functions, Bar Recursion, and Backward Induction [2],
where they explain bar recursion in terms of sequential games. They use the
selection monad to model bar recursion and further show how sequential games
can be solved using the selection monad. In subsequent work [3], they relate the
selection monad to several different applications, such as Double-Negation Shift
in the field of logic and proof theory and the Tychonoff Theorem in the field of
topology.

Selecting a candidate for a solution out of a collection of options, based on
some property function that tells us how good a candidate is, is a recurring pat-
tern in computer science. We can use selection functions of type (A -> R) -> A
to model this decision process. For example, when playing a sequential game,
making a move means deciding for a particular move out of all possible moves.
We can imagine a property function that somehow is able to compute how good
each move is, and we then select the best one. The general idea when using
selection functions is to model a problem in terms of a list of selection func-
tions [(A -> R) -> A]. These selection functions then can be combined into
a single selection function ([A] -> R) -> [A] with the help of the product
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for selection functions. Further, it turns out that these selection functions form
a monad, and that the product for selection functions is given by the monadic
sequence function. The product for selection functions hereby models an exhaus-
tive search algorithm, that tries out every possible solution to the problem and
then selecting the overall best one. This can be applied to find optimal strategies
for sequential games, where each individual selection function is modeling the
choice of which move to play next, and the sequential composition of all this
individual choices computes an optimal strategy for this game.

In this paper we describe alternative product implementations for selec-
tion functions, providing different computational behaviour. With these differ-
ent product implementations we are able to model both greedy algorithms and
limited-lookahead search algorithms. This enables us to extend the application
of selection functions to a wider range of problems.

In Sect. 2 we introduce selection functions in greater detail and provide
an intuition for and examples of the product for selection functions. Then in
Sect. 3 we provide an alternative product implementation that models a greedy
behaviour, and in Sect. 4 we will have a look at some examples of greedy algo-
rithms that are modeled with the greedy product for selection functions. In Sect.
6 we introduce another variant of the product of selection function that limits
the number of steps it looks into the future. We conclude this paper and discuss
potential future work in Sect. 8.

2 Selection Functions

Selection functions summarise the process of selecting an individual object out
of a collection of objects. Selecting something means making a choice, deciding
in favour of one object over all the other objects of the collection we are choosing
from. So in order to make a choice we need to be able to judge these objects,
and based on that judgement, decide on a particular object out of a set of all
possibilities.

As an example, let’s say we want to buy a car. Therefore we have a collection
of all available cars on the market, and we want to buy the best one. “Best” in
this case depends heavily on our personal perspective on cars, so let’s define
“best” as “fastest”. Then our personal selection process would be: look up top
speeds of every car in our collection of all available cars, and select the one
with the highest top speed. We can model this in the functional programming
language Haskell as follows:

myChoice :: Car
myChoice = maxWith allCars topSpeed

maxWith :: Ord b => [a] -> (a -> b) -> a
topSpeed :: Car -> Int
allCars :: [Car]

Here, maxWith is the function that selects an element from the given list to max-
imise the given property function. Of course, top speed is not the only property
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one might take into account when buying a car; maxWith abstracts from the
property used for judging.

Given elements of type A and properties of type R, a selection function takes a
property function p :: A -> R for judging elements, and selects some element
of type A that is optimal according to the given property function. A good
example of such a selection function is the maxWith from above, partially applied
to a collection of objects, or the complementary minWith function. Escardó and
Oliva studied these selection functions and connected them to different research
areas, including game theory and proof theory [3].

2.1 Pairs of Selection Functions

As a next step, we want to look at how to combine two selection functions into
a new bigger selection function. We will call this pairing of selection functions.
To be consistent with the notation of previous literature we first define a type
synonym for selection functions:

type J r a = (a -> r) -> a

One way of thinking of a function of type J R A is as embodying a nonempty
collection of A elements: when told how to judge individual elements by R-values,
the function can deliver an optimal element by that measure.

Now we define the pair operator combining two selection functions to make
a new one [3]:

pair :: J r a -> J r b -> J r (a,b)
pair f g p = (a,b)

where
a = f (\x -> p(x,g(\y -> p(x,y))))
b = g (\y -> p(a,y))

This new selection function selects (A,B) pairs, and therefore awaits a property
function p :: (A,B) -> R that judges pairs. Suppose we are given such prop-
erty function; then an (A,B) pair needs to be produced as output. To do so, we
need to extract an A out of the first selection function f; we do so by constructing
a new property function that judges As. However, we only have something that
judges (A,B) pairs. The trick is, for every x :: A we would like to judge, we
extract a corresponding y :: B out of the second selection function and the
pair (x,y) with the given property function p. Once we have found our optimal
a, we can use it in the same way to select a corresponding b out of the selection
function g and returning both as a pair.

So intuitively, this pair operator for selection functions combines two given
selection functions in a way that the resulting selection function produces a
pair that is optimal for a property function that judges these pairs. The two
elements of this pair are extracted from the given selection functions in a way
that they are always judged in the context of a full pair. From the perspective of
selection functions as embodying a collection of objects, the pair for two selection
functions embodies the cartesian product of the two collections.
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2.2 Password Example

Let’s consider the following example, where we use the product of selection func-
tions to crack a secret password. This secret password consists of two different
tokens, a secret number between 1–9 and a secret character between a–z:

type Password = (Int, Char)

We are also given a property function that tells us if a given password is cor-
rect. We will treat this property function as a black box and not depend on its
implementation details:

p :: Password -> Bool
p (a,b) = a == 7 && b == 'p'

In order to crack this password we will now define two individual selection func-
tions for the two different parts of the password:

selectInt :: Ord r => J r Int
selectInt p = maxWith p [1..9]

selectChar :: Ord r => J r Char
selectChar p = maxWith p ['a'..'z']

Note here that both selection functions require a property function p to judge
Ints or Chars individually, which we don’t have at this stage. However, building
the pair with the above defined pair function will result in a combined selection
function that we can apply our property function to, and it indeed calculates
the correct solution:

> pair selectInt selectChar p
---> (7,'p')

(Recall that Haskell defines False < True, so this expression returns a pair that
satisfies p, provided that any of the given pairs does so).

Because the only way to judge each individual component is by the given
property function that judges complete password pairs, the pair function needs
to create new property functions for its selection functions that are able to judge
individual objects in a broader context.

This example fits nicely with the intuition that each selection function already
embodies a set of objects, and that the pair function builds the cartesian product
of these two sets and judges each pair individually and returns an optimal pair.

2.3 Iterated Product of Selection Functions

The next logical step is to expand this from pairs to n-ary products. Unfortu-
nately the standard Haskell type system is too restrictive to allow arbitrarily
typed products of selection functions, and therefore the closest we can get is
combining a list of selection functions for a common element type into a single
selection function [3]:
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product :: [J r a] -> J r [a]
product [] _ = []
product (e : es) p = a : as

where a = e(\x -> p(x : product es (p . (x:))))
as = product es (p . (a:))

This particular implementation of product behaves similarly to the previous
pair function. Given a property function p :: [A] -> R that judges lists, this
function iterates through the list of selection functions in order to extract a
concrete object out of each of them and therefore building a property function
that considers both all previous decisions and all future decisions.

Note that for each recursive call a new property function is created that
prepends the current choice of object via (p . (a:)). Further, to extract an
object out of the current selection function e, a property function is created
that judges each element of the underlying set in context of all possible future
choices by recursively calling product within the property function.

2.4 Dependently Typed Version

Note that in this implementation we are not using the more restrictive type to
our advantage. In contrast to the tuples of the above defined pair operator, the
choice of lists comes with two drawbacks. First, the elements of the list must all
be of the same type and second, lists in Haskell can be of arbitrary length while
tuples are always of a fixed size.

The above presented product implementation does not take advantage of
the first drawback, and assumes the second restriction. It constructs property
functions that always judge elements in context with previous choices and poten-
tial future choices, making the restriction that every element needs to be of the
same type irrelevant and assumes that the given property function is able to
judge lists of the exact same length as the given list of selection functions.

In a dependently typed language we would be able to type this particular
product implementation with a more expressive type that allows heterogeneous
lists that can contain elements of any type and also ensures that each list we are
dealing with has the correct length. An example implementation with this more
expressive type in the programming language Idris is not difficult to construct
[6].

We will later use this less expressive type to our advantage when we have a
look at greedy algorithms, where we omit lookahead into the future.

2.5 Extended Password Example

The previous password example can now easily be extended to make use of the
product function. We now want to crack a password of type String. We know
only that it contains characters from a–z and that its length is 8:

type Password = String
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and we are given a property function as a black box again:

p :: String -> Bool
p x@[_,_,_,_,_,_,_,_] = x == "password"
p _ = undefined

Note that our property function is only defined for Strings of length 8.
We can now utilise the previous selectChar and construct a list that contains

this selection function exactly 8 times, once for each character of the password:

es :: Ord r => [J r Char]
es = replicate 8 selectChar

Utilising the previous product function will calculate the correct solution:

> product es p
---> "password"

This example again fits nicely the previously described intuition, where each
component of the solution can only be judged in context with the previous
selections as well as all possible future selections. This is underlined by the fact
that by design, the property function is only able to judge solutions of the correct
length, while being undefined for inputs of different lengths. The absence of any
exceptions strengthens our intuition, that individual objects are always judged
in full context.

2.6 Selection Functions Form a Monad

Further, Escardó and Oliva show [3] that the type of selection functions forms a
strong monad. This strengthens the intuition that a selection function embodies
a collection of elements.

Selection functions with a fixed property type can be made instance of the
monad class with this bind function:

(>>=) :: J r a -> (a -> J r b) -> J r b
(>>=) e f = \p -> f (e (p . flip f p)) p

and this return function:

return :: a -> J r a
return a = \_ -> a

Intuitively, the monad instance takes care that the underlying set elements are
always judged in context. For e >>= f, we first want to extract an object of type
A out of the given e, and then use f to transform it into a J R B. To extract an
object of type A out of e we need to build a new property function that judges
each element by how well it produces objects of type b by incorporating f into
the new property function.

With J R A being a monad, we can utilise the prelude’s monad functions to
our advantage. Escardó and Oliva claim [3] that their product implementation is
equivalent to the monadic sequence function from the Haskell prelude. A proof
of this is claim is given in the appendix.



132 J. Hartmann and J. Gibbons

2.7 History-Dependent Product of Selection Functions

As an extension to the previous product for selection functions, Escardó and
Oliva introduced [3] a history-dependent version of the product function. It
keeps track of previous decisions and allows therefore for more dynamic selection
functions, that can base the set from which they select on previous decisions:

hProduct :: [a] -> [[a] -> J r a] -> J r [a]
hProduct h [] p = []
hProduct h (e : es) p = a : as

where a = (e h) (\x -> p(x : hProduct (h++[x]) es (p . (x:))))
as = hProduct (h++[a]) es (p . (a:))

This history-dependent version proves useful when modeling sequential games,
in which the moves available at a given stage of the game typically depend on the
previously played moves. The application of the selection monad to sequential
games is already widely studied [1–4,7,8].

2.8 Efficiency Drawbacks of This Implementation

The pair, product, and hProduct implementations introduced above combine
individual selection functions into a single product selection function. In order
to extract the necessary elements out of the individual selection functions, the
required property functions are created so as to always consider previous choices
as well as potential future choices. This models an exhaustive search behaviour,
where every possible combination of objects is judged by a given property func-
tion and the overall favorable combination of objects is then chosen. This results
in an exponential runtime with respect to the number of selection functions to
be combined. This exponential runtime makes the application of the selection
monad infeasible for computing solutions for many problems.

Several methods to cope with this runtime have been explored in the past.
There are several approaches to avoid unnecessary computations. Firstly, the
individual selection functions can be neatly constructed such that they prune
the inspection of their elements in unnecessary cases. Concretely, if the cost
value R by which each object is judged has an upper or lower bound, the search
can be stopped once a solution reaches one of these bounds [5]. Additionally, one
should try to make as little as possible use of the property function, as it always
constructs all possible future objects to judge the current element in context.
One concrete example for this can be to avoid the use of the property function
completely if there is only one element to choose from.

Secondly, the different product variants themselves leave room for improve-
ment. For example, for minimax algorithms [3], a different hProduct function
could implement alpha-beta pruning, which is used in game theory to reduce the
search space when calculating perfect plays for sequential games.

One final flaw with the current implementations of product and hProduct
variants is that they perform a lot of redundant calculations. In particular, each
starts with the first selection function in the list and calculates all possible
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future choices for each internal element. Based on this information it chooses
the object that leads to the best possible future outcome. However, continuing
the recursion, it forgets that it already explored all possibilities from there and
starts the computation all over again, leading to a lot of redundant computations.

For the remainder of this paper, we will focus on different implementations
for the iterated product of selection functions, which will have different computa-
tional behaviour. This will enable us to efficiently express greedy algorithms and
other algorithm classes as products of selection function, and further enable us
to abstract the behaviour of the different algorithms into the product functions.

3 Greedy Algorithms

The product of selection functions as we have seen so far models an exhaustive
search algorithm, exploring all possible combination of objects in the underlying
sets of the selection functions. In this section, we explore a different product for
selection functions. By using the less expressive type of the product function
to our advantage, we are able to modify it in a way that allows us to model a
greedy algorithm behaviour as a product of selection functions.

We previously identified that by choosing lists as container type for the selec-
tion functions, we restrict all the selection functions in the container to be of the
same type. Further, the Haskell list type does not impose any length restrictions
on the input list of property function. In order to model a greedy behaviour we
can use this more general type to our advantage.

Once we require the property function to be defined for partial solutions as
well, we can define a new greedyProduct function that judges the underlying
objects of the selection functions only in the context of previous choices without
caring about potential future choices:

greedyProduct :: [J r a] -> J r [a]
greedyProduct [] p = []
greedyProduct (e : es) p = a : as

where a = e (\x -> p [x])
as = greedyProduct es (p . (a:))

So iterating through the list of selection functions, we extract a value out of
each selection function by building a new property function of type A -> R by
converting each A into a singleton list and then applying our property function
to it. In the recursive call we build a new property function that keeps track of
the previous choices. Note that this definition differs from the product definition
by omitting the recursive call inside the new property function that calculates
all possible future choices. Further, we can also define the corresponding history-
dependent version:

greedyHProduct :: [a] -> [[a] -> J r a] -> J r [a]
greedyHProduct h [] p = []
greedyHProduct h (e : es) p = a : as



134 J. Hartmann and J. Gibbons

where a = (e h) (\x -> p [x])
as = greedyHProduct (h++[a]) es (p . (a:))

Judging the individual objects outside of a global context locally captures the
essence of greedy algorithms. In general, algorithms are called “greedy” when
they perform only a local optimisation at each step. We can now utilise these new
products for selection functions to implement greedy algorithms. The general
idea is to define each individual local step of the greedy algorithm as a selection
function; then the greedy algorithm arises from building the greedy product of
these selection functions. The greedy behaviour is thereby abstracted away into
the product function, enabling us to describe greedy algorithms in a similar way
form to exhaustive search algorithms.

4 Examples of Greedy Algorithms

In this section we look at some examples applying the new greedyProduct
variants to solve problems in a greedy way.

4.1 Password Example

To continue the password example from above in a greedy way, we require a
more sophisticated property function, that is able to judge partial solutions. So
we are now given the following property function, that returns the number of
correctly guessed characters of the password, instead of simply a boolean:

p :: String -> Int
p = length . filter id . zipWith (==) "password"

We can reuse our previously defined selection functions:

es :: Ord r => [J r Char]
es = replicate 8 selectChar

And with the new property function we can utilise the greedyProduct which
will calculate the correct solution:

> greedyProduct es p
--> "password"

With the new property function, we don’t need to know all future possibilities
when determining the correct character at the next position of the password.
We just need to be aware of our previous choices and can then decide greedily
for the character that maximises the property function.
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4.2 Prim’s Algorithm

A textbook example for a greedy algorithm is Prim’s algorithm for finding a
minimal spanning tree for a graph [9]. Given a weighted, undirected graph, a
minimal spanning tree is a subset of edges of the given graph that forms a tree
and is minimal in its weight. The general idea of Prim’s algorithm is to grow a
tree by repeatedly greedily selecting the lightest edge extending the tree (that
is, the lightest edge connected to the tree and not creating a cycle).

To implement Prim’s algorithm in terms of selection functions, we first define
a graph as a list of edges, and an edge as a triple of integers with the first two
elements being the two nodes of the edge and the third element the weight of
the edge:

type Node = Int
type Weight = Int
type Edge = (Node, Node, Weight)
type Graph = [Edge]

Further, we then define a helper function that calculates if a node is part of a
given graph:

nodeOf :: Graph -> Node -> Bool
nodeOf [] _ = False
nodeOf ((x,y,_):xs) n = n == x || n == y || nodeOf xs n

We can then define a function calculating the total weight of a given collection
of edges:

p :: [Edge] -> Weight
p [] = 0
p ((_,_,x):xs) = x + p xs

Further, we then need a function that calculates all edges that can be added to
the tree such that it stays a tree. An edge of the graph is a candidate exactly
if one of its ends is already in the tree, and the other is not. In the initial case,
where there is no tree existing, all edges are potential candidates.

getCandidates :: Graph -> [Edge] -> [Edge]
getCandidates g [] = g
getCandidates g h = filter f g

where
f (x,y,_) = nodeOf h x && not (nodeOf h y) ||

not (nodeOf h x) && nodeOf h y

To build our list of selection functions for a given graph, we want to select the
lightest edge of all possible edges according to our property function. We also
need exactly one fewer selection functions than there are nodes in the original
graph. (where nodes is a function that returns all nodes of a given graph)
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selectEdge :: Ord r => Graph -> [[Edge] -> J r Edge]
selectEdge g = replicate (length (nodes g) - 1) f
where
f x p = minWith p (getCandidates g x)

Now considering the following example graph:

exampleGraph :: Graph
exampleGraph = [(1,2,1),(2,3,5),(2,4,9),(4,5,20),(3,5,1)]

we can form the product of our selection functions with the greedyProduct
function. Applying this to our property function we get a minimal spanning tree
as a result:

greedyHProduct [] (selectEdge exampleGraph) p
---> [(1,2,1),(2,3,5),(3,5,1),(2,4,9)]

4.3 Greedy Graph Walking

In this example, we are given a directed weighted graph and a start node, and we
want to walk a given number of steps in the graph and thereby minimise the cost
of the path we walked. This example will illustrate the different computational
behaviour of the greedy product in comparison to the normal product. We use
the same representation of graphs and edges from the previous example, together
with the property function that can also be used to calculate the cost of a path.
We now define an getCandidates function that, given a graph and the path we
already walked, calculates the possible next edges:

getCandidates :: Graph -> [Edge] -> [Edge]
getCandidates g [] = undefined
getCandidates g [(_,n,_)] = filter (\(x,_,_) -> x == n) g
getCandidates g (_:xs) = getCandidates g xs

Note, that the getCandidates function is undefined for the empty path. There-
fore we are required to have the start edge in the initial path. Next, we define
the list of selection functions. Each selection function takes a history describing
the path that was already walked on the graph, calculating all possible next
edges and selecting the edge with the minimum cost according to the property
function. For our example, we want to walk 3 steps on the graph and therefore
replicate the selection function 3 times.

es :: Ord r => Graph -> [[Edge] -> J r Edge]
es g = replicate 3 f

where f x p = minWith p (getCandidates g x)

Now consider the following graph, as shown in Fig. 1.

exampleGraph :: Graph
exampleGraph = [(1,2,1),(2,3,1),(2,4,5),(3,5,10),

(4,6,1), (6,7,2), (5,7,1)]
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Fig. 1. Example graph

To greedily walk a path on this graph, we can utilise the greedyHProduct
with the initial edge (1,2,1) in the history and our selection functions applied to
the exampleGraph. However, applying a greedy algorithm on this graph, locally
choosing the best available edge at each stage, we won’t get an optimal result:

greedyHProduct [(1,2,1)] (es exampleGraph) p
---> [(1,2,1),(2,3,1),(3,4,10),(5,7,1)]

In contrast, when using the normal product, we do achieve the optimal result
(total cost 9 rather than 13):

hProduct [(1,2,1)] (es exampleGraph) p
---> [(1,2,1),(2,4,5),(4,6,1),(6,7,2)]

This example illustrates that for a graph walking algorithm to work, some insight
about future edges is needed in order to calculate the correct result. When
choosing the edge going out of node 2, we need to look further than the current
edge to detect that going from node 2 to node 3 would lead to an overall worse
outcome. That is, a greedy algorithm doesn’t work.

5 Correctness

While the idea of a greedy algorithm is easy to grasp, proving that a greedy
algorithm solves a given problem turns out to be quite difficult. If we view greedy
algorithms in terms of selection functions, we can state that a greedy algorithm
works if both the greedyProduct and the product functions calculate a result
with the same cost:

p (greedyProduct selectFunc p) = p (product selectFunc p) (1)

and further with the history dependent version with a initial history h0:

p (greedyHProduct h0 selectFunc p) = p (hProduct h0 selectFunc p)
(2)
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In the case of the graph walking example, we can construct a counter example
for which this property does not hold:

p (greedyHProduct [(1,2,1)] (es exampleGraph) p) ==
p (hProduct [(1,2,1)] (es exampleGraph) p)
---> False

p (hProduct [(1,2,1)] (es exampleGraph) p)
---> 9

p (greedyHProduct [(1,2,1)] (es exampleGraph) p)
---> 13

6 Limited Lookahead

While greedy algorithms base their decision on the currently available options
without considering the future, there are use cases where a limited lookahead
into the future improves the result of an algorithm, without needing to go as
far as exhaustive search. We can alter the product further to represent such a
limited lookahead. To do so we introduce a limiting parameter to the product and
distinguish the behaviour of the product depending on whether we reached the
maximum lookahead depth. When building the property function for judging
the individual underlying elements of a selection function, we decrement the
lookahead depth in the recursive call.

limProduct :: Int -> [J r a] -> J r [a]
limProduct i [] p = []
limProduct i (e:es) p | i > 0 = a : as

| i <= 0 = [a']
where

a = e (\x -> p (x : limProduct (i-1) es (p . (x:))))
as = limProduct i es (p . (a:))
a' = e (\x -> p [x])

Further, we can also introduce a history-dependent version with limited looka-
head:

limHProduct :: Int -> [a] -> [[a] -> J r a] -> J r [a]

limHProduct i h [] p = []

limHProduct i h (e:es) p | i > 0 = a : as

| i <= 0 = [a']

where

a = e h (\x -> p (x : limHProduct (i-1) (h++[x]) es (p . (x:))))

as = limHProduct i (h++[a]) es (p . (a:))

a' = e h (\x -> p [x])
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6.1 Graph Example

Recalling the greedy graph walking example from Sect. 4.3, the greedy algorithm
is not able to produce optimal results for the given example graph in Fig. 1. The
greedy algorithm is limited to local decisions, and therefore unable to detect an
upcoming costly edge. Utilising the limited lookahead product limHProduct now
with a lookahead of 1, we are able to detect the upcoming costly edge 3 → 5
and are able to calculate an optimal solution (total cost of 9) for this example
graph:

shortestPathLimited = limHProduct 1 [(1,2,1)] (es exampleGraph) p
---> [(1,2,1),(2,4,5),(4,6,1),(6,7,2)]

This might work for this particular graph, there is no guaranty that limited
lookahead can be utilised for arbitrary complex graphs. However, considering
graphs where every split eventually converges again into a single node after at
most n steps, a n-step lookahead is sufficient for our graph walking example.
Such graph might look similar to Fig. 2.

Fig. 2. Example limited lookahead graph

This example shows that having deeper insights about your problem can
enable programmers to utilise limited lookahead algorithms. Another possible
application of limited lookahead algorithms can be in the area of game theory.
When, for example, implementing an AI opponent for chess, it is not computa-
tionally feasible to calculate a perfect game of chess. At some point, there needs
to be a cutoff of the search space to ensure reasonably runtimes.

7 Iterated Product

A common pattern we can observe in the previous examples, is that we are
always building a list of a fixed length containing copies of the same selection
functions. Although not presented in this paper, there are applications for build-
ing products of different selection functions, one being the minimax algorithm
for calculating solutions to sequential games. However, another different prod-
uct for selection functions can be an iterated product where we iterate a given
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single selection function until we arrive at the desired result. Therefore given a
predicate pred :: [x] -> Bool that tells us whether a given history is a final
solution to our problem, we extract objects out of the given selection function
until the predicate is satisfied:

iterate :: ([a] -> Bool) -> [a] -> J r a -> J r [a]
iterate pred h e p | not (pred h) = a : as

| otherwise = []
where

a = e (\x -> p(x : iterate pred (h++[x]) e (p . (x:))))
as = iterate pred (h++[a]) e (p . (a:))

Further, we can also define iterated product for the history dependent product
versions as well as the greedy product versions:

hIterate :: ([a] -> Bool) -> [a] -> ([a] -> J r a) -> J r [a]

hIterate pred h e p | not (pred h) = a : as

| otherwise = []

where

a = (e h) (\x -> p(x : hIterate pred (h++[x]) e (p . (x:))))

as = hIterate pred (h++[a]) e (p . (a:))

greedyIterate :: ([a] -> Bool) -> [a] -> J r a -> J r [a]

greedyIterate pred h e p | not (pred h) = a : as

| otherwise = []

where

a = e (\x -> p [x])

as = greedyIterate pred (h++[a]) e (p . (a:))

greedyHIterate :: ([a] -> Bool) -> [a] -> ([a] -> J r a) -> J r [a]

greedyHIterate pred h e p | not (pred h) = a : as

| otherwise = []

where

a = (e h) (\x -> p [x])

as = greedyHIterate pred (h++[a]) e (p . (a:))

We can easily utilise this new iterated products to work with our previous exam-
ples:

7.1 Examples

Password Example. Given that we already know that our password has a
length of 8 characters, we can use the iterated product with a simple predi-
cate that checks weather a given history reached the length of 8. Our selection
function then is simply just the selectChar selection function:

iterate (\x -> length x == 8) [] selectChar p
---> "password"

greedyIterate (\x -> length x == 8) [] selectChar p
---> "password"
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Graph Walking. Similar, we can utilise the iterated history dependent product
to solve our graph walking problem. We first need to define our single selection
function and then obtain the result by utilising the iterated product:

selectionFunction :: [Edge] -> J r Edge
selectionFunction x p = minWith p (getCandidates exampleGraph x)

hIterate (\h -> length h == 3) [(1,2,1)] selectionFunction p
---> [(1,2,1),(2,4,5),(4,6,1),(6,7,2)]

greedyHIterate (\h -> length h == 3) [(1,2,1)] selectionFunction p
---> [(1,2,1),(2,3,1),(3,4,10),(5,7,1)]

Prims Algorithm. And similar to the graph walking, we can implement Prims
algorithm with the iterated product:

selectionFunction :: [Edge] -> J r Edge
selectionFunction x p = minWith p (getCandidates exampleGraph x)

pred :: [Edge] -> Bool
pred h = length h == (length exampleGraph - 1)
greedyHIterate pred [] selectionFunction p
---> [(1,2,1),(2,3,5),(3,5,1),(2,4,9)]

While these examples are straightforward, the true strength of the iterated prod-
uct is that it can deal with solutions of different lengths. One example of this can
be sequential games. There are many sequential games that have a specific ending
condition rather than ending after a certain set of moves. This iterated product
has the advantage of being able to deal with solutions of different lengths, while
loosing the flexibility of building the product of a list of different selection func-
tions. To solve this shortcoming we can build a iterated product that can deal
with infinite lists:

infIterate :: ([a] -> Bool) -> [a] -> [J r a] -> J r [a]

infIterate pred h [] p = []

infIterate pred h (e:es) p | not (pred h) = a : as

| otherwise = []

where

a = e (\x -> p(x : infIterate pred (h++[x]) es (p . (x:))))

as = infIterate pred (h++[a]) es (p . (a:))

One can easily adapt this product to also work history dependent or in a greedy
way.

8 Conclusion and Future Work

We have seen that in addition to the already known monadic product for selec-
tion functions, there are other product implementations for selection functions,
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each capturing different computational behaviour. In particular with the above
presented variations, the idea of describing problems as collections of selection
functions can now be applied to problems that are solvable by greedy algorithms
and limited lookahead algorithms. Moreover, the computational behaviour of an
algorithm can be changed modularly by using different products for selection
functions, while the problem description stays the same.

In addition to greedy products and limited lookahead products, there is the
potential for more product implementations that behave differently. One example
for this might be a product that is able to perform Alpha-Beta pruning minimax
algorithms.

Appendix

A Proof that Product Equals Sequence

xm >>= \x -> sequence' xms >>= \xs -> return (x : xs)

-- {{ expand >>= definition }}

xm >>= \x -> (\p -> (\xs -> return (x : xs)) ((sequence' xms)

(p . flip (\xs -> return (x : xs)) p)) p)

-- {{ apply lambda }}

xm >>= \x -> (\p -> (return (x : ((sequence' xms)

(p . flip (\xs -> return (x : xs)) p))) ) p)

-- {{ resolve return }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . flip (\xs -> return (x : xs)) p))))

-- {{ apply flip }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . (\_ xs -> (x : xs)) p))))

-- {{ apply lambda }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . (\xs -> (x : xs))))) )

-- {{ resolve function composition }}

xm >>= \x p -> (x : ((sequence' xms) (\xs -> p (x : xs))))

-- {{expand >>= definition }}

\p' -> ( (\x p -> (x : ((sequence' xms) (\xs -> p (x : xs)))))

((xm) (p' . flip (\x p -> (x : ((sequence' xms) (\xs -> p (x : xs))))) p')) p' )

-- {{ apply lambda }}

\p' -> ( (\x p -> (x : ((sequence' xms) (\xs -> p (x : xs)))))

(xm (\x -> p' (x : ((sequence' xms) (\xs -> p' (x : xs)))))) p' )

-- {{ apply lambda }}

\p' -> (\x -> (x : ((sequence' xms) (\xs -> p' (x : xs)))))

(xm (\x -> p' (x : ((sequence' xms) (\xs -> p' (x : xs))))))

-- {{ rewrite with where }}

\p' -> z : sequence' xms (\xs -> p' (z : xs))

where z = xm (\x -> p' (x : ((sequence' xms)

(\xs -> p' (x : xs)))))

-- {{ rewrite with where }}

\p' -> z : zs

where z = xm (\x -> p' (x : sequence' xms (p' . (x:))))

zs = sequence' xms (p' . (z:))
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