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Abstract. Bidirectional transformations (BX) serve to maintain con-
sistency between different representations of related and often overlap-
ping information, translating changes in one representation to the oth-
ers. We present a brief introduction to the field, in order to provide some
common background to the remainder of this volume, which constitutes
the lecture notes from the Summer School on Bidirectional Transforma-
tions, held in Oxford in July 2016 as one of the closing activities of the
UK EPSRC-funded project A Theory of Least Change for Bidirectional
Transformations.

1 Introduction

Many tasks and problems in software engineering revolve around maintaining
consistency between different representations of abstractly ‘the same’ underly-
ing data in some system. Stable states of the system can be modelled by a
relation, characterizing which states of the components of the system are con-
sidered ‘consistent’. More interestingly, one also needs to resolve inconsistencies,
modifying the states of one or more components in order to restore the system
as a whole to a consistent compound state. In the general case, the compound
system consists of multiple components; in this chapter, we will restrict attention
to the simpler binary case, with just two components.

One may solve these problems from first principles, by providing separate
programs that check for consistency, and that restore consistency in each possible
direction—three programs, in the binary case. However, this approach is wasteful
of effort, and presents a software maintenance challenge, because essentially the
same information—the consistency relation—is duplicated in each of the separate
programs. (Of course, redundancy might have some benefits too.) Bidirectional
transformations (BX) attempt to eliminate the duplication, by arranging matters
so that a single specification of the relationship between components may serve
simultaneously to determine the consistency check and the various consistency
restorers.

The history of BX may be traced back at least to the work of Bancilhon and
Spyratos [8] in the 1980s on what has become called the view–update problem
in databases. We say more about this motivating scenario in Section 2.2; but
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in a nutshell, a complex database may provide a simplified view of a subset of
the source data, and a user may reasonably want to specify an update of the
source data in terms of the view. A richer variation of a similar need arises
in model-driven development, when developers independently modify simpler
projections of a composite system model, and expect their local modifications to
be reflected in the shared composite. This particular variation has motivated two
decades of work by Schürr and colleagues on triple-graph grammars [55], which
provide grammars for consistent pairs of graphs linked by collections of triples;
we discuss this approach in Section 3.4. More recently, Pierce and others [26]
have spearheaded a fruitful line of work on lenses, programming abstractions for
data references supporting ‘get’ and ‘put’ operations; we discuss this approach
in more detail in Section 3.2.

This volume represents the lecture notes from a Summer School on Bidi-
rectional Transformations, held in Oxford in July 2016 as one of the closing
activities of the UK EPSRC-funded project A Theory of Least Change for Bidi-
rectional Transformations (TLCBX). Our particular focus in the project was to
investigate the so-called principle of least change, first identified by Meertens [44,
45]. One of the primary axioms that BX should satisfy formalises the idea that ‘if
nothing needs to change (because the overall system is already consistent), then
nothing should be changed’. But if something does need to change, because con-
sistency must be restored, then this axiom does not constrain the behaviour of
the BX at all. There may be many different ways of restoring consistency, some
better than others from the points of view of the users of the BX. A least-change
principle attempts to formalise the intuitive idea that the BX should not change
more than is necessary. However, providing a formal property that captures this
intuition turns out to be a knottier problem than at first appears; we discuss it
in Section 4.2.

The purpose of this chapter is to provide a brief introduction to the BX
landscape, sufficient to allow the first-time visitor to find their way around the
rest of this volume. In Section 2, we describe a number of motivating scenarios
for BX. In Section 3, we sketch some of the main approaches that have been
used to model and implement BX. Finally, in Section 4, we summarize some
of the contributions made in the course of the TLCBX project: the entangled
state monad, steps towards formalizing a principle of least change, and the fact
that BX are proof-relevant bisimulations. In all cases, our aim is more to provide
signposts to the important highlights than to present a complete study; we give
appropriate references to the primary literature, where more details may be
found. Complementary introductions to the field may be found in the Grace
report [21], the report on a Dagstuhl seminar [32], and a chapter in the lecture
notes from the Summer School on Generic and Indexed Programming [27].
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2 Scenarios

2.1 Data conversions

A very simple degenerate class of BX arises between two data sources when each
maintains a faithful record of the whole overall state. The overall system may
then be thought of as mere data conversion between different formats. Crucially,
when one side is updated, the other may simply be discarded and recreated from
scratch, with no loss of information.

Consider the example of an address book application, illustrated in Figure 1.
The application maintains a collection of address cards; the graphical user inter-
face of the application mediates between a textual representation of the cards
and a more accessible pictorial representation. A card is typically edited via the
pictorial representation, but stored on disc or exported in the textual represen-
tation. When the pictorial representation is edited and saved, the old textual
representation is overwritten with a new one; conversely, if the textual represen-
tation is updated and reloaded, the old pictorial representation is replaced with
a new one.

Naive approaches for designing graphical applications such as the address
book entail two unidirectional transformations: a parser, which reads the tex-
tual representation and constructs the view ; and a pretty printer, which writes
the content of the view back to the textual representation. Higher-level form
abstractions such as XForms [14], Windows Presentation Foundation [46], and
Formlets [20] more or less successfully allow the application developer to ex-
press in one place the correspondence between the textual representation and
its graphical layout.

BEGIN:VCARD

VERSION:3.0

N:Holmes;Sherlock;;;

FN:Sherlock Holmes

ORG:independent consultant;

EMAIL;type=HOME:s.holmes@gmail.com

TEL;type=VOICE:+44 20 7224 3688

ADR:;;221B Baker St;London;;NW1 6XE;UK

URL:http://holmes-watson.com/

PHOTO;ENCODING=b;TYPE=JPEG:/9j/4AAQSkZ

.....................................

iigAooooAKKKKACiiigAooooAKKKKAP//Z

X-ABUID:0772CAAE-D097B7BB4451:ABPerson

END:VCARD

(a) (b)

Fig. 1. Data conversion: (a) vCard format and (b) an address book application
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2.2 View–update

The primary historical precedent for the study of BX is the work starting with
Bancilhon and Spyratos [8] already cited above, on the view–update problem
in databases. Consider the three database tables shown in Figure 2: two source
tables Staff and Projects, and a View table generated from them by the query

SELECT Name, Room, Role

FROM Staff, Projects

WHERE Name=Person

AND Code="Plum"

The view–update problem is to translate an edit on the View table back to
appropriate updates on the source tables Staff and Projects. Of course, the
problem is not in general well posed; there may be multiple translations that
would work (if one deletes Sam from View, should that entail moving Sam from
the Plum project to Pear in Projects, or removing Sam from all projects?), or
none (if one introduces a new person in View, what should their salary be in
Staff ?). There is a wealth of work on identifying and implementing the cases
that do make sense [22].

Staff

Name Room Salary

Sam 314 £30k
Pat 159 £25k
Max 265 £25k

Projects

Code Person Role

Plum Sam Lead
Plum Pat Test
Pear Pat Lead

View

Name Room Role

Sam 314 Lead
Pat 159 Test

(a) (b) (c)

Fig. 2. The view–update problem: source tables (a) and (b), and a view (c)

2.3 Model-driven development

Model-driven development is fertile ground for BX, revolving as it does around
models from different perspectives of a composite system design. Multiple devel-
opers, or the same developer wearing multiple hats, wish to work on individual
models, focussing on the concerns at hand and ignoring those that are temporar-
ily irrelevant. Having made some edits to one model, the other models should
be updated to restore consistency.

Consider for example the issue of object–relational mapping (ORM). This
is typically used when an application with business logic written in an object-
oriented language should manipulate a data layer stored in a relational database.
Rather than manually reading data from and writing it to the database, it is
preferable to use some kind of tool support that allows the developer abstractly to
specify the relationship between the two layers, with the actual transformations
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back and forth being generated from this specification. There are a small number
of well-understood ORM strategies [5], and also a good understanding of the
challenges of ORM [48].

Figure 3(a) presents two meta-models. The left-hand metamodel states that
classes have attributes, classes are in a super-/sub-class relationship, and at-
tributes are in a next/previous relationship—the idea (not entirely captured in
the metamodel) being that classes are grouped into single-inheritance hierar-
chies, and that the attributes of a class are linearly ordered. The right-hand
metamodel states more simply that a table similarly has a sequence of columns.
Figure 3(b) presents a class model, conforming to the class metamodel, with four
classes arranged into two hierarchies. Figure 3(c) presents a table model, con-
forming to the table metamodel, following the ‘one table per hierarchy’ ORM
strategy: one table named A corresponds to the hierarchy rooted at class A,
the other table named D corresponds to the isolated class D . Note that neither
model is definitive: the class model contains names for subclasses, which are
lost in the table model; and the table model records a linear ordering on all the
attributes in a hierarchy, which is only partially maintained in the class model.
(This example is inspired by Schürr [56], and documented in the BX Examples
Repository [7] that was established as an early step in the TLCBX project [18];
it will be revisited in Section 3.4.)

Class

Attr

0..1 super
0..∗

sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

A

a

B

b

C

c1
c2

D

d

A

a

b

c1

c2

D

d

(a) (b) (c)

Fig. 3. (a) Two metamodels, (b) a class model, and (c) a table model

2.4 Composers

Composers [61] is a classical simple BX example that has been used by various
authors over the years [12, 59] to illustrate BX concepts. In this example, there
are two sets of models

M = {Name ×Dates ×Nationality }
N = [Name ×Nationality ]

of a collection of musical composers. A model m : M is a set of triples, recording
the name, dates of birth and death, and nationality of each composer; a model n :
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N is a sequence of pairs, recording only names and nationalities, but in some
order. Models m and n are consistent if they have the same set of Name ×
Nationality pairs; for example:

m = { (“Jean Sibelius”, 1865–1957, Finnish),
(“Aaron Copland”, 1910–1990, American),
(“Benjamin Britten”, 1913–1976, English) }

n = [ (“Benjamin Britten”, English),
(“Aaron Copland”, American),
(“Jean Sibelius”, Finnish) ]

Again, neither model is definitive (model M lacks the ordering, whereas model N
lacks the dates). Consequently, there is a variety of ways of restoring consistency:
from M to N , one needs to worry about the ordering, and from N to M , one
needs to worry about the dates.

3 Approaches

3.1 Relational

Stevens [59, 60] has pioneered a simple relational model of BX, in order to focus
on the essence of the relationships between the model spaces and consistency
restoration. According to this approach, a BX between model sets M ,N is a
triple (R,

−→
R ,
←−
R) consisting of a consistency relation R ⊆ M × N , a forwards

consistency restorer
−→
R : M × N → N , and a backwards consistency restorer←−

R :M×N → M . We may write (R,
−→
R ,
←−
R):M −�−�N . The idea is that given possibly

inconsistent models m ′,n (arising perhaps from an originally consistent pair m,n
in which m has been edited to m ′), forwards consistency restoration yields n ′ =
−→
R (m ′,n) such that R(m ′,n ′) holds; and symmetrically, given m,n ′, backwards

consistency restoration yields m ′ =
←−
R(m,n ′) such that again R(m ′,n ′) holds.

(To be complete, one ought also consider a distinguished ‘no information’
model in each model set, which is used as an argument to the consistency restor-
ers when one model must be created ab initio from the other. But for simplicity,
we will not discuss this further.)

We say that the BX is correct if consistency is indeed restored by the con-
sistency restorers:

∀m ′,n. R (m ′,
−→
R (m ′,n))

∀m,n ′. R (
←−
R(m,n ′),n ′)

and hippocratic (‘do no harm’) if restoration does nothing when the models are
already consistent:

∀m,n. R(m,n)⇒ −→R (m,n) = n

∀m,n. R(m,n)⇒←−R(m,n) = m
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In addition, the BX is history-ignorant (rather a strong condition) if

∀m,m ′,n.
−→
R (m,

−→
R (m ′,n)) =

−→
R (m,n)

∀m,n,n ′.
←−
R(
←−
R(m,n ′),n) =

←−
R(m,n)

—informally, a later consistency restoration completely overwrites an earlier one.
To illustrate, the Composers example from Section 2.4 would be represented

by the model sets

M = {Name ×Dates ×Nationality }
N = [Name ×Nationality ]

as before. The consistency relation R would be such that R(m,n) holds pre-
cisely when the set of name–nationality pairs obtained by projecting away all
the dates in m coincides with the set of name–nationality pairs obtained by tak-
ing the elements of the list n. For

−→
R (m,n) to be correct, the elements of the list

produced are completely determined, but not the ordering, nor multiplicity in
the case that there are two triples in m that share name and nationality. For the
forwards restorer to be hippocratic, it suffices that the name–nationality pairs
present in both m and n are returned in the same order as in n, with additional
pairs placed anywhere. Conversely, for

←−
R(m,n) to be correct, the names and

nationalities in the set produced are completely determined; for it to be hip-
pocratic, it suffices for the name–nationality pairs in common retain the dates
recorded in m, and any additional entries may have arbitrary dates. But it is
hard to make the restorers history-ignorant; informally, this entails reconstruct-
ing discarded information. For example, with states m,n as in Section 2.4, and
m ′,n ′ the corresponding states with Copland missing:

m′ = { (“Jean Sibelius”, 1865–1957, Finnish),
(“Benjamin Britten”, 1913–1976, English) }

n′ = [ (“Benjamin Britten”, English),
(“Jean Sibelius”, Finnish) ]

then for correctness’ sake,
−→
R (m ′,n) must be a list omitting Copland, such as

n ′; and so
−→
R (m,n ′) must restore Copland to the list, in the same position as it

was in n, without having access to that information. Conversely,
←−
R(m,n ′) must

be a set omitting Copland, such as m ′; and
←−
R(m ′,n ′) must somehow restore

Copland’s dates, without having access to those dates.

3.2 Lenses

BX notions were brought to the attention of the programming languages com-
munity principally through a series of papers [26, 13, 12, 9, 30, 31] by Pierce et al.
on lenses. An asymmetric lens (get , put):S −�−�V from source S to view V consists
of two functions
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get : S → V
put : S ×V → S

The idea is that get s projects a view from source s, and put (s, v ′) restores a
modified view v ′ into existing source s. The lens can be seen as a reference to a
V component ‘inside’ an S composite. It is ‘asymmetric’ because the source S
is primary, determining the secondary view V (via the get function), but in
general the view does not determine the source. (The full story involves also
a create : V → S function, analogous to the ‘no information’ models in the
relational approach.)

A simple example is given by projection from pairs: when S = A × B and
V = A, with get (a, b) = a extracting the first component of the pair, and
put ((a, b), a ′) = (a ′, b) updating the first component.

The lens is well-behaved if it satisfies

∀s, v . put (s, get s) = s (GetPut)
∀s, v . get (put (s, v)) = v (PutGet)

Informally, if one gets view v = get s from source s then immediately puts it
back again, s does not change; and having put view v into source s, it is indeed
faithfully stored there, and will be retrieved by a subsequent get .

It is instructive to compare this approach with the relational one from Sec-
tion 3.1. The consistency relationship R being maintained is

R(s, v)⇔ (get s = v)

Forwards consistency restoration
−→
R : S ×V → V is trivial,

−→
R (s, v) = get s, be-

cause the source completely determines the view; backwards consistency restora-
tion
←−
R = put :S×V → S is just the put function. Property (GetPut) is analogous

to hippocracy (when reconciling view v = get s with source s with which it is
already consistent, do nothing); property (PutGet) is analogous to correctness
(having reconciled s with v , the state is consistent).

A well-behaved asymmetric lens is very well-behaved if in addition it satisfies

∀s, v , v ′. put (put (s, v), v ′) = put (s, v ′) (PutPut)

Informally, having put view v into source s, immediately putting another view v ′

will completely overwrite v , so that the net effect is the same as simply having
put v ′ in the first place. The projection lens above is very well-behaved; indeed,
it is a folklore result that any very well-behaved lens S −�−� V induces an isomor-
phism S ' V × C for some complement type C that is not touched by the put
function—hence the term ‘constant complement ’ [8] is sometimes used.

It is this constant complement consequence that makes very well-behavedness
or history ignorance such a strong property. For example, consider a simplified,
asymmetric version of the Composers example from Section 2.4, with both state
spaces being lists:

M = [Name ×Dates ×Nationality ]
N = [Name ×Nationality ]
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so that M determines N , via a get function that projects away the dates. It
is straightforward to define put to yield a well-behaved lens; but there is no
definition of put that yields a very well-behaved lens, because the source type
M does not factorize perfectly into N × C for any complement type C .

Hofmann et al. [30] introduced a symmetric variation of lenses, whereby lens
(putr , putl) : A −�−�C B between A and B with complements C consists of a pair
of functions

putr : A× C → B × C
putl : B × C → A× C

Now neither A nor B determines the other; neither is definitive. Think of C
as a record of the information in A that is missing from B , together with the
information in B that is missing from A, so that A×C determines B and B×C
determines A. One might simply take the complement to be C = A × B , but
usually the point of the exercise is that A and B have some information in
common, and this common information need not be represented also in C .

Function putr reads the B -relevant part of C and updates the A-relevant
part; dually, putl reads the A-relevant part and updates the B -relevant part.
Thus, putr transfers information from left to right; it takes a modified left-hand
value a ′ :A and a complement (cA, cB ):C , and constructs an updated right-hand
value b′ : B from a ′ and cB , together with an updated complement (c′A, cB ); and
symmetrically for putl , from right to left.

A symmetric lens is well-behaved if it satisfies

∀a, b, c, c′. putr (a, c) = (b, c′) ⇒ putl (b, c′) = (a, c′) (PutRL)
∀a, b, c, c′. putl (b, c) = (a, c′)⇒ putr (a, c′) = (b, c′) (PutLR)

These conditions induce consistent states (a, c, b) such that putr (a, c) = (b, c)
and putl (b, c) = (a, c). A well-behaved symmetric lens is very well-behaved if in
addition

∀a, a ′, b, c, c′. putr (a, c) = (b, c′) ⇒ putr (a ′, c′) = putr (a ′, c) (PutPutR)
∀a, b, b′, c, c′. putl (b, c) = (a, c′)⇒ putl (b′, c′) = putl (b′, c) (PutPutL)

(and as before, very well-behavedness is a very strong condition).
An asymmetric lens S −�−� V is effectively a special case S −�−�S V of symmetric

lenses: there is no information in V that is missing from S , so the complement
just can be S , or more efficiently some smaller complement C such that V ×C
determines S . The Composers example is not representable as an asymmetric
lens (because neither state space determines the other); but it is representable
as a symmetric lens, with complement C = [Name ×Dates ×Nationality ] that
records both the ordering absent from M and the dates absent from N .

3.3 Ordered, delta-based, categorical

The problem with put–put laws (history ignorance, very well-behavedness) is
that they demand a strong property about combining two updates into one
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update with the same overall effect. As we have seen, this is apparently too
much to expect, at least in the case of combining two arbitrary updates. But
perhaps it is more reasonable for certain special classes of updates?

Hegner [28] took this observation as the inspiration for a more nuanced look
at what he called ordered updates. In this setting, the state spaces have a nat-
ural ordering, and certain updates are monotonic with respect to this ordering.
For example, the states might be states of a database, modelled as sets of tu-
ples, with the sets ordered by inclusion; insertion of some tuples into the set is
monotonic with respect to inclusion. We have seen that combinations of dele-
tions and insertions tend not to compose well—in particular, deletion of an item
entails deletion also of any complementary information about that item from the
system, and re-insertion of morally ‘the same’ item requires the complementary
information somehow to be restored, if the net effect is to leave the system as it
was. It is less drastic to insist on the special case that two consecutive insertions
of small sets of tuples is equivalent to one insertion of the union of those sets.

An alternative perspective, argued first by Diskin [23, 24], is that the put–
put problem arises from taking a state-based approach to BX (as exemplified
by the relational and lens work described above). In this state-based approach,
the consistency restoration operations are given only old and new states, and
so the restoration process consists of two steps: alignment, to find out what
has changed on one side (not to be confused with the problem of matching up
models from different spaces to identify correspondences, which is also sometimes
called ‘alignment’), and propagation, to translate that change to the other side.
A delta-based approach separates those two tasks; in particular, the input to
consistency restoration is not just a new state a ′, the result of an update, but
the update δ : a 7→ a ′ itself, so the alignment information is provided as an
input to consistency restoration, and no longer needs to be reconstructed during
restoration.

The situation is as illustrated in Figure 4. Forwards propagation takes an
initially consistent pair of states (a, b) and an update δA : a 7→ a ′ on the A side,
and yields an update δB : b 7→ b′ on the B side and a new consistent pair of
states (a ′, b′). More concretely, one might want to maintain not merely the bare
information that states a, b are consistent, but also the correspondence c : a ↔ b
that witnesses to their consistency; for example, when the states are sets of model
elements, the correspondence c might be a set of triples, recording which A-
elements are related to which B -elements, and by what relation. Symmetrically,
backwards propagation takes c : a ↔ b and δB : b 7→ b′ to δA : a 7→ a ′ and
c′ :a ′ ↔ b′. One of the benefits of the delta-based approach is being able to relax
the expectation that one can transit from any state to any other, as is implicit
in the state-based approach.

Johnson, Rosebrugh and others have been pioneering a line of work [33, 36,
34, 35] to provide a categorical unification and generalization of the ordered and
delta-based approaches. In their approach, one represents a state space A and
its transitions δ : a 7→ a ′ as a category A. The arrows in the category represent
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a_

δA

��

oo c // b_

δB

��
a′ oo

c′
// b′

Fig. 4. Delta-based consistency

the allowable transitions; as with the delta-based approach, one need not allow
all possible transitions.

The relevant constructions involve the objects |A| of a category A, the set
|A2| of arrows of A, and the comma category G/B for a functor G : A → B,
which has objects (A, β) where A is an object of A and β :G(A)→ B is an arrow
of B. It would take us too far out of our way here to present a complete tutorial
in category theory sufficient to provide much intuition for these constructions;
but one would not go far wrong in thinking of the category as a directed graph,
its objects (the states) as vertices in the graph, and its arrows (the allowable
transitions between states) as paths in the graph.

An (asymmetric, delta-) lens (G ,P) :A −�−�B is then a pair in which G :A → B
is a functor, and P : |G/B| → |A2| is a function, taking a pair (A, β : G(A)→ B)
to a transition α : A → A′. One should think of the pair (A, β : G(A) → B) as
a transition in B from an initial state G(A) that corresponds to a given state A
in A.

The lens is well-behaved if it satisfies the first three of the following four
properties, for all β : G(A) → B and β′ : G(A′) → B ′, and very well-behaved if
it satisfies all four:

– the domain of P(A, β) is A;
– P(A, idG(A)) = idA;
– G(P(A, β)) = β;
– P(A, β′·β) = P(A′, β′)·P(A, β), where A′ is the codomain of P(A, β) and so

G(A′) = B .

The first says that when β : G(A)→ B is propagated back by P , it does indeed
yield an allowable A-transition from A; this is a basic requirement for coherence,
when not all transitions are allowed from every state. The second says that the
identity transition in B propagates back to the identity transition in A; this
is analogous to hippocracy. The third says that the B-transition α is faithfully
propagated back to an A transition; this is analogous to correctness. And the
fourth says propagating the composite arrow β′·β is equivalent to propagating
β′ after β. The fourth property is analogous to history-ignorance, although the
term no longer seems adequate; crucially, because one may focus attention only
on certain compatible sets of transitions, it is no longer an unreasonably strong
condition.

One can recover the set-based approach via the codiscrete category, which
has precisely one arrow between any pair of objects, representing the fact that
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a transition is available from any state to any other state. And one can recover
the ordered approach by considering the ordered set as a category, with at most
one arrow between any pair of objects. Symmetric lenses arise from spans of
asymmetric lenses [34]; for example, a symmetric lens between A and B can be
constructed from two asymmetric lenses C −�−� A and C −�−� B from some common
source C representing the ‘union’ of the information provided by A and B.

3.4 Triple-graph grammars

The triple-graph grammar approach to BX arose by combining the work of
Rozenberg, Ehrig and others in graph grammars, graph rewriting, and graph
transformations [54, 25] with earlier ideas from Pratt on pair grammars [53].
A grammar specifies a language, and can be used both to determine whether
a term is in that language, and also to generate terms from that language. A
pair grammar consists of a pair of grammars, whose rules and non-terminals are
paired in a correspondence that models a translation between the two languages.
Triple-graphs are a special kind of graph, with both ‘object-level’ vertices and
edges as usual, but also labelled ‘meta-level’ edges that link object-level entities.
These labelled meta-level edges are the triples of the name; they provide the
correspondence structure relating two object-level graphs.

Consider the object–relational mapping example from Section 2.3 [7]. A class
model and a table model are consistent if there is an appropriate correspondence
relationship between their model elements, as illustrated in Figure 5. Here, the
two models are as shown in Figure 3(b,c). The correspondence is given by the
set of broken edges linking the model elements: dotted lines for the CT cor-
respondences between class and table elements, and dashed lines for the AC
correspondences between attribute and column elements. The triple-graph itself
conforms to the metamodel shown in Figure 6, which simply consists of the union
of the two metamodels from Figure 3(a) together with the two correspondence
associations.

A

a

B

b

C

c1
c2

D

d

A

a

b

c1

c2

D

d

Fig. 5. Two models, with correspondences

This triple of metamodels could be used to derive a BX as follows. Forwards
transformation takes a class model, analyses it according to the class meta-
model, then uses the associated correspondences to generate a corresponding
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Class

Attr

0..1 super
0..∗

sub

0..1

next

0..1prev

Table

Column
0..1

next

0..1prev

CT

AC

Fig. 6. Two metamodels, with correspondences

table model. Conversely, backwards propagation constructs a class model by
analysing a table model.

Experience suggests that although this constraint-based process works in
principle, in practice it is highly non-deterministic, and therefore difficult to
use with predictable results. One therefore works with production rules, as in
traditional grammars, rather than metamodels, in order to gain more control
over the non-determinism. A suitable collection of rules for the object–relational
example is shown in Figure 7. The idea is that the black items match against
existing model elements, and then the green items labelled with ++ specify which
new model elements are to be introduced; moreover, the elements crossed out in
red are required not to exist for the rule to be applicable (‘negative application
conditions’).

Thus, Rule 1 says that one can introduce a new Class, linked to a new Table;
this starts a new hierarchy. Rule 2 says that when there exists a Class linked
to a particular Table, one may introduce a new Class as a subclass, and link it
to the same Table; this adds a new class to an existing hierarchy. Rule 3 says
that if there is a Class with no Attr , linked to a Table with no Column, then
one may introduce a new Attr for the Class linked to a Column for the Table;
this introduces a first attribute into a hierarchy. Rule 4 says that if there is a
Class with no Attr , linked to a Table that has a Column that is previous to no
other Column, then one may introduce a new Attr for the class and Column
for the Table; this Class will presumably be a subclass of some other Class,
and the existing Columns will correspond to Attrs of other Classes in the same
hierarchy; and by construction, the new Column will be introduced as the last
one in the Table. Finally, Rule 5 says that if there is a Class with an Attr that
is previous to no other Attr , linked to a Table with a Column that is previous to
no other Column, then one may introduce a new Attr for the Class and Column
for the Table; this will be the last attribute in the class and the last column in
the table.

Note how Rules 4 and 5 cut down the non-determinism by ensuring that new
entries for sequences are added at the end of the sequence. However, the process
is not completely deterministic; there is nothing to specify the order in which
class hierarchies are explored, except that parents must precede children, and
nothing to specify the relative ordering of attributes, except that they must agree
with the ordering within an individual class. Moreover, each rule is monotonic,
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Rule 1:

:Class
++

:Table
++

:CT

++
Rule 2:

:Class

:Table

:CT

:Class
++

super

sub

++

:CT

++

Rule 3:

:Class

:Attr

:Table

:Column

:CT

:Attr
++

++

:Column
++

++

:AC

++

Rule 4:

:Class

:Attr

:Table

:Column

:Column

prev

:CT

:Attr
++

++

:Column
prev

++

++

++
:AC

++

Rule 5:

:Class

:Attr

:Attr

prev

:Table

:Column

:Column

prev

:CT

:Attr
prev

++

++

++
:Column

prev
++

++

++
:AC

++

Fig. 7. A triple-graph grammar
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creating new elements without deleting anything; this is relevant for turning the
matching process into an efficient graph translation algorithm.

4 Contributions

In this section we summarise the main contributions of our recent research on
bidirectional transformations:

– entangled state monads, which can be used to provide a principled foundation
for bidirectional transformations with effects [1],

– steps towards formalizing a principle of least change, and
– the fact that BX are proof-relevant bisimulations.

4.1 Entangled state and monadic bidirectional transformations

Since the pioneering work of Moggi [47], monads have been explored extensively
to provide semantics for computational effects, such as exceptions, mutable state,
and I/O. Computational effects are a particular challenge in purely functional
programming languages such as Haskell, and the influential work of Wadler and
Peyton Jones [37] has led the Haskell community to use monads extensively to
separate pure ‘functions’ from ‘commands’ that may read or write mutable state,
behave nondeterministically, or interact with the outside world. In this section,
we summarize recent results showing that bidirectional transformations can be
considered as a form of computational effect and formalized using monads. We
will not give a complete review or explanation of monads here, but instead refer
to existing tutorials on Haskell programming with monads [63, 11].

We will briefly review the State monad. The state monad captures the idea
of a mutable state of a given type S .

data State σ α = State {runState :: σ → (α, σ)}

A computation in the state monad State S A is a function that takes the initial
value s :: S and produces a result a :: A together with a (possibly) updated state
s ′ :: S .

The basic monadic operations return and >>= (pronounced ‘bind’) can be
defined easily for the state monad:

return a = State (λs → (a, s))
m >>= f = State (λs → let (a, s ′) = runState m s in runState (f a) s ′)

Here, the return operation is a stateful computation that returns a pure value,
while m>>= f sequentially composes a stateful computation m ::State S A with a
function f ::A→ State S B , passing the value returned by m to f . In addition, we
frequently use the following definition for convenience, to sequentially compose
computations with no value dependency:

m >> n = m >>= \ → n
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The two additional primitive operations which the state monad provides are
the ability to read the state (and use it as part of some other computation),
and to write to the state, replacing the old state value with a new one. These
operations are often called get and set . (These operations should not be confused
with the get and put operations of lenses, although, as discussed below, they are
related.)

get :: State σ σ
get = State (λs → (s, s))
set :: σ → State σ ()
set s ′ = State (λs → ((), s ′))

One can easily verify that these operations satisfy a number of equations:

get >>= λs1 → get >>= λs2 → k s1 s2 = get >>= λs → k s s (GetGet)
set s >> get = set s >> return s (SetGet)
get >>= set = return () (GetSet)
set s1 >> set s2 = set s2 (SetSet)

The first equation says that get has no side-effect on the state, so doing two gets
in sequence is the same as doing one and reusing the value twice. The second
equation says that set s changes the state to s, so that subsequent gets see that
value. The third says that setting the state to its current value has no effect. The
final equation says that if multiple sets are performed in sequence, the overall
effect is just that of the last one.

The state monad is a concrete example of a more abstract idea: we can
axiomatize the idea of a ‘monad with state S ’ purely in terms of the operations
and equations they should satisfy [52]. We say that a monad M has a state
interface (getS , setS) of type S if it supports these two operations, satisfying the
laws (GetGet), (SetGet), (GetSet), and (SetSet).

Furthermore, we can consider a single monad M that provides two state
interfaces (getA, setA) and (getB , setB) of (possibly) different types A and B . In
addition to the above laws that say how getA and setA interact in isolation and
likewise for getB and setB , we should consider interactions between the two pairs
of operations. One natural expectation is that getA and getB should commute:

getA >>= λa → getB >>= λb → k a b
= getB >>= λb → getA >>= λa → k a b (GetComm)

Another natural expectation one might have is that the two states are indepen-
dent: that is, updating A has no effect on B and vice versa.

setA a >> setB b = setB b >> setA a (SetASetB)
setA a >> getB = getB >>= λb → setA a >> return b (SetAGetB)
setB b >> getA = getA >>= λa → setB b >> return a (SetBGetA)

If all of these properties hold, then M essentially provides separate copies of A
and B , just as if implemented by storing a pair (A,B) and defining get and set
operations that read or update the first or second element of the pair respectively.
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Fig. 8. Monadic BX on sources A, B over monad M

Our interest in such monads in the context of bidirectional transformations
arises from omitting some of the above laws, to allow interference between the
two states. If such interference is allowed, we call the state monad entangled
(by a very loose analogy with entangled states in quantum systems). We will
show that several forms of bidirectional transformation can be defined in terms
of entangled state monads.

A monadic BX between A and B is a monad M equipped with state interfaces
(getA, setA) and (getB , setB) satisfying the laws (GetGet), (SetGet), (GetSet) for
A and for B , and also law (GetComm) about their interaction. We say that M is
very well-behaved if in addition the laws (SetSet) hold. We write bx : A −�−�M B ,
and think of bx as a record with four fields getA bx , setA bx , getB bx , setB bx . for
the four operations.

Figure 8 illustrates the interface of a monadic BX; we visualize M as a box
containing an ‘entangled pair’ of A and B values, written A ./ B . The arrows
indicate that the getA, getB operations allow us to inspect the current value of A
or B respectively, while setA and setB allow us to set the new value of one side,
with possible side-effects on the other side.

Lenses as entangled state monads Well-behaved lenses can be viewed as
transforming one “mutable state” to another, in the following sense. Given a
plain lens (get , put) : S −�−� V , we can define operations as follows:

getV :: State S V
getV = getS >>= λs → return (get s)
setV :: V → State S ()
setV v = getS >>= λs → set (put (s, v))

where getS :: State S S and putS :: S → State S () are the get and set operations
of State S . That is, getV gets the source state and applies the get operation
of the lens, while setV gets the old source state, uses put to compute the new
source state, and sets that. Moreover, it is readily verified that these operations
form a monadic BX relating S and V . When the lens (get , put) is very well-
behaved, the resulting monadic BX is also, and it can be shown that it induces
a monad morphism from State V to State S that preserves the get and put
operations. (This observation is due to Shkaravska; it is further discussed and
applied in [57].)

Given a symmetric lens (in the sense of Hofmann et al. [30]), we can view
the putr :: (A,C )→ (B ,C ) and putl :: (B ,C )→ (A,C ) operations as operations
in the state monad, where the state is the complement type C , as follows:
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putr ′ :: A→ State C B
putr ′ a = State (λc → putr (a, c))
putl ′ :: B → State C A
putl ′ b = State (λc → putl (b, c))

We could translate the laws for symmetric lenses into laws for the above State op-
erations. Instead, however, we show how to construct an entangled-state monadic
BX from a symmetric lens. We take M to be State S where S = {(A,B ,C ) |
putr (A,C ) = (B ,C )} (which is equal to {(A,B ,C ) | putl (B ,C ) = (A,C )}
thanks to the symmetric lens laws). Then the get and set operations are as
follows:

getA :: State S A
getA = State (λ(a, b, c)→ (a, (a, b, c)))
setA :: A→ State C ()
setA a ′ = State (λ(a, b, c)→ let (b′, c′) = putr (a, c) in ((), (a ′, b′, c′)))

and symmetrically for getB , setB .
All of these observations extend to the case of (symmetric) lenses that are

very well-behaved. In that case, the monadic BX satisfy the (SetSet) laws, that
is, they are very well-behaved.

Bidirectional transformations with effects As noted earlier, monads are
used to model (and, in Haskell, to program with) side-effects in a pure setting.
This means that the get and set operations associated with an entangled-state
monadic BX might have other effects besides reading from or updating (part of)
the state. For example, monadic BX can also capture ‘nondeterministic bidirec-
tional transformations’ [19], which give a set of possible consistent models for
the user to choose among when restoring consistency.

One complication that arises if we consider monadic BX over arbitrary mon-
ads is how to compose them. This is straightforward in the concrete case of
transformations based on state monads State S , but given two monadic BX of
types A −�−�M B and B −�−�N C , where M and N are different monads, it is not
obvious how to form their composition, in part because it is not always clear
how to combine two monads M ,N . Even if we consider monadic BX over the
same base monad M , it is not clear how to define the composition if we do not
know anything about the structure of M . Instead, we have shown how to define
composition for the special case of monads of the form

data StateT τ σ α = StateT {runStateT :: σ → τ (α, σ)}

StateT is a standard construction called the state monad transformer [38]. Intu-
itively, StateT M S is a monad which can behave as M and in addition provides
a state S (separate from the capabilities of M ). We also make an additional
assumption: the getA and getB operations are assumed to read from S but have
no other effects. That is, we assume that these operations are of the following
forms:



Introduction to Bidirectional Transformations 19

getA = StateT {λs → return (readA s, s)}
getB = StateT {λs → return (readB s, s)}

for suitable functions readA :: S → A and readB :: S → B . The intuition for this
assumption is that when we are composing monadic BX, the two components
need to communicate across the shared interface in order to implement the set
operations for the composition. If we do not have a side-effect-free way to access
the current state then it is not clear how to define composition so that the
monadic BX laws are preserved.

Concretely, given two monadic BX bx 1 : A −�−�M1
B and bx 2 : B −�−�M2

C over
monads M1 = StateT M S1 and M2 = StateT M S2 respectively, we can define
their composition over StateT M (S1,S2) as follows:

getA = get >>= λ(s1, s2)→ return (readA s1)
setA a = get >>= λ(s1, s2)→

runStateT (setA bx 1 a) s1 >>= λ((), s ′1)→
runStateT (setB bx 2 (readB bx 1 s ′1)) s2 >>= λ((), s ′2)→
set (s ′1, s

′
2)

and symmetrically for getC and setC . Intuitively, getA applies read to the first
component of the state, while setA first applies setA bx 1 to the first component,
then applies setB bx 2 to the second component using the new B value of the
updated state s ′1. Finally, both components of the state are updated. Technically,
this construction is not guaranteed to be correct for arbitrary initial state pairs,
so we impose a further constraint that state pairs s1, s2 are always compatible,
in the sense that readB bx 1 s1 = readB bx 2 s2. So the composition is actually
defined as an monadic BX over StateT (S1 ./ S2), where (S1 ./ S2 = {(s1, s2) |
readB bx 1 s1 = readB bx 2 s2}. Roughly speaking, the reason why we impose the
constraint that get operations are side-effect free is to ensure that this state space
is well-defined. However, it is not clear that this restriction is really necessary.

Although the entangled state monad formalism is appealing in one sense, the
difficulties with defining composition in the general case have motivated consid-
eration of other approaches. One approach is to augment the classical notion of
(asymmetric) ‘lens’ to allow for the possibility of monadic effects during consis-
tency restoration [2]. Another possibility is to consider (symmetric) bidirectional
transformations from a coalgebraic perspective, which also naturally extends to
allow for the possibility of monadic effects [3, 4]. Interestingly, though these two
approaches seem superficially different, one can connect them by viewing coal-
gebraic BX (or equivalently monadic BX) as spans of monadic lenses. Others
such as Pacheco et al. [51] have also considered BX with monadic effects, and [2]
discusses and compares the proposals to date.

There are a number of open questions. For example, it would be interesting to
find a way to define composition for arbitrary entangled-state monadic BX, for
which the get operations can have side-effects, or to establish that composition
requires StateT structure. There are also unresolved questions regarding the
right definition(s) of equivalence of monadic BX or spans of monadic lenses [4].
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Finally, it would also be interesting to extend monadic BX to generalize delta-
lenses [23, 24] or edit lenses [31].

4.2 Least change

In this section we briefly introduce the ideas behind principles of Least Change
for BX; for a fuller discussion, we refer the reader to our paper [17].

The purpose of separating information into separate models or views is to
manage information overload: we want to present a human with just the infor-
mation they need, in order to apply their expertise most effectively.

When we use a BX to maintain consistency between the model used by a
human and other information that they do not typically wish to see, there is a
risk that we confuse the human. If their model changes as a result of changes
elsewhere, their work may be disrupted.

To some extent this is inevitable. It raises, however, a very important ques-
tion: how can we keep the disruption to a minimum? Intuitively, our BX should
not change more than it has to in order to restore consistency between the
information our expert sees and everything else.

Meertens, who called BX “constraint maintainers”, formulated this as follows
[44]:

The action taken by the maintainer of a constraint after a violation
should change no more than is needed to restore the constraint.

Sometimes, what this means is clear. If we accept this formulation it implies,
for example, the hippocraticness property introduced in Section 3.1; if there
is no need to change anything in order to restore consistency, then the BX
should not change anything. In considering examples, we often find similarly
clear cases where we feel that the BX should not change information which is
irrelevant to restoring consistency. In the Composers examples of Section 2.4,
when a composer is added or deleted, we do not expect the dates of a different
composer to change, even though they could change arbitrarily without affecting
consistency. The BX’s job is only to restore consistency: it must not change the
models beyond what it necessary to do this, even if there might be an argument
that a further change was an improvement. (For example, we do not accept that
a BX relating a UML model to Java code should reformat the Java code, or that
the Composers BX should correct an error in the dates of a composer.)

Going beyond this is tricky. The first problem we encounter is that there may
be different ways to measure the size of a change, and hence, to judge which way
of restoring consistency involves the least change. We illustrate this by way of
an example used at the summer school by Zhenjiang Hu. Suppose we have a
BX that relates rectangles, given by their width and height (w, h), with their
heights h. We start with a four by four square (4, 4), consistently related with
its height, 4. Now the height is changed to 2. What should a BX that obeys a
least change principle do? Should it leave the width alone and change the square
to a rectangle (4, 2)? Or should it leave the shape of the rectangle alone, and
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change the square to a smaller square (2, 2)? Or perhaps it should minimise
change to the perimeter of the rectangle, replacing the (4, 4) square by a (6, 2)
rectangle? We see that we have not specified how the size of a change is measured:
does the “distance” between two rectangles depend on their width and height
independently, for example, or does it depend on the rectangle’s shape? This
problem can be addressed by making the dependency on the way of measuring
change explicit, leading to a notion we call metric least change, which has been
explored and implemented by Macedo and Cunha [40].

Definition. A bx R : M ↔ N is metric-least, with respect to given metrics dM ,
dN on M and N , if for all m ∈M and for all n, n′ ∈ N , we have

R(m,n′) ⇒ dN (n, n′) ≥ dN (n,
−→
R (m,n))

and dually.

Unfortunately, as the rectangle example illustrates, there may not be a canon-
ical metric on a space of models. This is a problem in real life too, not only in
artifical examples. A user of a modelling tool has an intuitive idea that the
distance between two models corresponds to the length of time it would take
to edit one model into the other. Different tools provide different capabilities,
and hence different times, so we could expect difficulty if we tried to define a
standard metric on, say, the space of UML models.

We could assume that this problem could be overcome if necessary, but there
are other drawbacks to the metric least change approach. The most fundamental
is that, even if there is a clear understanding that one change that could restore
consistency is smaller than another, it is not necessarily sensible for the BX
to apply the smaller change. The ModelTests example from the Bx Examples
Repository [58] illustrates. We refer the reader to the repository for details, but in
brief: if a consistency condition applies only to model elements with a particular
stereotype, then removing the stereotype may be a consistency-restoring change
that is tiny according to the user’s intuitive metric, and yet not be desirable
behaviour of a BX.

A further problem with metric least change is that, in a sense formalised and
proved in our paper [17], computing metric least change is NP hard. Another
is that the composition of (lens-like) metric least change BX is not necessarily
metric least. Let us look further.

Beyond metric least change: least surprise When people cooperate, each
working on their own model and applying a BX periodically to restore con-
sistency, they will most likely have negotiated a way of working that involves
applying the BX often enough that neither does a lot of outdated work, but
not so often as to be destabilising. Hidden behind this idea is the assumption
that the behaviour of the BX is predictable in that a sufficiently small change
to one model will cause only a small change to the other. This idea is formalised
in mathematical analysis as continuity. In our paper [17] we consider several
variants of continuity, the most promising of which is Hölder continuity.
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Other ideas Several ideas may repay further study. We may consider not only
changes to the models whose consistency is being maintained, but also to cer-
tain sets of auxiliary information, such as the witness structures that help to
demonstrate consistency.

Finally, exploiting the observation that, even in our tricky examples, there
tend to be many situations in which it is clear what a BX should do, we may
envisage a BX tool that goes beep. This tool knows its own limitations. From some
states of the world (e.g. some pairs (m,n) of models that fall into a particular
subspace pair) it knows how to restore consistency in an unsurprising way. If
asked to, it will do so silently. From other states of the world, it doesn’t know
what to do, or isn’t confident about it, so it will beep. The user may want to
check, perhaps even amend, what the tool did; or the tool may have given up
and done nothing. In this way, the human user’s effort may be saved for the
situations that are hard to automate.

4.3 Dependently typed BX

Proof-relevance The basic picture of a consistency relation R ⊆ M × N and
two consistency restorers

−→
R :M ×N → N and

←−
R :M ×N → M from Section 3.1

leaves implicit the underlying notion of update, relying on a scenario in which
inputs to

−→
R or

←−
R reflect an updated value in the M , respectively N , argument.

We now consider proof-relevant interpretations, via the established identification
of propositions as types in dependent type theory: both updates and (proofs of)
consistency are represented by families of types, with:

– ∂Aa a′ , representing those updates (edits) δ which transform a : A into a ′ : A,
symbolically δ :a 7→ a ′; similarly for ∂Bb b′ ; for classical state-based formalisms
such as asymmetric lenses, take ∂Aa a′ to be the trivial singleton family, in-
habited everywhere by a dummy witness to each state update a 7→ a ′;

– Ra b , representing witnesses r to the proposition ‘R(a, b)’; such families R
may be seen as generalising the notion of lens complement [43] (itself gen-
eralising view-update “with constant complement” [8]; for lenses, the con-
sistency relation is implicit, but recoverable as the graph relation of the get
operation).

As well as dependent types themselves (corresponding set-theoretically to in-
dexed families of sets), the ‘propositions-as-types’ correspondence, where type
inhabitants correspond to proofs (witnesses, as above) of the corresponding
proposition, crucially extends to embrace:

– existential quantification, via the ‘Σ-type’ Σx :X Y , where Y is a family
indexed over X , whose inhabitants are pairs (x , y) such that x : X and
y :Y (x ); the familiar Cartesian product X×Y arises as an instance ofΣx :X Y
for the constant family Y over X . Iterated Σ-types are inhabited by nested
pairs; but in the interests of readability, we suppress nested parentheses in
favour of tuple notation;
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– universal quantification, via the ‘Π-type’ Πx :X Y , where Y is a family in-
dexed over X , whose inhabitants are functions f such that x : X implies
f x :Y (x ); λ-abstraction provides a way to construct such functions in canon-
ical form; similarly to the above, we treat iterated λ-abstraction and appli-
cation in the usual way. Implication between propositions, given the usual
function space X ⇒ Y , arises as an instance of Πx :X Y for the constant
family Y over X .

– equality, as a distinguished relation/type family, satisfying a strong inten-
sional form of the Leibniz property.

For a detailed treatment of this interpretation, as a basis for constructive math-
ematics and functional programming, we refer the interested reader to standard
texts [49, 39].

The above set-up, of proof-relevant consistency relations and dependent type
families of updates, is interpretable in the bicategory [10] Rel of (proof-relevant)
relations: in type theory, with 0-cells given by types A,B ; with 1-cells given by
relations R, identity and composition given by the identity type, and relational
composition (R⊗ S )a c =def Σb:B Ra b × Sb c ; and with 2-cells the proof-relevant
inclusions R ⊆p S =def p :Πa:A,b:B Ra b ⇒ Sa b .

Space forbids a detailed discussion of bicategories, but the reader may gain
some intuition for them by regarding them as a common generalisation of the
‘ordinary’ set-theoretic structure of composition and inclusion on relations, and
that of monoidal categories, just as ‘ordinary’ categories may be regarded as a
common generalisation of the theory of composition of set-theoretic functions,
and that of preorders on the one hand, and monoids on the other.

BX are bisimulations Now, forward consistency restoration specifies that:
given R-consistent a, b (witnessed by r), and an A-update δ : a 7→ a ′, there
should exist a B -update δ′ : b 7→ b′, together with a new witness r ′ to the R-
consistency of a ′, b′ (and vice versa in the backward direction). That is to say,
for each pair a ′, b, forward consistency restoration transforms the triple (a, δ, r)
to the triple (b′, r , δ′), where we consider those triples as inhabiting the types
Σa:A ∂

A
a a′ × Ra b , respectively Σb′:B Ra′ b′ × ∂Bb b′ , using Σ-types to package up

the existential quantifications.
In terms of proof-relevant inclusions, we thus have (with ∂A

◦
the opposite

relation to ∂A) characterised the forward and backward restoration functions as
having the following types:

∂A
◦ ⊗ R ⊆−→

R
R ⊗ ∂B◦ ∂B

◦ ⊗ R ⊆←−
R

R ⊗ ∂A◦

These two inclusions encode algebraically the usual diagrammatic properties
defining a bisimulation between two labelled transition systems, thus (very com-
pactly!) justifying the slogan [41] that the forward and backward transformations
witness R as a proof-relevant bisimulation between the model spaces A,B , with
updates ∂A, ∂B defining the transitions between model states. We write:

R =def (R,
−→
R ,
←−
R) :A −�−�R B



24 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

where A =def (A, ∂A) and B =def (B , ∂B ).

Why bicategories? The above structure yields a further bicategory Bisim,
with 0-cells given by the model spaces A, 1-cells given by BX as proof-relevant
bisimulations R : A −�−�R B, and 2-cells given by proof-relevant equivalences3

R ⊆p R′ ⊆q R between the underlying consistency relations R,R′.

There is a (forgetful) homomorphism of bicategories between Bisim and Rel :
on 0-cells, it forgets the update structure; on 1-cells, it maps a BX R to its
underlying consistency relation R; and on 2-cells, an equivalence (p, q) maps
to p.

This homomorphism depends on a definition of composition ⊗ between BX
(that is, between bisimulations) that is new, as far as we are aware, but which
generalises existing definitions of lens composition:

R⊗ S =def (R ⊗ S ,
−→
R ⊗−→S ,

←−
R ⊗←−S ) :A −�−�R⊗S C

with (
−→
R ⊗ −→S ) (a ′, δa , (b, r , s)) = (c′, (b′, r ′, s ′), δc) where the actions of

−→
R ,
−→
S

on the relevant iterated Σ-types are given by (b′, r ′, δb) =def
−→
R (a ′, δa , r) and

(c′, s ′, δc) =def
−→
S (b′, δb , s). The corresponding definitions for

←−
R⊗←−S are similar,

but omitted for brevity.

Now, one might ask, why all this machinery? At least from a structural
perspective, we now believe we have a satisfactory compositional account of BX.
One criticism of Meertens’ original framework for consistency maintenance is
that his restorers, and their underlying consistency relations, do not naturally
compose. The purpose of the above constructions is to build in enough structure,
at the model plus update plus witness level, to ensure that composition is not
only well-defined, but also that the projection from Bisim down to mere relations
Rel preserves structure. That is, in essence, that the composition of consistency
relations should itself be the consistency relation of the composite BX.

Additional properties Familiar BX properties correspond to additional def-
initions of structure on model spaces, and to strong, intensional constraints on
the interaction between consistency restoration and such structure. We take as a
good sign of the robustness of our definitions that such additional structure gives
rise to full sub-bicategories of Bisim; that is, the definitions of composition, etc.
remain unchanged, but we can further prove that they preserve the additional
structure.

3 The reader troubled by the apparent lack of generality implied by equivalences be-
tween consistency relations may wonder whether a richer class of 2-cells might fit
with this analysis. Certainly, the choice of equivalences is sufficient to consider all
the constructions and coherence conditions necessary for the definition of a bicate-
gory. Moreover, the need for consistency restoration functions to go ‘back-and-forth’,
restoring the same consistency relation R (at least up to extensional equivalence),
seems to make our choice also necessary.



Introduction to Bidirectional Transformations 25

For example, hippocracticness in this setting corresponds to model spaces
having the structure of reflexive graphs, and to consistency restoration preserving
such structure on-the-nose. That is, we have distinguished ‘identity’ updates
ιa : ∂Aa a for each model space, such that

−→
R (a, ιa , r) = (b, ιb , r), and similarly

for
←−
R. Moreover, given R and S both hippocratic, then we can show that so too

is R⊗ S.
Similarly, we may consider history ignorance for BX, by considering addi-

tional structure of composition of updates, and its strict preservation under
consistency restoration. Such BX, too, are closed under ⊗. The combination of
hippocraticness and history ignorance, together with proofs of the corresponding
equational laws, thus amounts to considering model spaces as fully-fledged cat-
egories. So history ignorance, in this generalised setting, might more neutrally
be described as the property of being compositional for updates.

Dependently-typed programming languages such as Agda [50] or Idris [15]
offer a natural home for such proof-relevant constructions, with dependent types
as strong, machine-checkable, correctness specifications: we can, for example,
give a type-theoretic characterisation of the alignment problem in the BX lit-
erature [9, 24], exhibiting its type as that of a (heuristic) search problem: to
(forward) align a ′ : A with b : B is to compute an inhabitant of Σa:A ∂

A
a a′ ×Ra b .

Discussion Our generalisation shares some of the same underlying machinery
as Diskin et al.’s symmetric delta lenses [24], where model spaces are given as
categories, but much of the bicategorical structure of Bisim, and relationships
to other settings which we describe here, is new.

In particular, Hofmann, Pierce and Wagner’s symmetric edit lenses [31, 29]
are an instance of our framework: their ‘stateful monoid homomorphisms’, where
defined, can be precisely captured by the more refined dependent types of our
consistency restoration functions

−→
R ,
←−
R; while their ‘consistency relation’ K ex-

actly corresponds to a consistency relation in our terms given by the dependent
type family Ra b =def {c ∈ C | (a, c, b) ∈ K}. Indeed, by insisting on edit
monoid structure, and consistency restoration as a ‘stateful monoid homomor-
phism’, Hofmann et al. build in precisely the additional properties of hippocrat-
icness and compositionality for edits sketched above.

The reflexive graph structure necessary for hippocraticness has close con-
nections to that explored by Cai et al. in the theory of static differentiation of
functions [16].

The sketch above of our type-theoretical and (bi-)categorical approach is nec-
essarily brief; we defer a longer treatment in full detail to further publications. We
nevertheless hope that the reader might glimpse, at least, a unifying mathemati-
cal basis for (all?) existing BX formalisms, as well as a starting point for compar-
ison with existing work in the related area of version control systems and patch
theory [62, 6], where type-theoretic ideas have also proved fruitful. We further
conjecture that interpretations of our constructions in other (enriched) categor-
ical settings may shed light on (geo-)metric accounts of consistency restoration,
in terms of a ‘differential geometry of consistency restoration’ [42].
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32. Zhenjiang Hu, Andy Schürr, Perdita Stevens, and James F. Terwilliger. Bidirec-
tional transformations “bx” (Dagstuhl Seminar 11031). Dagstuhl Reports, 1(1):42–
67, 2011.

33. Michael Johnson and Robert D. Rosebrugh. Lens put–put laws: Monotonic and
mixed. In BX Workshop, 2012. In ECEASST volume 49.



28 F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens

34. Michael Johnson and Robert D. Rosebrugh. Spans of lenses. In James Terwilliger
and Soichiro Hidaka, editors, BX Workshop, volume 1133 of CEUR Workshop
Proceedings, pages 112–118. CEUR-WS.org, 2014.

35. Michael Johnson and Robert D. Rosebrugh. Unifying set-based, delta-based and
edit-based lenses. In Anthony Anjorin and Jeremy Gibbons, editors, BX Workshop,
volume 1571 of CEUR Workshop Proceedings, pages 1–13. CEUR-WS.org, 2016.

36. Michael Johnson, Robert D. Rosebrugh, and Richard J. Wood. Lenses, fibra-
tions and universal translations. Mathematical Structures in Computer Science,
22(1):25–42, 2012.

37. Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In Principles of Programming Languages, pages 71–84, 1993.

38. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages, pages 333–343, 1995.

39. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
International Series of Monographs on Computer Science. Oxford University Press,
1994.

40. Nuno Macedo and Alcino Cunha. Least-change bidirectional model transformation
with QVT-R and ATL. Software and System Modeling, 15(3):783–810, 2016.

41. James McKinna. Bidirectional transformations are proof-relevant bisimulations.
Extended Abstract presented at ICFP Workshop TyDe, Nara, Japan, 2016. Video
available at: https://www.youtube.com/watch?v=33RYwcIQ7UM.

42. James McKinna. Bidirectional transformations with deltas: A dependently typed
approach (talk proposal). In Bx Workshop, ETAPS, 2016. http://ceur-ws.org/

Vol-1571/paper_11.pdf.

43. James McKinna. Complements witness consistency. In Bx Workshop, ETAPS,
2016. http://ceur-ws.org/Vol-1571/paper_10.pdf.

44. Lambert Meertens. Designing constraint maintainers for user interaction. CWI,
Amsterdam; available from http://www.kestrel.edu/home/people/meertens/

pub/dcm.ps, June 1998.

45. Lambert Meertens. Designing constraint maintainers for user interaction. In Shin-
Cheng Mu, editor, Third Workshop on Programmable Structured Documents, pages
1–3, PSD Laboratory, Tokyo University, 2005.

46. Microsoft. Windows Presentation Foundation. https://msdn.microsoft.com/

en-us/library/ms754130.aspx, 2006.

47. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

48. Ted Neward. The Vietnam of computer science. http://blogs.tedneward.com/

post/the-vietnam-of-computer-science/, June 2006.

49. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf ’s
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