Preface

Generic programming is about making programming more effective by making it more general. This volume is about a novel form of genericity in programs, based on parameterizing programs by the structure of the data they manipulate. The material is based on lectures presented at a summer school on Generic Programming held at the University of Oxford in August 2002.

The lectures by Hinze and Jeuring introduced Generic Haskell, an extension of the Haskell programming language that allows the programmer to define a function by induction on the structure of types. The implementation of Generic Haskell provided a valuable tool for students to experiment with applications of this form of datatype genericity. The lecture material in this volume is divided into two parts. The first part (“practice and theory”) introduces Generic Haskell and the theory that underlies its design. The second part (“applications”) discusses three advanced applications of Generic Haskell in some depth.

The value of generic programming is illusory unless the nature and extent of the genericity can be described clearly and precisely. The lectures by Backhouse and Crole delve deeper into the theoretical basis for datatype genericity. Backhouse reviews the notion of parametric polymorphism (a notion well known to functional programmers) and then shows how this notion is extended to higher-order notions of parametricity. These are used to characterize what it means for a value to be stored in a datatype. Also, transformations on data structures are given precise specifications in this way. Underlying this account are certain basic notions of category theory and allegory theory. Crole presents the category theory needed for a deeper understanding of mechanisms for defining datatypes.

The final chapter, by Fiadeiro, Lopes and Wermelinger applies the mathematical “technology” of parameterization to the larger-scale architectural structure of programs. The description of a system is split into components and their interactions; architectural connectors are parameterized by components, leading to an overall system structure consisting of components and connector instances establishing the interactions between the components.

Our thanks go to all those involved in making the school a success. We are grateful to the technical support staff of the Oxford University Computing Laboratory for providing computing facilities, to Yorck Hunke, David Lacey and Silvija Seres of OUCL for assistance during the school, and to St. Anne’s College for an amenable environment for study. Thanks also go to Peter Buneman and Martin Odersky, who lectured at the school on *Semi-structured Data* and on *Object-Oriented and Functional Approaches to Compositional Programming*, respectively, but were unable to contribute to the proceedings.

June, 2003

Roland Backhouse
Jeremy Gibbons
Contributors

Roland Backhouse
School of Computer Science and Information Technology,
University of Nottingham, Nottingham, NG8 1BB, UK
rcb@cs.nott.ac.uk
http://www.cs.nott.ac.uk/~rcb/

Roy Crole
Department of Mathematics and Computer Science,
University of Leicester, University Road, Leicester, LE1 7RH, UK
roy.crole@mcs.le.ac.uk
http://www.mcs.le.ac.uk/~rcrole/

José Luiz Fiadeiro
Department of Computer Science, University of Leicester, University Road,
Leicester, LE1 7RH, UK
jose@fiadeiro.org

Ralf Hinze
Institut für Informatik III, Universität Bonn, Römerstraße 164,
53117 Bonn, Germany
ralf@informatik.uni-bonn.de
http://www.informatik.uni-bonn.de/~ralf/

Paul Hoogendijk
Philips Research, Prof. Holstlaan 4, 5655 AA Eindhoven, The Netherlands
Paul.Hoogendijk@philips.com

Johan Jeuring
Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
and
Open University, Heerlen, The Netherlands
johanj@cs.uu.nl
http://www.cs.uu.nl/~johanj/

Antónia Lopes
Department of Informatics, Faculty of Sciences, University of Lisbon,
Campo Grande, 1749-016 Lisboa, Portugal
mal@di.fc.ul.pt

Michel Wermelinger
Dept. of Informatics, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
mw@di.fct.unl.pt
Table of Contents

Chapter 1. Generic Haskell: Practice and Theory 1
R. Hinze and J. Jeuring

1 Introduction ... 1
1.1 Type Systems .. 2
1.2 Haskell’s data Construct 3
1.3 Towards Generic Programming 7
1.4 Towards Generic Haskell 12
1.5 Stocktaking .. 17
1.6 Related Work .. 18

2 Generic Haskell—Practice .. 22
2.1 Mapping Functions ... 22
2.2 Kind-Indexed Types and Type-Indexed Values 25
2.3 Embedding-Projection Maps 26
2.4 Reductions .. 27
2.5 Pretty Printing .. 30
2.6 Running Generic Haskell 33

3 Generic Haskell—Theory ... 35
3.1 The Simply Typed Lambda Calculus as a Type Language 35
3.2 The Polymorphic Lambda Calculus 40
3.3 Specializing Type-Indexed Values 42
3.4 Bridging the Gap ... 45

4 Conclusion ... 52

Chapter 2. Generic Haskell: Applications 57
R. Hinze and J. Jeuring

1 Introduction ... 57

2 Generic Dictionaries ... 62
2.1 Introduction ... 63
2.2 Signature .. 65
2.3 Properties ... 66
2.4 Type-Indexed Tries ... 67
2.5 Empty Tries ... 70
2.6 Singleton Tries ... 71
2.7 Look up ... 72
2.8 Inserting and Merging 73
2.9 Deleting ... 75
2.10 Related Work .. 76

3 XComprez: A Generic XML Compressor 77
3.1 Implementing an XML Compressor as a Generic Program 78
3.2 Analysis ... 83
3.3 Conclusions ... 84
Table of Contents

Chapter 3. Generic Properties of Datatypes

R. Backhouse and P. Hoogendijk

1. **Introduction** .. 97
2. **Theorems for Free** .. 98
 2.1 Verifiable Genericity ..1 02
3. **Commuting Datatypes — Introduction**1 02
 3.1 Structure Multiplication1 04
 3.2 Broadcasts ..1 06
4. **Allegories and Relators** ..1 09
 4.1 Allegories ...1 09
 4.2 Relators ...1 10
 4.3 Composition and Relators Are Parametric1 12
 4.4 Division and Tabulation1 13
 4.5 Domains ..1 14
5. **Datatype = Relator + Membership**1 14
 5.1 Pointwise Closure ..1 14
 5.2 Regular Relators ...1 16
 5.3 Natural Transformations1 19
 5.4 Membership and Fans1 21
6. **Commuting Datatypes — Formal Specification**1 25
 6.1 Naturality Requirements1 26
 6.2 Composition ...1 28
 6.3 Half Zips and Commuting Relators1 28
7. **Consequences** ...1 29
 7.1 Shape Preservation ...1 29
 7.2 All Regular Datatypes Commute1 30
8. **Conclusion** ...1 31

Chapter 4. Basic Category Theory for Models of Syntax

R.L. Crole

1. **Introduction** ..1 33
 1.1 Prerequisites ...1 33
 1.2 The Aims ...1 34
 1.3 Learning Outcomes ...1 34
2. **Syntax Defined from Datatypes**1 34
 2.1 An Example with Distinguished Variables and without Binding .135
 2.2 An Example with Distinguished Variables and Binding1 36
 2.3 An Example with Arbitrary Variables and Binding1 37
 2.4 An Example without Variables but with Binding1 38
Table of Contents

3 Category Theory ..139
3.1 Categories ...139
3.2 Functors ..143
3.3 Natural Transformations144
3.4 Products ..146
3.5 Coproducts ..150
3.6 Algebras ..151
3.7 The Functor $1 + (-): \text{Set} \rightarrow \text{Set}$152
3.8 The Functor $A + (-): \text{Set} \rightarrow \text{Set}$153
3.9 The Functor $1 + (A \times -): \text{Set} \rightarrow \text{Set}$154
4 Models of Syntax ...154
4.1 A Model of Syntax with Distinguished Variables
 and without Binding ..157
4.2 A Model of Syntax with Distinguished Variables
 and with Binding ..162
4.3 A Model of Syntax with Arbitrary Variables and Binding165
4.4 A Model of Syntax without Variables but with Binding168
4.5 Where to Now? ..168
5 Appendix ..170
 5.1 Lists ..170
 5.2 Abstract Syntax Trees170
 5.3 Inductively Defined Sets170
 5.4 Rule Induction ..173
 5.5 Recursively Defined Functions175

Chapter 5. A Mathematical Semantics for Architectural Connectors 178

J.L. Fiadeiro, A. Lopes and M. Wermelinger

1 Introduction ..178
2 System Configuration in CommUnity180
 2.1 Component Design ...180
 2.2 Configurations ...184
3 Architectural Description in CommUnity191
 3.1 Architectural Connectors191
 3.2 Examples ..196
4 An ADL-Independent Notion of Connector201
 4.1 Architectural Schools201
 4.2 Adding Abstraction to Architectural Connectors207
5 Towards an Algebra of Connectors213
 5.1 Role Refinement ..214
 5.2 Role Encapsulation ..216
 5.3 Role Overlay ...218
6 Concluding Remarks ..219

Author Index ..223