
Towards a colimit-based semantics
for visual programming

Jeremy Gibbons

University of Oxford

Abstract. Software architects such as Garlan and Katz promote the
separation of computation from coordination. They encourage the study
of connectors as first-class entities, and superposition of connectors onto
components as a paradigm for component-oriented programming. We
demonstrate that this is a good model for what visual programming tools
like IBM’s VisualAge actually do. Moreover, Fiadeiro and Maibaum’s
categorical semantics of parallel programs is applicable to this model, so
we can make progress towards a formal semantics of visual programming.

Keywords: Object-oriented programming, fragile base class problem,
component software, coordination, connectors, visual programming, col-
imits, pushouts.

Contribution and relevance: This paper concerns applications of co-
ordination, theoretical models and foundations of coordination, tools for
the development of coordinated applications, and industrial relevance of
coordination. We build on existing work on superposition and on colimit-
based semantics of system assemblies; our contributions are to show that
superposition is a good model of the action of visual programming tools
such as IBM’s VisualAge, and to make the first steps in applying the
colimit approach to semantics to this domain.

1 Introduction

There are signs that the popularity of pure object-oriented programming is re-
ceding, to be replaced by component-oriented programming [16]. One motivation
for this trend is the desire for gaphical tools to support visual assembly by third
parties of independently-developed software components. The code generated
by such visual programming tools has the kind of architecture promoted by re-
searchers such as Garlan [1] and Katz [9], who argue for the separation of actual
computational behaviour from the coordination of these computations.

Their approach encourages the study of connectors as first-class entities,
and superposition of connectors onto components as a paradigm for application
assembly. Moreover, Fiadeiro and Maibaum’s colimit-based categorical semantics
of parallel programs [3], a descendant of Goguen’s General Systems Theory [5],



is applicable to this paradigm, so we can put the two together to make progress
towards a formal semantics of visual programming.

In this paper we build on the above-mentioned existing work on superposi-
tion and on colimit-based semantics of system assemblies. Our contributions are
two-fold: to show that superposition is a good model of the action of visual pro-
gramming tools such as IBM’s VisualAge, and to make the first steps in applying
the colimit approach to semantics to superposition of coordinators.

The remainder of the paper is structured as follows. In Section 2 we explain
the move from object-oriented to component-oriented programming. In Section 3
we describe how visual programming tools operate, with a simple worked exam-
ple. In Section 4 we outline the components-and-connectors approach to software
architecture, and summarize Goguen’s General System Theory, and Maibaum
and Fiadeiro’s development of it as a model of concurrent systems. Although we
are not yet at a stage to apply this theory directly to arbitrary software com-
ponents, we provide in Section 5 a simplified illustration in terms of concurrent
processes.

2 Component software

Like many fields, programming methodology goes through fashions. From time
to time new techniques and paradigms arise, promising to alleviate the prob-
lems of software development. Researchers and practitioners invest time, money
and energy in each new trend, hoping to make progress in the difficult task of
constructing high-quality software at a reasonable cost. However, after a while
disillusionment sets in, as the realization dawns that each new approach either
fails to solve the original problems, or introduces new problems of its own, or
both.

For a relatively long period of time, object-oriented programming was the
height of software development fashion. The encapsulation of code and data
together as classes of objects increases modularity, encouraging separation of
concerns and reducing coupling between units of software; moreover, the notion
of subclassing to capture specialized classes of objects, inheriting some code from
the superclass and overriding the rest, promotes flexibility and reuse.

As usual, however, once the novelty had worn off, it became apparent that
the object-oriented approach was not the last word in programming paradigms.
In particular, inheritance breaks encapsulation [14]: in order reliably to define
a subclass, one needs to see not just the public interface but also the private
implementation of the superclass. This leads to the fragile base class problem
[11]: because the subclass (or ‘derived class’) depends on the implementation as
well as the interface of the superclass (or ‘base class’), if the latter is revised to
update the implementation — even without changing the public interface — the
former can break.

For example, consider the Java class CharArray defined in Figure 1, which
maintains a string (as a zero-terminated array of characters, as it happens).
The public interface of this class reveals only the signatures of the methods



public class CharArray {

protected char[] chars;

public CharArray() {

chars = new char[100];

chars[0] = ’\0’;

}

public String getString() {

int i; for (i = 0; chars[i] != ’\0’; i++);

return new String(chars, 0, i);

}

public void insert (char c, int pos) {

int i; for (i = 0; chars[i] != ’\0’; i++);

for (; i>=pos; i--) chars[i+1] = chars[i];

chars[pos] = c;

}

public void prefix (char c) {

insert (c, 0);

}

}

Fig. 1. The class CharArray



getString, insert and prefix and of the constructor; the implementations
should be hidden. Now consider the subclass defined in Figure 2, which adds an
attribute length, initialized in the constructor, updated in the method insert,
and accessed by the method getLength. If the writer of the subclass can see

public class CharArrayLength extends CharArray {

protected int length;

public CharArrayLength() {

super();

length = 0;

}

public int getLength() {

return length;

}

public void insert (char c, int pos) {

super.insert(c,pos);

length++;

}

}

Fig. 2. The subclass CharArrayLength

the implementation of the superclass, they can see that the method prefix is
defined there in terms of insert, and deduce that it is sufficient to override only
the latter method; but this deduction might be invalidated by a revision of the
superclass. If they cannot see the implementation, they cannot rely on this aspect
of the design, and must also override prefix. If one is to respect encapsulation,
much potential code reuse is lost. Note also that it would be wrong to override
prefix in the same way by copying its definition from the superclass and adding
a statement to increment length, as shown in Figure 3: the overridden insert
will still be called, and length will in the end be incremented twice — a fact
that cannot be deduced from the public interface of the superclass alone.

public void prefix (char c) {

super.prefix(c);

length++;

}

Fig. 3. An incorrect overriding of prefix



These problems have led some [16] to propose component-oriented program-
ming as an improvement on object-oriented programming. The emphasis is on
object composition rather than class inheritance, and delegation rather than
overriding. Thus, an instance of CharArrayLength would ‘have a’, rather than
‘be a’, CharArray, and would forward messages to this separate object rather
than relying on overriding to determine which class supplies the implementation
of a particular method.

The motivation for this development, of course, is to avoid the problems
described above that are introduced by inheritance and overriding. This paves
the way for a programming methodology based on third-party assembly of black
boxes: an instance of CharArrayLength can safely rely on an instance of CharArray
to maintain the array of characters, without having to know how that is actu-
ally achieved. To assemble these two instances, one need only know their public
interfaces. Component assembly can in principal be done visually, using drag-
and-drop gestures to indicate how one component is to be connected to another,
as we describe in the next section.

In this paper, we take for granted the above arguments in favour of component-
oriented programming, and also the virtues of visual programming. Our aim is
not to question whether these are indeed wise developments; they are both un-
questionably in use in industry. Rather, we aim to explain what is really going
on behind the scenes in visual programming tools, in order better to understand
how to use them, and to learn how to use them better.

3 Visual assembly of components

Once one has a coding style that allows components to be combined based only
on their public interfaces, independently of the private implementations, it be-
comes possible for third parties to assemble these components into applications
without needing to look at their implementations. Indeed, component assemblers
need not look at code at all: they can literally treat components as black boxes on
a canvas, and connect components by drawing lines between the boxes. Support-
ing software can interpret the lines, perhaps asking the assembler for clarification
when multiple interpretations are possible, and automatically generate the code
that the assembler is avoiding having to write.

This is exactly what visual programming tools like IBM’s VisualAge for Java
[7] do. The details differ from tool to tool, but the idea is fairly consistent. There
will be a palette of computational components, and a canvas on which these com-
ponents can be dropped. Two components are connected by dragging a rubber
band line from one and dropping it on the other; this connection corresponds to
some code, which is generated automatically by the tool. The possible interpre-
tations of a ‘connection’ will depend on the underlying language, but typically
they all boil down to the invocation of some method on the target component,
given some suitable triggering condition on the source component.

The Java language [6], and in particular the JavaBeans coding specification
[10], was specifically designed to permit this kind of component assembly without



stepping outside the language. Reflection can be used on compiled Java code
to determine what methods are supported, but the Java class libraries were
constructed in such a way as to avoid having to do this wherever possible. The
code generated by the tool is source-level Java, which can be examined and if
necessary modified afterwards.

3.1 A ‘counter’ example

To illustrate the kinds of assembly that are possible, consider the little Java
applet in Figure 4. When one clicks on the button at the left, the number in the

Fig. 4. A counter applet

label at the right increments. Given a suitable library of components (a button,
a counter, a label), one might reasonably expect to construct this applet without
actually writing any code. This is the promise of visual program assembly.

This applet was actually constructed with IBM’s VisualAge for Java (but
many other visual programming tools would be just as good). A snapshot of the
visual programming editor is provided in Figure 5. The main window contains
the canvas, on which component instances, chosen from the palette at the left,
are placed. Here we see three component instances, the button and label (both
visible, so inside the dotted box), and the counter (invisible, so outside). The
behaviours of the component instances are coordinated by means of the two
connectors, drawn as lines in the editor. The lines are in different styles (although
this might be difficult to see in the diagram), because the connectors are of
different kinds: the connector between the button and the counter is an event
adapter, adapting the counter’s interface to the format required to be a listener



Fig. 5. A visual programming editor

for the button’s events, and the connector between the counter and the label
is a property binder, maintaining the invariant that the text attribute of the
latter equals the value attribute of the former. The architecture is illustrated
informally in Figure 6.

From this construction, the editor automatically generates a program with
the class structure illustrated in Figure 7. The Button, Counter and Label classes
already exist, as do the ActionListener and PropertyChangeListener interfaces
with which the first two interact. The tool automatically generates two new
classes: EventAdapter, which implements the actionPerformed() method of the
ActionListener interface to call the step() method of a target ; and Proper-
tyBinder, which implements the propertyChanged() method of the Property-
ChangeListener interface to call the setText(String) method of a target. (In fact,
VisualAge generates a single class, an inner class of the applet, which implements
both interfaces at once; but the effect is the same.) The tool also generates a
class for the applet as a whole, which creates one instance each of the three
components and the two connectors and hooks them up appropriately.

3.2 But what does it mean?

Visual programming tools like IBM’s VisualAge, Borland’s JBuilder, Microsoft’s
Visual C++ and so on usually provide only informal descriptions of the meaning
of the gestures by which programs are assembled; it can be difficult to predict



Fig. 6. The architecture of the counter applet

Fig. 7. The class structure of the counter applet



what the outcome of a particular series of gestures will be. Usually the outcome
is in fact a source-level program, albeit not necessarily a pretty one; so one can
in principle discover the meaning after the fact by examining this generated
code — but that doesn’t help much with predictability. Without precise, and
preferably formal, descriptions of outcomes, no analysis of the visual assembly
as a construction in its own right is possible, and programming is reduced to a
trial-and-error process, or at best a ‘black art’.

It would be much better to have a formal semantics of the visual assem-
bly as a construction in its own right. As the construction is a diagrammatic
entity, this strongly suggests a categorical semantics: category theory provides
a denotational semantics for diagrams. (This is in contrast to formalisms such
as graph grammars, which specify a syntax for diagrams, and graph rewriting,
which provides an operational semantics.) It turns out that one can give a clean,
simple semantics of such a visual construction as the colimit of a diagram of
components and connectors; we show how in the remainder of the paper.

We envisage that components in the component library will come provided
with their semantics, and that coordination is achieved through a small, fixed
collection of (customizable) connectors, each again with its own (parametrized)
semantics. Program assembly is a matter of constructing a diagram of compo-
nents and connectors, as described below. The semantics of the construction is
the colimit of the diagram.

4 Connectors and superposition

As software systems become larger and more complex, the difficult problems
and the focus of interest migrate from the small-scale algorithmic aspects of in-
dividual components to the large-scale organizational aspects of the system as
a whole — the software architecture [13]. As a step towards formalizing soft-
ware architectures, Allen and Garlan [1] propose the separation of computation
(sequential, single-threaded algorithmic activities) from coordination (the glue
that binds computations together), and the study of the connectors by which
coordination is achieved as first-class entities in their own right.

In this proposal, Allen and Garlan were following in the footsteps of a sim-
ilar journey made a few years earlier by Katz [9], who had proposed superim-
position or superposition of connectors (for coordination) onto components (for
computation) as a paradigm for distributed computing. The parallels between
large-scale software architecture and distributed computing should come as no
surprise: in both fields, the components from which a system is assembled are
of a fundamentally different character than the system itself, and the developer
is concerned with complex behaviour emerging from the interactions between
(relatively) simple independent units.

According to this view, the ‘counter’ application developed in Section 3.1
consists of three components (the button, the counter itself, and the label) co-
ordinated by superposing two connectors (the event adapter and the property
binder). The components came ‘off the shelf’; the connectors were generated



automatically by the visual programming tool from gestures made by the as-
sembler. In order to generate this code, the tool needs to know nothing about
the components beyond their publicly-advertised interfaces. (Note that there is
essentially no inheritance in the system; everything is achieved through object
composition, as suggested by Szyperski [16].)

4.1 Categorical semantics of superposition

Fiadeiro and Maibaum [3] provide a semantics for Allen and Garlan’s notion of
connector, building on Goguen’s categorical General Systems Theory [5]. Goguen
based this on the following slogan:

given a category of widgets, the operation of putting a system of widgets
together to form a super-widget corresponds to taking a colimit of the
diagram of widgets that shows how to interconnect them.

We believe that this approach can be taken to give a precise semantics for Java
applications assembled from JavaBeans, and for similar visual program devel-
opment methods. We cannot yet justify this belief, though; for one thing, we
would have to identify a category of JavaBeans, and this is still a subject of
much research (see for example [8], and other work from the LOOP project).
What we can do is illustrate the approach in a simpler setting, and trust that
the reader will accept at least that the approach is worth exploring.

In the remainder of Section 4, we explain the General Systems Theory slogan
in the context of superposition. In Section 5, we illustrate its application to the
superposition of simple processes.

4.2 Superposition via colimits

In this section we present formal definitions of the categorical definitions leading
up to colimits. We have tried to present these in as elementary a manner as
possible, so in some cases the definitions are non-standard, although equivalent
to the standard definitions. (For example, the usual definition of a diagram in a
category C is as a functor from an indexing category to C; the definition given
here avoids having first to define functors.)

Definition 1 (Category). A category C consists of a collection Obj (C) of ob-
jects and a collection Arr(C) of arrows, together with mappings src, tgt (‘source’
and ‘target’) from Arr(C) to Obj (C) and id (‘identity’) from Obj (C) to Arr(C),
such that:

• id(A) : A → A for every A ∈ Obj (C);
• whenever f : A → B and g : B → C, there is a composite f ; g : A → C;
• composition is associative;
• id(A) ; f = f = f ; id(B) when f : A → B;

where we write ‘f : A → B’ as a shorthand for ‘src(f ) = A and tgt(f ) = B’.
(Note that there is no direct relationship between the use of the term ‘object’ here
and its use as in ‘object-oriented programming’.)



Remark 2 (Components). The categories with which we are concerned will
have system components as objects. The example in Section 5 uses a simple kind
of process for the objects; we intend to construct a category in which JavaBeans
and connectors are the objects. In each case, when the actions of one compo-
nent can be synchronized with those of another, there is an arrow between the
corresponding objects witnessing the synchronization relationship.

Definition 3 (Diagram). A diagram in a category is a subcategory, that is,
subcollections of the objects and the arrows, such that for every arrow included,
its source and target objects are included.

Remark 4 (Systems composed from components). In our case, a diagram
of components models a system composed from those components. The arrows in
the diagram indicate the synchronizing interconnections between the components.

Definition 5 (Cocone). A cocone (X , g) of a diagram with objects Ai and
arrows fk is an object X and a family of arrows gi : Ai → X coherent with the
fk — that is, gi = fk ; gj for each fk : Ai → Aj . See Figure 8.

A0 A1 Ai Ai+1
f0 f1 fi-1 fi fi+1 ……

X

g0

g1 gi

gi+1

Fig. 8. A cocone

Definition 6 (Colimit). A colimit of a diagram is an initial cocone, one through
which any other cocone uniquely factorizes. That is, a colimit is a cocone (X , g)
such that for any other cocone (Y , h), there is a unique arrow α : X → Y such
that gi ; α = hi for every object Ai . See Figure 9.

Remark 7 (Pushout). One sometimes hears of the ‘colimit approach’ to se-
mantics, and sometimes of the ‘pushout approach’. A pushout is simply a colimit
of a span diagram — a diagram of two arrows with a common source. See Fig-
ure 10.

Remark 8 (Colimits of compositions of components). Intuitively, colim-
its capture least upper bounds. In the case of a diagram representing a system
composed from components, with arrows witnessing synchronizations between
pairs of components, the colimit is a super-component with which all the com-
ponents synchronize, or equivalently, the smallest common extension of all the
components. Goguen’s slogan of General Systems Theory dictates that this is the
appropriate meaning of the individual compositions.



A0 A1 Ai Ai+1
f0 f1 fi-1 fi fi+1 ……

X

g0 g1 gi gi+1

Y

h0
h1 hi hi+1

Fig. 9. A colimit

A C

fA fC
B

X

gA gC

Y

hA hC

gB

hB

Fig. 10. A pushout

5 A simplified example of the categorical semantics

In order to complete our plan to provide a categorical semantics for visual pro-
gramming (for instance, visual composition of JavaBeans), we first need to choose
a category in which JavaBeans are objects. As observed above, the right such
choice is still an open question. We postpone that choice to further research, and
resort here to a rather simpler setting: instead of JavaBeans, we will consider
traced processes. (This illustration is based on [3].)

5.1 Traced processes

Consider processes of the form

Toggle = step ❀ step,rollover ❀ Toggle

The intention is that at each time step, a process in a particular state engages
in some actions and moves into a different state. At some time steps, the process
may engage in no actions (and stay in the same state).

5.2 Modelling processes

A process or component C may be modelled as a pair 〈ΣC ,TC 〉, where



• ΣC is the alphabet (a set), and
• TC is the set of traces (a set of streams of finite subsets of ΣC ).

The events in each trace are subsets rather than elements of the alphabet in
order to capture absent and simultaneous actions. Trace sets are closed under
stalling : whenever 〈s0, s1, . . .〉 is in TC , so also is 〈s0, s1, . . . , si , { }, si+1, . . .〉, for
each value of i .

For example, the component Toggle has alphabet

ΣToggle = {step, rollover}

and a trace set TToggle that consists of all possible stallings of the basic trace

〈{step}, {step, rollover}, {step}, {step, rollover}, . . .〉

(From now on, we’ll abbreviate ‘step’ to ‘s’ and ‘rollover ’ to ‘r ’.)

5.3 Arrows between processes

We define the category TProc to have traced processes as objects, and embeddings
between processes as arrows. An embedding is a witness as to how one process is
simulated by another. Intuitively, a process C is embedded within, or simulated
by, a process D if, by renaming some of the actions of D and ignoring the others,
it is possible to make D look like C ; the embedding is simply the renaming
function.

Formally, the arrow f : 〈ΣC ,TC 〉 → 〈ΣD ,TD〉 is a partial function f from
ΣD to ΣC such that

for every trace t ′ ∈ TD , there exists a trace t ∈ TC such that, for every
event t ′n = {d1, . . . , dm} of t ′, the corresponding event tn of t is the set
of actions {c ∈ ΣC | ∃i . 1 ≤ i ≤ m ∧ di ∈ dom f ∧ f di = c}, the image
of t ′n under f .

For example, consider the simpler process

Clock = tick ❀ Clock

with alphabet ΣClock = {tick}, and trace set TClock all stallings of 〈{tick}, {tick}, . . .〉.
(From now on, we’ll abbreviate ‘tick ’ to ‘t ’.) The process Clock is simulated by
the process Toggle, if (for example) one looks only at the r actions of the latter
and thinks of them as t actions. So the category TProc contains a morphism
f : Clock → Toggle, where the function f from ΣToggle to ΣClock is the one-point
function {r �→ t}.

5.4 Assembling components

It is well-known that toggles can be chained to make asynchronous counters.
The rollover event r of one toggle should be coordinated with the step event s
of the next.



In the spirit of superposition, this coordination should be coordinated by a
separate connector. In this case, the right connector to use is just Clock ; it acts
as a channel between the two toggles, or an adapter between their interfaces.
This is captured by the diagram in Figure 11.

Clock
t

Toggles r Toggles r

r t� s t�

Fig. 11. Interconnection of toggles

What does this collection of boxes and lines mean? Just the colimit of the
diagram, as illustrated in Figure 12. We claim that the colimit of the connection

Clock
t

Toggles r Toggles r

Two
Toggle

ss rr

rs

r t� s t�

ss s,
rs r
�
�

rs s,
rr r
�
�

rs t�

Fig. 12. Colimit of toggle system

diagram in Figure 11 is the process TwoToggle, with alphabet

ΣTwoToggle = {ss, rs, rr}

and trace set TTwoToggle all stallings of the basic trace

〈{ss}, {ss, rs}, {ss}, {ss, rs, rr}, . . .〉

This is indeed the least common extension of the three connected components,
and it does indeed model the two-bit counter formed from two chained one-bit
counters.



6 Conclusion

It is probably clear from the above presentation that these are very preliminary
ideas — more of a research proposal than a research report. There are many
questions still to be answered and directions in which to explore, including:

• What standard process algebra (as opposed to the home-grown one used
here) is best suited to describing the kinds of connection involved in visual
program assembly?

• Is the corresponding category actually finitely cocomplete, which is to say,
does every diagram of interconnected components possess a colimit and
hence a meaning? Perhaps some healthiness conditions need to be placed
on the diagram in order to guarantee the existence of the colimit.

• What is a suitable category for visually-composed components, such as Java-
Beans?

• Although this approach was originally envisioned as simply providing a se-
mantics for visual program assembly, can it in fact provide more? For ex-
ample, the colimit approach has been used in systems such as the SpecWare
program synthesis tool [15], in which it captures the notion of ‘completion
of theories’; SpecWare can automatically construct colimits. Can this con-
struction form the basis of a visual programming tool?

• Other applications of the approach can be envisaged. For example, one prob-
lem in the use of design patterns [4] is that of tracing the instantiation of
the design pattern through the development of a piece of software [2]. Su-
perposition can perhaps capture the sense in which a design pattern is ‘a
component of’ a software system, in which case there is hope of formally
recording this information throughout the development process.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering Methodology, 6(3), 1997.

2. S. Bünnig, P. Forbrig, R. Lämmel, and N. Seemann. A programming language for
design patterns. In Arbeitstagung Programmiersprachen, Paderborn, October
1999.

3. J. L. Fiadeiro and T.S.E. Maibaum. Categorical semantics of parallel program
design. Science of Computer Programming, 28(2–3):111–138, 1997.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. J.A. Goguen. Categorical foundations of general systems theory. In F. Pichler
and R. Trappl, editors, Advances in Cybernetics and Systems Research, pages
121–130. Transcripta, 1973.

6. J. Gosling, B. Joy, and G. Steele. Java Language Specification. Addison-Wesley,
1996.

7. IBM. VisualAge for Java. http://www.ibm.com/software/ad/vajava.
8. B. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,

C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83–103. Kluwer, 1996.



9. S. Katz. A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337–356, 1993.

10. Sun Microsystems. JavaBeans specification.
http://java.sun.com/products/javabeans/docs/spec.html, 1997.

11. L. Mikhajlov and E. Sekerinski. A study of the Fragile Base Class problem. In
European Conference on Object-Oriented Programming, pages 355–382, 1998.

12. B.C. Pierce. Basic Category Theory for Computer Science. MIT Press, 1991.
13. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.
14. A. Snyder. Encapsulation and inheritance in object-oriented programming

languages. In M. Meyrowitz, editor, Object-Oriented Programming, Systems,
Languages and Applications, pages 38–45, 1986. SIGPLAN Notices 21(11).

15. Y. V. Srinivas and R. Jüllig. SpecWare: Formal support for composing software.
In Bernhard Möller, editor, LNCS 947: Mathematics of Program Construction.
Springer-Verlag, 1995.

16. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.


