
Towards a colimit-based semantics
for visual programming

Jeremy Gibbons

University of Oxford

Abstract. Software architects such as Garlan and Katz promote the
separation of computation from coordination. They encourage the study
of connectors as first-class entities, and superposition of connectors onto
components as a paradigm for component-oriented programming. We
demonstrate that this is a good model for what visual programming tools
like IBM’s VisualAge actually do. Moreover, Fiadeiro and Maibaum’s
categorical semantics of parallel programs is applicable to this model, so
we can make progress towards a formal semantics of visual programming.

1 Introduction

There are signs that the popularity of pure object-oriented programming is re-
ceding, to be replaced by component-oriented programming [16]. One motivation
for this trend is the desire for gaphical tools to support visual assembly by third
parties of independently-developed software components. The code generated
by such visual programming tools has the kind of architecture promoted by re-
searchers such as Garlan [1] and Katz [9], who argue for the separation of actual
computational behaviour from the coordination of these computations.

Their approach encourages the study of connectors as first-class entities,
and superposition of connectors onto components as a paradigm for application
assembly. Moreover, Fiadeiro and Maibaum’s colimit-based categorical semantics
of parallel programs [3], a descendant of Goguen’s General Systems Theory [5],
is applicable to this paradigm, so we can put the two together to make progress
towards a formal semantics of visual programming.

In this paper we build on the above-mentioned existing work on superposi-
tion and on colimit-based semantics of system assemblies. Our contributions are
two-fold: to show that superposition is a good model of the action of visual pro-
gramming tools such as IBM’s VisualAge, and to make the first steps in applying
the colimit approach to semantics to superposition of coordinators.

The remainder of the paper is structured as follows. In Section 2 we motivate
the movement from object-oriented to component-oriented and visual program-
ming, and describe how visual programming tools operate, with the help of a sim-
ple example. In Section 3 we outline the components-and-connectors approach
to software architecture, and summarize Goguen’s General System Theory, and
Maibaum and Fiadeiro’s development of it as a model of concurrent systems.
Although we are not yet at a stage to apply this theory directly to arbitrary



2 Jeremy Gibbons

software components, we provide in Section 4 a simplified illustration in terms
of concurrent processes.

2 Components and visual programming

Object-oriented programming is losing its shine: despite its undoubted benefits,
we are coming to the realization that it is not a silver bullet for the problems
of software construction. In particular, inheritance breaks encapsulation [14]: in
order reliably to define a subclass, one needs to see not just the public interface
but also the private implementation of the superclass, and so a revision of the
latter, even without changing its public interface, may break the former.

This observation has led some [16] to propose component-oriented program-
ming as an improvement on object-oriented programming. The emphasis is on
object composition rather than class inheritance, and delegation rather than
overriding. This avoids the problem of broken encapsulation alluded to above,
and paves the way for a programming methodology based on third-party assem-
bly of black box components. Assemblers need only know the public interface of
a component, not its private implementation.

2.1 Visual assembly of components

This in turn allows component assembly without looking at code at all. As-
semblers can literally treat components as black boxes, placed on a canvas and
connected by lines. Supporting software can interpret the lines as connections
between operations in the component interfaces, and can automatically generate
the coordinating code.

This is exactly what visual programming tools like IBM’s VisualAge for Java
[7] do. The details differ from tool to tool, but the idea is fairly consistent. There
will be a palette of computational components, and a canvas on which these com-
ponents can be dropped. Two components are connected by dragging a rubber
band line from one and dropping it on the other; this connection corresponds to
some code, which is generated automatically by the tool. The possible interpre-
tations of a ‘connection’ will depend on the underlying language, but typically
they all boil down to the invocation of some method on the target component,
given some suitable triggering condition on the source component.

The Java language [6], and in particular the JavaBeans coding specification
[10], was specifically designed to permit this kind of component assembly without
stepping outside the language. Reflection can be used on compiled Java code
to determine what methods are supported, but the Java class libraries were
constructed in such a way as to avoid having to do this wherever possible. The
code generated by the tool is source-level Java, which can be examined and if
necessary modified afterwards.

2.2 A ‘counter’ example

To illustrate, consider a little Java applet providing a counter. It consists of
three components: a button that can be pressed, a counter that is incremented



Towards a colimit-based semantics for visual programming 3

on button presses, and a label that displays the value of the counter. One may
expect to find these three components in a software component library. A visual
assembly tool can automatically generate two new classes: an event adapter class,
whose instances have a method to be called on button presses that will step the
counter, and a property binder class, whose instances have a method to be called
on counter value changes that will update the label. In addition, the tool will
generate one more class, with a main method than instantiates the other five
classes and hooks up the instances appropriately. This is illustrated in Figure 1.

Fig. 1. The class structure of the counter applet

2.3 But what does it mean?

Visual programming tools like IBM’s VisualAge, Borland’s JBuilder, Microsoft’s
Visual C++ and so on usually provide only informal descriptions of the meaning
of the gestures by which programs are assembled; it can be difficult to predict
what the outcome of a particular series of gestures will be. Usually the outcome
is in fact a source-level program, albeit not necessarily a pretty one; so one can
in principle discover the meaning after the fact by examining this generated
code — but that doesn’t help much with predictability. Without precise, and
preferably formal, descriptions of outcomes, no analysis of the visual assembly
as a construction in its own right is possible, and programming is reduced to a
trial-and-error process, or at best a ‘black art’.

It would be much better to have a formal semantics of the visual assem-
bly as a construction in its own right. As the construction is a diagrammatic
entity, this strongly suggests a categorical semantics: category theory provides
a denotational semantics for diagrams. (This is in contrast to formalisms such
as graph grammars, which specify a syntax for diagrams, and graph rewriting,
which provides an operational semantics.) It turns out that one can give a clean,
simple semantics of such a visual construction as the colimit of a diagram of
components and connectors; we show how in the remainder of the paper.

We envisage that components in the component library will come provided
with their semantics, and that coordination is achieved through a small, fixed



4 Jeremy Gibbons

collection of (customizable) connectors, each again with its own (parametrized)
semantics. Program assembly is a matter of constructing a diagram of compo-
nents and connectors, as described below. The semantics of the construction is
the colimit of the diagram.

3 Connectors and superposition

As software systems become larger and more complex, the difficult problems
and the focus of interest migrate from the small-scale algorithmic aspects of in-
dividual components to the large-scale organizational aspects of the system as
a whole — the software architecture [13]. As a step towards formalizing soft-
ware architectures, Allen and Garlan [1] propose the separation of computation
(sequential, single-threaded algorithmic activities) from coordination (the glue
that binds computations together), and the study of the connectors by which
coordination is achieved as first-class entities in their own right.

In this proposal, Allen and Garlan were following in the footsteps of a sim-
ilar journey made a few years earlier by Katz [9], who had proposed superim-
position or superposition of connectors (for coordination) onto components (for
computation) as a paradigm for distributed computing. The parallels between
large-scale software architecture and distributed computing should come as no
surprise: in both fields, the components from which a system is assembled are
of a fundamentally different character than the system itself, and the developer
is concerned with complex behaviour emerging from the interactions between
(relatively) simple independent units.

According to this view, the ‘counter’ application developed in Section 2.2
consists of three components (the button, the counter itself, and the label) co-
ordinated by superposing two connectors (the event adapter and the property
binder). The components came ‘off the shelf’; the connectors were generated
automatically by the visual programming tool from gestures made by the as-
sembler. In order to generate this code, the tool needs to know nothing about
the components beyond their publicly-advertised interfaces. (Note that there is
essentially no inheritance in the system; everything is achieved through object
composition, as suggested by Szyperski [16].)

3.1 Categorical semantics of superposition

Fiadeiro and Maibaum [3] provide a semantics for Allen and Garlan’s notion of
connector, building on Goguen’s categorical General Systems Theory [5]. Goguen
based this on the following slogan:

given a category of widgets, the operation of putting a system of widgets
together to form a super-widget corresponds to taking a colimit of the
diagram of widgets that shows how to interconnect them.

We believe that this approach can be taken to give a precise semantics for Java
applications assembled from JavaBeans, and for similar visual program devel-
opment methods. We cannot yet justify this belief, though; for one thing, we



Towards a colimit-based semantics for visual programming 5

would have to identify a category of JavaBeans, and this is still a subject of
much research (see for example [8], and other work from the LOOP project).
What we can do is illustrate the approach in a simpler setting, and trust that
the reader will accept at least that the approach is worth exploring.

In the remainder of Section 3, we explain the General Systems Theory slogan
in the context of superposition. In Section 4, we illustrate its application to the
superposition of simple processes.

3.2 Superposition via colimits

In this section we present formal definitions of the categorical definitions leading
up to colimits. We have tried to present these in as elementary a manner as
possible, so in some cases the definitions are non-standard, although equivalent
to the standard definitions. (For example, the usual definition of a diagram in a
category C is as a functor from an indexing category to C; the definition given
here avoids having first to define functors.) Space considerations preclude us
from going into too much detail, so we summarize briskly; for more detail, see a
standard text on category theory, such as [12].

A category consists of collections of objects and arrows, each arrow between
two objects. For each object, there is an identity arrow from that object to itself.
Two arrows that meet (the target of the first is the source of the second) may
be composed ; composition is associative and identity arrows are units.

A diagram in a category consists of a subcollection of the objects and of the
arrows, for which both endpoints of each included arrow are included. A cocone
of a diagram with objects Ai and arrows fk consists of an object X and arrows
gi : Ai → X coherent with the fk — that is, gi = fk ; gj for each fk : Ai → Aj .
A colimit of a diagram is a cocone through which any other cocone uniquely
factorizes; that is, a cocone (X , g) such that for any other cocone (Y , h), there
is a unique arrow α : X → Y such that gi ;α = hi for every object Ai . Intuitively,
colimits capture least upper bounds.

We will be concerned with categories in which the objects are components,
and the arrows embeddings of smaller components into larger ones. Two com-
ponents are synchronized by embedding both in a common super-component. A
diagram of components models a system composed from those components, and
the arrows in the diagram indicate the synchronizing interconnections between
the components. A colimit of a diagram is the least common extension of all the
components in the diagram, or equivalently, the minimal system synchronizing
all the components; Goguen’s slogan of General Systems Theory dictates that
this is the appropriate meaning of the individual compositions.

4 A simplified example of the categorical semantics

In order to complete our plan to provide a categorical semantics for visual pro-
gramming (for instance, visual composition of JavaBeans), we first need to choose
a category in which JavaBeans are objects. As observed above, the right such



6 Jeremy Gibbons

choice is still an open question. We postpone that choice to further research, and
resort here to a rather simpler setting: instead of JavaBeans, we will consider
traced processes. (This illustration is based on [3].)

4.1 Traced processes

Consider processes of the form Toggle = step ❀ step,rollover ❀ Toggle. The
intention is that at each time step, a process in a particular state engages in
some actions and moves into a different state. At some time steps, the process
may engage in no actions (and stay in the same state).

A process or component C may be modelled as a pair 〈ΣC ,TC 〉, where ΣC is
the alphabet (a set), and TC is the set of traces (a set of streams of finite subsets
of ΣC ). The events in each trace are subsets rather than elements of the alphabet
in order to capture absent and simultaneous actions. Trace sets are closed under
stalling : whenever 〈s0, s1, . . .〉 is in TC , so also is 〈s0, s1, . . . , si , { }, si+1, . . .〉, for
each value of i .

For example, the component Toggle has alphabet ΣToggle = {step, rollover},
and a trace set TToggle that consists of all possible stallings of the basic trace
〈{step}, {step, rollover}, {step}, {step, rollover}, . . .〉. (From now on, we’ll abbre-
viate ‘step’ to ‘s’ and ‘rollover ’ to ‘r ’.)

We define the category TProc to have traced processes as objects, and em-
beddings between processes as arrows. An embedding is a witness as to how one
process is simulated by another. Intuitively, a process C is embedded within, or
simulated by, a process D if, by renaming some of the actions of D and ignoring
the others, it is possible to make D look like C ; the embedding is simply the
renaming function.

Formally, the arrow f : 〈ΣC ,TC 〉 → 〈ΣD ,TD〉 is a partial function f from
ΣD to ΣC such that

for every trace t ′ ∈ TD , there exists a trace t ∈ TC such that, for every
event t ′n = {d1, . . . , dm} of t ′, the corresponding event tn of t is the set
of actions {c ∈ ΣC | ∃i . 1 ≤ i ≤ m ∧ di ∈ dom f ∧ f di = c}, the image
of t ′n under f .

For example, consider the simpler process Clock = tick ❀ Clock , with al-
phabet ΣClock = {tick}, and trace set TClock all stallings of 〈{tick}, {tick}, . . .〉.
(From now on, we’ll abbreviate ‘tick ’ to ‘t ’.) The process Clock is simulated by
the process Toggle, if (for example) one looks only at the r actions of the latter
and thinks of them as t actions. So the category TProc contains a morphism
f : Clock → Toggle, where the function f from ΣToggle to ΣClock is the one-point
function {r �→ t}.

4.2 Assembling components

It is well-known that toggles can be chained to make asynchronous counters.
The rollover event r of one toggle should be coordinated with the step event s
of the next.



Towards a colimit-based semantics for visual programming 7

In the spirit of superposition, this coordination should be coordinated by a
separate connector. In this case, the right connector to use is just Clock ; it acts
as a channel between the two toggles, or an adapter between their interfaces.
This is captured by the diagram in Figure 2(a).

Clock
t

Toggles r Toggles r

r t� s t�
Clock

t

Toggles r Toggles r

Two
Toggle

ss rr

rs

r t� s t�

ss s,
rs r
�
�

rs s,
rr r
�
�

rs t�

Fig. 2. (a) Interconnection of toggles; (b) Colimit of toggle system

What does this collection of boxes and lines mean? Just the colimit of
the diagram, as illustrated in Figure 2(b). We claim that the colimit of the
connection diagram in Figure 2(a) is the process TwoToggle, with alphabet
ΣTwoToggle = {ss, rs, rr}, and trace set TTwoToggle all stallings of the basic trace
〈{ss}, {ss, rs}, {ss}, {ss, rs, rr}, . . .〉. This is indeed the least common extension
of the three connected components, and it does indeed model the two-bit counter
formed from two chained one-bit counters.

5 Conclusion

It is probably clear from the above presentation that these are very preliminary
ideas — more of a research proposal than a research report. There are many
questions still to be answered and directions in which to explore, including:

• What standard process algebra (as opposed to the home-grown one used
here) is best suited to describing the kinds of connection involved in visual
program assembly?

• Is the corresponding category actually finitely cocomplete, which is to say,
does every diagram of interconnected components possess a colimit and
hence a meaning? Perhaps some healthiness conditions need to be placed
on the diagram in order to guarantee the existence of the colimit.

• What is a suitable category for visually-composed components, such as Java-
Beans?

• Although this approach was originally envisioned as simply providing a se-
mantics for visual program assembly, can it in fact provide more? For ex-
ample, the colimit approach has been used in systems such as the SpecWare
program synthesis tool [15], in which it captures the notion of ‘completion
of theories’; SpecWare can automatically construct colimits. Can this con-
struction form the basis of a visual programming tool?



8 Jeremy Gibbons

• Other applications of the approach can be envisaged. For example, one prob-
lem in the use of design patterns [4] is that of tracing the instantiation of
the design pattern through the development of a piece of software [2]. Su-
perposition can perhaps capture the sense in which a design pattern is ‘a
component of’ a software system, in which case there is hope of formally
recording this information throughout the development process.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering Methodology, 6(3), 1997.

2. S. Bünnig, P. Forbrig, R. Lämmel, and N. Seemann. A programming language for
design patterns. In Arbeitstagung Programmiersprachen, Paderborn, October
1999.

3. J. L. Fiadeiro and T.S.E. Maibaum. Categorical semantics of parallel program
design. Science of Computer Programming, 28(2–3):111–138, 1997.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. J.A. Goguen. Categorical foundations of general systems theory. In F. Pichler
and R. Trappl, editors, Advances in Cybernetics and Systems Research, pages
121–130. Transcripta, 1973.

6. J. Gosling, B. Joy, and G. Steele. Java Language Specification. Addison-Wesley,
1996.

7. IBM. VisualAge for Java. http://www.ibm.com/software/ad/vajava.
8. B. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,

C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and
Persistence, pages 83–103. Kluwer, 1996.

9. S. Katz. A superimposition control construct for distributed systems. ACM
Transactions on Programming Languages and Systems, 15(2):337–356, 1993.

10. Sun Microsystems. JavaBeans specification.
http://java.sun.com/products/javabeans/docs/spec.html, 1997.

11. L. Mikhajlov and E. Sekerinski. A study of the Fragile Base Class problem. In
European Conference on Object-Oriented Programming, pages 355–382, 1998.

12. B.C. Pierce. Basic Category Theory for Computer Science. MIT Press, 1991.
13. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice-Hall, 1996.
14. A. Snyder. Encapsulation and inheritance in object-oriented programming

languages. In M. Meyrowitz, editor, Object-Oriented Programming, Systems,
Languages and Applications, pages 38–45, 1986. SIGPLAN Notices 21(11).

15. Y. V. Srinivas and R. Jüllig. SpecWare: Formal support for composing software.
In Bernhard Möller, editor, LNCS 947: Mathematics of Program Construction.
Springer-Verlag, 1995.

16. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.


