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1 The Overall System

☞ The system is a parallel combination of

➢ the mutator (the "program")

➢ the collector (the "garbage collector")
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The Overall System Specification

SPEC System =
IMPORT Mutator, Collector
FUN run : M[Void] = ( mutate ‖ collect ) -- parallel

SPEC Mutator = Mutator-Spec(Collector)

SPEC Collector = Collector-Spec(Mutator)

SPEC Mutator-Spec(Env : Mutator-Environment) = . . .

SPEC Collector-Spec(Env : Collector-Environment) = . . .
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2 Graph Specification

Graphs are modelled here by

☞ a fixed set of nodes

☞ a set of entry points ("roots")

☞ a successor function (representing the arcs)

☞ a freelist

SPEC Graph =
. . .
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SORT Node

-- the (coalgebraic ) type for graphs
SORT Graph OBSERVED BY roots, sucs, free
FUN roots : Graph→ Set Node

FUN sucs : Node→ Graph→ Set Node

FUN free : Graph→ Set Node

-- reachability
OBS reachable : (R : Set Node)→ (G : Graph)→ (S′ : Set Node)

POST S′ = LEAST S. (R ⊆ S) ∧ (∪/(G.sucs) ∗ S ⊆ S)
-- reachable from root

OBS black : (G : Graph→ Set Node) = G.reachable(G.roots)
-- alternative name for freelist

OBS gray : (G : Graph→ Set Node) = G.free
-- totally unreachable nodes (garbage )

OBS white : (G : Graph→ Set Node) = { n : Node } \ (G.black ∪ G.gray)

AXM 1 : G.black ∩ G.gray = ∅
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-- add /delete arc (coinductive definition )
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

FUN cut : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)
POST G′.sucs(x) = G.sucs(x)	 y

-- obtaining a free node
FUN new : (G : Graph)→ (G′ : Graph, n : Node)

PRE G.free 6= ∅
POST n ∈ G.free

G′.free = G.free	 n

G′.sucs(n) = ∅

-- recycling a garbage node
FUN recycle : (G : Graph)→ (G′ : Graph)

PRE G.white 6= ∅
POST G′.free = G.free⊕ n WHERE n ∈ G.white
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3 Monads

Modelling of imperative aspects by monads

☞ The graph becomes the (hidden) state

☞ Parallel execution of mutator/collector

is interleaving of monadic operations.
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☞ Monads are parameterized by an internal State

☞ Monads provide a polymorphic type M[α]

SPEC Monad (TYPE State) =
TYPE M[α]

The monad type M[α] consists of two functions

☞ the evolution of the internal (hidden) state

☞ the observation of the (visible) associated value

-- coalgebraic view of M [α]
OBS evolution : M[α]→ (State→ State)
OBS observer : M[α]→ (State→ α)
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We can lift a value to a monad (with no evolution)
FUN yield[α] : α→ M[α]
DEF (yield a).evolution = id

DEF (yield a).observer = K a

We can compose two monads
FUN ( ; )[α, β] : M[α]× M[β]→ M[β]
DEF (m1 ; m2).evolution = m2.evolution ◦ m1.evolution
DEF (m1 ; m2).observer = m2.observer ◦ m1.evolution

We can compose a monad with a continuation
FUN ( ; )[α, β] : M[α]× (α→ M[β])→ M[β]
DEF m1 ; f = (f ◦ m1.observer) S (m1.evolution)

Note: (h S g)(x) = (h x)(g x)
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Automatic casting to monadic operations

Let M[α] be defined by Monad(Graph):

FUN f : Graph→ α is lifted to
FUN f : M[α]
DEF f.observer = f

DEF f.evolution = id

FUN f : Graph→ Graph is lifted to
FUN f : M[Void]
DEF f.observer = K nil

DEF f.evolution = f

– p.12
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The monadic graph Monad(Graph):

Automatic lifting yields
FUN roots : M[Set Node]
FUN sucs : Node→ M[Set Arc]
FUN free : M[Set Node]
FUN add : Node× Node→ M[Void]
FUN cut : Node× Node→ M[Void]
FUN new : M[Node]
FUN recycle : M[Void]
OBS reachable : Set Node→ M[Set Node]
OBS black : M[Set Node]
OBS gray : M[Set Node]
OBS white : M[Set Node]
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Special Predicates on Monads

SPEC Monad (TYPE State) =
· · ·

-- invariance
OBS invariant : M[α]→ Bool

DEF invariant(f) = preserve(=)(f)

-- monotonicity
OBS monotone : M[α]→ Bool

DEF monotone(f) = preserve(�)(f)

-- preservation of a relation
OBS preserve : (� : α× α→ Bool)→ f : M[α]→ Bool

PRE f.evolution = id

POST ∀m : M[α] : f.observer � f.observer ◦ m.evolution
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Iterators on Monads

SPEC Monad (TYPE State) =
· · ·

-- infinite repetition
FUN forever : M[Void]→ M[Void]
DEF forever m = m ; forever(m)

-- repeat as often as possible
FUN iterate : M[Void]→ M[Void]
DEF iterate m = IF APPLICABLE (m) THEN m ; iterate(m)

ELSE nop FI
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4 The Mutator

Any program that uses only the operations
roots, sucs, add, cut, new

is an acceptable instance of the mutator.

SPEC Mutator-Spec ( Env : Mutator-Environment ) =
IMPORT Monad(Graph) ONLY roots, sucs, add, cut, new
FUN mutate : M[Void]
THM monotone white

The mutator guarantees that the
(unreachable) white nodes

remain white.
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The mutator relies on the proper behaviour
of its environment

SPEC Mutator-Environment =
EXTEND Monad(Graph) BY

AXM 1 : invariant black

AXM 2 : ∀ n ∈ black : invariant sucs(n)

The environment must not change the black part of the graph,
that is,

☞ not change the black nodes

☞ not change the arcs between black nodes

– p.17
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5 The Collector (naive view)

The collector
continuously recycles

white (unreachable) nodes.

SPEC Collector-Spec ( Env : Collector-Environment ) =
IMPORT Monad(Graph) ONLY recycle, white
FUN collect : M[Void] = forever(recycle)
THM invariant black

THM ∀n ∈ black : invariant sucs(n)

The collector guarantees that the
black part of the graph remains untouched
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The collector relies
on the proper behaviour of its environment

SPEC Collector-Environment =
EXTEND Monad(Graph) BY

AXM monotone white

The environment must not make white nodes reachable
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Correctness:
Collector and mutator meet each others rely conditions

Collector-Spec ` Mutator-Environment
Mutator-Spec ` Collector-Environment

Moreover:

Each unreachable node will eventually be in the freelist

n ∈ white ⇒ ♦ n ∈ gray

However:
The collector depends on the non-implementable function
white. ➫
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6 Implementation

Idea:

Mark (a subset of) the unreachable nodes

GOAL marked ⊆ white

Algorithm:

☞ Start with all nodes marked

☞ Clean the reachable nodes

☞ Scavenge the marked nodes
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We introduce the workset of currently considered nodes

FUN red : Graph→ Set Node -- a coalgebraic observer
OBS pink : (G : Graph→ Set Node) = G.reachable(G.red)

☞ red is the wavefront of currently considered nodes

☞ pink are all nodes that still need to be visited.

Central invariant:
marked ∩ (black ∪ gray) ⊆ pink

(The reachable nodes that are still marked will still be visited)

Conclusion
red = ∅ ` pink = ∅ ` marked ⊆ white

– p.22
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Initial situation
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Intermediate snapshot
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7 The Extended Collector

☞ The collector alternates between two phases:

➢ cleaning
(removing the marks of the reachable nodes)

➢ scavenging
(adding the remaining marked nodes to the freelist)
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SPEC XCollector-Spec ( Env : XCollector-Environment ) =
IMPORT Monad(XGraph)

IMPORT Cleaner ONLY clean

IMPORT Scavenger ONLY scavenge

FUN collect : M[Void] = forever(clean ; scavenge)

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph has to remain untouched!
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7.1 The Cleaning Phase ("unmark")

☞ Cleaning unmarks reachable nodes as long as possible
☞ It bases on an extended spec of Graph

SPEC Cleaner =
IMPORT Monad(Cleaning-View-of-XGraph)

FUN clean : M[Void]
PRE marked = {n : Node}
POST marked ⊆ white

DEF clean = ( red← roots ∪ free ; iterate(unmark) )

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph remains untouched!
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Initial situation
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Unmarking a red node makes all its marked successors red

(push red frontier forward)

SPEC Cleaning-View-of-XGraph =
EXTEND XGraph ONLY red, sucs BY

-- unmark some node in the workset
FUN unmark : (G : Graph)→ (G′ : Graph)

PRE G.red 6= ∅
POST LET n ∈ G.red IN

G′.red = G.red ∪ (G.sucs(n) ∩ G.marked)	 n

G′.marked = G.marked	 n

-- the central invariant
THM 1 : G.marked ∩ G.dark ⊆ G.pink

-- a helpful lemma
THM 2 : G.red = ∅ ⇒ G.marked ⊆ G.white
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Intermediate snapshot
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7.2 The Scavenging Phase ("Scan")

The scavenger recycles marked nodes as long as possible

SPEC Scavenger =
IMPORT Monad(Scavenging-View-of-XGraph)

FUN scavenge : M[Void]
PRE marked ⊆ white

DEF scavenge = iterate(recycle)

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph remains untouched!
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The scavenger needs a primitive operation
for recycling

SPEC Scavanging-View-of-XGraph =
EXTEND XGraph ONLY marked, free BY

-- modify recycle
FUN recycle : (G : Graph)→ (G′ : Graph)

PRE G.marked 6= ∅
POST LET n ∈ G.marked IN

G′.marked = G.marked	 n

G′.free = G.free⊕ n

-- the central invariant
AXM 1 : G.marked ⊆ G.white

– p.32
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Adaptions for the Collector’s Environment

☞ For retaining correctness the collector now relies on three
properties of its environment

SPEC XCollector-Environment =
EXTEND Monad(XGraph)
AXM 1 : G.marked ∩ G.dark ⊆ G.pink
AXM 2 : monotone white

AXM 3 : invariant marked

(Note: G.dark = G.black ∪ G.gray)
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8 The Extended Mutator

☞ The mutator now has to cooperate

Counterexample: A demonic mutator

A B

C

A B

C
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be
rli

n

1 G M Mu Co I XC XM A

SPEC XMutator-Spec ( Env : Mutator-Environment ) =
IMPORT Monad(Mutator-View-of-XGraph)

FUN mutate : M[Void]

THM 1 : G.marked ∩ G.dark ⊆ G.pink
THM 2 : monotone white

THM 3 : invariant marked

The mutator guarantees:

1. all reachable marked nodes will still be visited

2. unreachable nodes remain unreachable

3. the marking remains untouched
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The mutator needs a modified add
operation

☞ Whenever an arc to a (still) marked node is created, this
node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36



be
rli

n

1 G M Mu Co I XC XM A

The mutator needs a modified add
operation
☞ Whenever an arc to a (still) marked node is created, this

node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36



be
rli

n

1 G M Mu Co I XC XM A

The mutator needs a modified add
operation
☞ Whenever an arc to a (still) marked node is created, this

node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36



be
rli

n

1 G M Mu Co I XC XM A

9 Assessment of the Method

☞ Monads provide a sound and smooth way of
integrating imperative concurrent programs
with declarative specifications

☞ Selective import plays a central role in the formulation
and verification of properties:
It restricts quantification to selected operations.

(this avoids the clumsy (at π ⇒ . . .) known from temporal logic.)

– p.37
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Parameterized specifications and restricted imports
in the Mutator specification

Mutator(Collector)

Mutator(Mut-Env) Collector

Mut-Env

Mutator-View Collector-View

GraphMonad

p

p

r r
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