
be
rli

n

1 G M Mu Co I XC XM A

Programming
Concurrent Garbage Collectors

With
Pushouts and Monads

Dusko Pavlovic, Peter Pepper, Doug Smith

Technische Universität Berlin

and

Kestrel Institute

– p.1

be
rli

n

1 G M Mu Co I XC XM A

1. System Diagram

2. Graphs

3. Monads

4. The Mutator

5. The Collector

6. Implementation Problems

7. The Extended Collector
7.1 Cleaning (Mark)
7.2 Scavenging (Scan)

8. The Extended Mutator

9. Assessment of the Method

– p.2

be
rli

n

1 G M Mu Co I XC XM A

1 The Overall System

☞ The system is a parallel combination of

➢ the mutator (the "program")

➢ the collector (the "garbage collector")

– p.3

be
rli

n

1 G M Mu Co I XC XM A

The Overall System
System

Mutator Collector

Mut-Spec(M-Env) Coll-Spec(C-Env)

M-Env C-Env

Monad(Graph)

Monad(State) Graph

State

– p.4

be
rli

n

1 G M Mu Co I XC XM A

The Overall System
System

Mutator Collector

Mut-Spec(M-Env) Coll-Spec(C-Env)

M-Env C-Env

Monad(Graph)

Monad(State) Graph

State

– p.4

be
rli

n

1 G M Mu Co I XC XM A

The Overall System
System

Mutator Collector

Mut-Spec(M-Env) Coll-Spec(C-Env)

M-Env C-Env

Monad(Graph)

Monad(State) Graph

State

– p.4

be
rli

n

1 G M Mu Co I XC XM A

The Overall System
System

Mutator Collector

Mut-Spec(M-Env) Coll-Spec(C-Env)

M-Env C-Env

Monad(Graph)

Monad(State) Graph

State

– p.4

be
rli

n

1 G M Mu Co I XC XM A

The Overall System Specification

SPEC System =
IMPORT Mutator, Collector
FUN run : M[Void] = (mutate ‖ collect) -- parallel

SPEC Mutator = Mutator-Spec(Collector)

SPEC Collector = Collector-Spec(Mutator)

SPEC Mutator-Spec(Env : Mutator-Environment) = . . .

SPEC Collector-Spec(Env : Collector-Environment) = . . .

– p.5

be
rli

n

1 G M Mu Co I XC XM A

The Overall System Specification

SPEC System =
IMPORT Mutator, Collector
FUN run : M[Void] = (mutate ‖ collect) -- parallel

SPEC Mutator = Mutator-Spec(Collector)

SPEC Collector = Collector-Spec(Mutator)

SPEC Mutator-Spec(Env : Mutator-Environment) = . . .

SPEC Collector-Spec(Env : Collector-Environment) = . . .

– p.5

be
rli

n

1 G M Mu Co I XC XM A

2 Graph Specification

Graphs are modelled here by

☞ a fixed set of nodes

☞ a set of entry points ("roots")

☞ a successor function (representing the arcs)

☞ a freelist

SPEC Graph =
. . .

– p.6

be
rli

n

1 G M Mu Co I XC XM A

SORT Node

-- the (coalgebraic) type for graphs
SORT Graph OBSERVED BY roots, sucs, free
FUN roots : Graph→ Set Node

FUN sucs : Node→ Graph→ Set Node

FUN free : Graph→ Set Node

-- reachability
OBS reachable : (R : Set Node)→ (G : Graph)→ (S′ : Set Node)

POST S′ = LEAST S. (R ⊆ S) ∧ (∪/(G.sucs) ∗ S ⊆ S)
-- reachable from root

OBS black : (G : Graph→ Set Node) = G.reachable(G.roots)
-- alternative name for freelist

OBS gray : (G : Graph→ Set Node) = G.free
-- totally unreachable nodes (garbage)

OBS white : (G : Graph→ Set Node) = { n : Node } \ (G.black ∪ G.gray)

AXM 1 : G.black ∩ G.gray = ∅

– p.7

be
rli

n

1 G M Mu Co I XC XM A

SORT Node

-- the (coalgebraic) type for graphs
SORT Graph OBSERVED BY roots, sucs, free
FUN roots : Graph→ Set Node

FUN sucs : Node→ Graph→ Set Node

FUN free : Graph→ Set Node

-- reachability
OBS reachable : (R : Set Node)→ (G : Graph)→ (S′ : Set Node)

POST S′ = LEAST S. (R ⊆ S) ∧ (∪/(G.sucs) ∗ S ⊆ S)
-- reachable from root

OBS black : (G : Graph→ Set Node) = G.reachable(G.roots)
-- alternative name for freelist

OBS gray : (G : Graph→ Set Node) = G.free
-- totally unreachable nodes (garbage)

OBS white : (G : Graph→ Set Node) = { n : Node } \ (G.black ∪ G.gray)

AXM 1 : G.black ∩ G.gray = ∅

– p.7

be
rli

n

1 G M Mu Co I XC XM A

-- add /delete arc (coinductive definition)
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

FUN cut : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)
POST G′.sucs(x) = G.sucs(x)	 y

-- obtaining a free node
FUN new : (G : Graph)→ (G′ : Graph, n : Node)

PRE G.free 6= ∅
POST n ∈ G.free

G′.free = G.free	 n

G′.sucs(n) = ∅

-- recycling a garbage node
FUN recycle : (G : Graph)→ (G′ : Graph)

PRE G.white 6= ∅
POST G′.free = G.free⊕ n WHERE n ∈ G.white

– p.8

be
rli

n

1 G M Mu Co I XC XM A

-- add /delete arc (coinductive definition)
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

FUN cut : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)
POST G′.sucs(x) = G.sucs(x)	 y

-- obtaining a free node
FUN new : (G : Graph)→ (G′ : Graph, n : Node)

PRE G.free 6= ∅
POST n ∈ G.free

G′.free = G.free	 n

G′.sucs(n) = ∅

-- recycling a garbage node
FUN recycle : (G : Graph)→ (G′ : Graph)

PRE G.white 6= ∅
POST G′.free = G.free⊕ n WHERE n ∈ G.white

– p.8

be
rli

n

1 G M Mu Co I XC XM A

3 Monads

Modelling of imperative aspects by monads

☞ The graph becomes the (hidden) state

☞ Parallel execution of mutator/collector

is interleaving of monadic operations.

– p.9

be
rli

n

1 G M Mu Co I XC XM A

☞ Monads are parameterized by an internal State

☞ Monads provide a polymorphic type M[α]

SPEC Monad (TYPE State) =
TYPE M[α]

The monad type M[α] consists of two functions

☞ the evolution of the internal (hidden) state

☞ the observation of the (visible) associated value

-- coalgebraic view of M [α]
OBS evolution : M[α]→ (State→ State)
OBS observer : M[α]→ (State→ α)

– p.10

be
rli

n

1 G M Mu Co I XC XM A

☞ Monads are parameterized by an internal State

☞ Monads provide a polymorphic type M[α]

SPEC Monad (TYPE State) =
TYPE M[α]

The monad type M[α] consists of two functions

☞ the evolution of the internal (hidden) state

☞ the observation of the (visible) associated value

-- coalgebraic view of M [α]
OBS evolution : M[α]→ (State→ State)
OBS observer : M[α]→ (State→ α)

– p.10

be
rli

n

1 G M Mu Co I XC XM A

We can lift a value to a monad (with no evolution)
FUN yield[α] : α→ M[α]
DEF (yield a).evolution = id

DEF (yield a).observer = K a

We can compose two monads
FUN (;)[α, β] : M[α]× M[β]→ M[β]
DEF (m1 ; m2).evolution = m2.evolution ◦ m1.evolution
DEF (m1 ; m2).observer = m2.observer ◦ m1.evolution

We can compose a monad with a continuation
FUN (;)[α, β] : M[α]× (α→ M[β])→ M[β]
DEF m1 ; f = (f ◦ m1.observer) S (m1.evolution)

Note: (h S g)(x) = (h x)(g x)

– p.11

be
rli

n

1 G M Mu Co I XC XM A

We can lift a value to a monad (with no evolution)
FUN yield[α] : α→ M[α]
DEF (yield a).evolution = id

DEF (yield a).observer = K a

We can compose two monads
FUN (;)[α, β] : M[α]× M[β]→ M[β]
DEF (m1 ; m2).evolution = m2.evolution ◦ m1.evolution
DEF (m1 ; m2).observer = m2.observer ◦ m1.evolution

We can compose a monad with a continuation
FUN (;)[α, β] : M[α]× (α→ M[β])→ M[β]
DEF m1 ; f = (f ◦ m1.observer) S (m1.evolution)

Note: (h S g)(x) = (h x)(g x)

– p.11

be
rli

n

1 G M Mu Co I XC XM A

We can lift a value to a monad (with no evolution)
FUN yield[α] : α→ M[α]
DEF (yield a).evolution = id

DEF (yield a).observer = K a

We can compose two monads
FUN (;)[α, β] : M[α]× M[β]→ M[β]
DEF (m1 ; m2).evolution = m2.evolution ◦ m1.evolution
DEF (m1 ; m2).observer = m2.observer ◦ m1.evolution

We can compose a monad with a continuation
FUN (;)[α, β] : M[α]× (α→ M[β])→ M[β]
DEF m1 ; f = (f ◦ m1.observer) S (m1.evolution)

Note: (h S g)(x) = (h x)(g x)

– p.11

be
rli

n

1 G M Mu Co I XC XM A

Automatic casting to monadic operations

Let M[α] be defined by Monad(Graph):

FUN f : Graph→ α is lifted to
FUN f : M[α]
DEF f.observer = f

DEF f.evolution = id

FUN f : Graph→ Graph is lifted to
FUN f : M[Void]
DEF f.observer = K nil

DEF f.evolution = f

– p.12

be
rli

n

1 G M Mu Co I XC XM A

Automatic casting to monadic operations

Let M[α] be defined by Monad(Graph):

FUN f : Graph→ α is lifted to
FUN f : M[α]
DEF f.observer = f

DEF f.evolution = id

FUN f : Graph→ Graph is lifted to
FUN f : M[Void]
DEF f.observer = K nil

DEF f.evolution = f

– p.12

be
rli

n

1 G M Mu Co I XC XM A

The monadic graph Monad(Graph):

Automatic lifting yields
FUN roots : M[Set Node]
FUN sucs : Node→ M[Set Arc]
FUN free : M[Set Node]
FUN add : Node× Node→ M[Void]
FUN cut : Node× Node→ M[Void]
FUN new : M[Node]
FUN recycle : M[Void]
OBS reachable : Set Node→ M[Set Node]
OBS black : M[Set Node]
OBS gray : M[Set Node]
OBS white : M[Set Node]

– p.13

be
rli

n

1 G M Mu Co I XC XM A

Special Predicates on Monads

SPEC Monad (TYPE State) =
· · ·

-- invariance
OBS invariant : M[α]→ Bool

DEF invariant(f) = preserve(=)(f)

-- monotonicity
OBS monotone : M[α]→ Bool

DEF monotone(f) = preserve(�)(f)

-- preservation of a relation
OBS preserve : (� : α× α→ Bool)→ f : M[α]→ Bool

PRE f.evolution = id

POST ∀m : M[α] : f.observer � f.observer ◦ m.evolution

– p.14

be
rli

n

1 G M Mu Co I XC XM A

Iterators on Monads

SPEC Monad (TYPE State) =
· · ·

-- infinite repetition
FUN forever : M[Void]→ M[Void]
DEF forever m = m ; forever(m)

-- repeat as often as possible
FUN iterate : M[Void]→ M[Void]
DEF iterate m = IF APPLICABLE (m) THEN m ; iterate(m)

ELSE nop FI

– p.15

be
rli

n

1 G M Mu Co I XC XM A

4 The Mutator

Any program that uses only the operations
roots, sucs, add, cut, new

is an acceptable instance of the mutator.

SPEC Mutator-Spec (Env : Mutator-Environment) =
IMPORT Monad(Graph) ONLY roots, sucs, add, cut, new
FUN mutate : M[Void]
THM monotone white

The mutator guarantees that the
(unreachable) white nodes

remain white.

– p.16

be
rli

n

1 G M Mu Co I XC XM A

The mutator relies on the proper behaviour
of its environment

SPEC Mutator-Environment =
EXTEND Monad(Graph) BY

AXM 1 : invariant black

AXM 2 : ∀ n ∈ black : invariant sucs(n)

The environment must not change the black part of the graph,
that is,

☞ not change the black nodes

☞ not change the arcs between black nodes

– p.17

be
rli

n

1 G M Mu Co I XC XM A

5 The Collector (naive view)

The collector
continuously recycles

white (unreachable) nodes.

SPEC Collector-Spec (Env : Collector-Environment) =
IMPORT Monad(Graph) ONLY recycle, white
FUN collect : M[Void] = forever(recycle)
THM invariant black

THM ∀n ∈ black : invariant sucs(n)

The collector guarantees that the
black part of the graph remains untouched

– p.18

be
rli

n

1 G M Mu Co I XC XM A

The collector relies
on the proper behaviour of its environment

SPEC Collector-Environment =
EXTEND Monad(Graph) BY

AXM monotone white

The environment must not make white nodes reachable

– p.19

be
rli

n

1 G M Mu Co I XC XM A

Correctness:
Collector and mutator meet each others rely conditions

Collector-Spec ` Mutator-Environment
Mutator-Spec ` Collector-Environment

Moreover:

Each unreachable node will eventually be in the freelist

n ∈ white ⇒ ♦ n ∈ gray

However:
The collector depends on the non-implementable function
white. ➫

– p.20

be
rli

n

1 G M Mu Co I XC XM A

Correctness:
Collector and mutator meet each others rely conditions

Collector-Spec ` Mutator-Environment
Mutator-Spec ` Collector-Environment

Moreover:

Each unreachable node will eventually be in the freelist

n ∈ white ⇒ ♦ n ∈ gray

However:
The collector depends on the non-implementable function
white. ➫

– p.20

be
rli

n

1 G M Mu Co I XC XM A

Correctness:
Collector and mutator meet each others rely conditions

Collector-Spec ` Mutator-Environment
Mutator-Spec ` Collector-Environment

Moreover:

Each unreachable node will eventually be in the freelist

n ∈ white ⇒ ♦ n ∈ gray

However:
The collector depends on the non-implementable function
white. ➫

– p.20

be
rli

n

1 G M Mu Co I XC XM A

6 Implementation

Idea:

Mark (a subset of) the unreachable nodes

GOAL marked ⊆ white

Algorithm:

☞ Start with all nodes marked

☞ Clean the reachable nodes

☞ Scavenge the marked nodes

– p.21

be
rli

n

1 G M Mu Co I XC XM A

We introduce the workset of currently considered nodes

FUN red : Graph→ Set Node -- a coalgebraic observer
OBS pink : (G : Graph→ Set Node) = G.reachable(G.red)

☞ red is the wavefront of currently considered nodes

☞ pink are all nodes that still need to be visited.

Central invariant:
marked ∩ (black ∪ gray) ⊆ pink

(The reachable nodes that are still marked will still be visited)

Conclusion
red = ∅ ` pink = ∅ ` marked ⊆ white

– p.22

be
rli

n

1 G M Mu Co I XC XM A

We introduce the workset of currently considered nodes

FUN red : Graph→ Set Node -- a coalgebraic observer
OBS pink : (G : Graph→ Set Node) = G.reachable(G.red)

☞ red is the wavefront of currently considered nodes

☞ pink are all nodes that still need to be visited.

Central invariant:
marked ∩ (black ∪ gray) ⊆ pink

(The reachable nodes that are still marked will still be visited)

Conclusion
red = ∅ ` pink = ∅ ` marked ⊆ white

– p.22

be
rli

n

1 G M Mu Co I XC XM A

We introduce the workset of currently considered nodes

FUN red : Graph→ Set Node -- a coalgebraic observer
OBS pink : (G : Graph→ Set Node) = G.reachable(G.red)

☞ red is the wavefront of currently considered nodes

☞ pink are all nodes that still need to be visited.

Central invariant:
marked ∩ (black ∪ gray) ⊆ pink

(The reachable nodes that are still marked will still be visited)

Conclusion
red = ∅ ` pink = ∅ ` marked ⊆ white

– p.22

be
rli

n

1 G M Mu Co I XC XM A

Initial situation

– p.23

be
rli

n

1 G M Mu Co I XC XM A

Intermediate snapshot

– p.24

be
rli

n

1 G M Mu Co I XC XM A

7 The Extended Collector

☞ The collector alternates between two phases:

➢ cleaning
(removing the marks of the reachable nodes)

➢ scavenging
(adding the remaining marked nodes to the freelist)

– p.25

be
rli

n

1 G M Mu Co I XC XM A

7 The Extended Collector

☞ The collector alternates between two phases:

➢ cleaning
(removing the marks of the reachable nodes)

➢ scavenging
(adding the remaining marked nodes to the freelist)

– p.25

be
rli

n

1 G M Mu Co I XC XM A

7 The Extended Collector

☞ The collector alternates between two phases:

➢ cleaning
(removing the marks of the reachable nodes)

➢ scavenging
(adding the remaining marked nodes to the freelist)

– p.25

be
rli

n

1 G M Mu Co I XC XM A

SPEC XCollector-Spec (Env : XCollector-Environment) =
IMPORT Monad(XGraph)

IMPORT Cleaner ONLY clean

IMPORT Scavenger ONLY scavenge

FUN collect : M[Void] = forever(clean ; scavenge)

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph has to remain untouched!

– p.26

be
rli

n

1 G M Mu Co I XC XM A

7.1 The Cleaning Phase ("unmark")

☞ Cleaning unmarks reachable nodes as long as possible
☞ It bases on an extended spec of Graph

SPEC Cleaner =
IMPORT Monad(Cleaning-View-of-XGraph)

FUN clean : M[Void]
PRE marked = {n : Node}
POST marked ⊆ white

DEF clean = (red← roots ∪ free ; iterate(unmark))

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph remains untouched!

– p.27

be
rli

n

1 G M Mu Co I XC XM A

Initial situation

– p.28

be
rli

n

1 G M Mu Co I XC XM A

Unmarking a red node makes all its marked successors red

(push red frontier forward)

SPEC Cleaning-View-of-XGraph =
EXTEND XGraph ONLY red, sucs BY

-- unmark some node in the workset
FUN unmark : (G : Graph)→ (G′ : Graph)

PRE G.red 6= ∅
POST LET n ∈ G.red IN

G′.red = G.red ∪ (G.sucs(n) ∩ G.marked)	 n

G′.marked = G.marked	 n

-- the central invariant
THM 1 : G.marked ∩ G.dark ⊆ G.pink

-- a helpful lemma
THM 2 : G.red = ∅ ⇒ G.marked ⊆ G.white

– p.29

be
rli

n

1 G M Mu Co I XC XM A

Intermediate snapshot

– p.30

be
rli

n

1 G M Mu Co I XC XM A

7.2 The Scavenging Phase ("Scan")

The scavenger recycles marked nodes as long as possible

SPEC Scavenger =
IMPORT Monad(Scavenging-View-of-XGraph)

FUN scavenge : M[Void]
PRE marked ⊆ white

DEF scavenge = iterate(recycle)

THM invariant black

THM ∀n ∈ black : invariant sucs(n)

☞ The black subgraph remains untouched!

– p.31

be
rli

n

1 G M Mu Co I XC XM A

The scavenger needs a primitive operation
for recycling

SPEC Scavanging-View-of-XGraph =
EXTEND XGraph ONLY marked, free BY

-- modify recycle
FUN recycle : (G : Graph)→ (G′ : Graph)

PRE G.marked 6= ∅
POST LET n ∈ G.marked IN

G′.marked = G.marked	 n

G′.free = G.free⊕ n

-- the central invariant
AXM 1 : G.marked ⊆ G.white

– p.32

be
rli

n

1 G M Mu Co I XC XM A

Adaptions for the Collector’s Environment

☞ For retaining correctness the collector now relies on three
properties of its environment

SPEC XCollector-Environment =
EXTEND Monad(XGraph)
AXM 1 : G.marked ∩ G.dark ⊆ G.pink
AXM 2 : monotone white

AXM 3 : invariant marked

(Note: G.dark = G.black ∪ G.gray)

– p.33

be
rli

n

1 G M Mu Co I XC XM A

8 The Extended Mutator

☞ The mutator now has to cooperate

Counterexample: A demonic mutator

A B

C

A B

C

– p.34

be
rli

n

1 G M Mu Co I XC XM A

SPEC XMutator-Spec (Env : Mutator-Environment) =
IMPORT Monad(Mutator-View-of-XGraph)

FUN mutate : M[Void]

THM 1 : G.marked ∩ G.dark ⊆ G.pink
THM 2 : monotone white

THM 3 : invariant marked

The mutator guarantees:

1. all reachable marked nodes will still be visited

2. unreachable nodes remain unreachable

3. the marking remains untouched

– p.35

be
rli

n

1 G M Mu Co I XC XM A

The mutator needs a modified add
operation

☞ Whenever an arc to a (still) marked node is created, this
node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36

be
rli

n

1 G M Mu Co I XC XM A

The mutator needs a modified add
operation
☞ Whenever an arc to a (still) marked node is created, this

node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36

be
rli

n

1 G M Mu Co I XC XM A

The mutator needs a modified add
operation
☞ Whenever an arc to a (still) marked node is created, this

node is coloured red (needs visiting)

SPEC Mutator-View-of-XGraph =
EXTEND XGraph ONLY roots, sucs, cut, new BY

-- modify add
FUN add : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

POST G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.red = G.red⊕ y

– p.36

be
rli

n

1 G M Mu Co I XC XM A

9 Assessment of the Method

☞ Monads provide a sound and smooth way of
integrating imperative concurrent programs
with declarative specifications

☞ Selective import plays a central role in the formulation
and verification of properties:
It restricts quantification to selected operations.

(this avoids the clumsy (at π ⇒ . . .) known from temporal logic.)

– p.37

be
rli

n

1 G M Mu Co I XC XM A

9 Assessment of the Method

☞ Monads provide a sound and smooth way of
integrating imperative concurrent programs
with declarative specifications

☞ Selective import plays a central role in the formulation
and verification of properties:
It restricts quantification to selected operations.

(this avoids the clumsy (at π ⇒ . . .) known from temporal logic.)

– p.37

be
rli

n

1 G M Mu Co I XC XM A

Parameterized specifications and restricted imports
in the Mutator specification

Mutator(Collector)

Mutator(Mut-Env) Collector

Mut-Env

Mutator-View Collector-View

GraphMonad

p

p

r r

– p.38

	Content-1

