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0 The Isaparallel combination of
[1 the (the "program")
[ the (the "garbage collector")
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The Overall System Specification

SPEC System —
IMPORT Mutator,Collector
FUN run: M[Void| = ( mutate || collect ) -- parallel

SPEC Mutator = Mutator- Spec(Collector)

SPEC Mutator- Spec(Env: Mutator- Environment) = . ..
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The Overall System Specification

SPEC System —
IMPORT Mutator,Collector
FUN run: M[Void| = ( mutate || collect ) -- parallel

SPEC Mutator = Mutator- Spec(Collector)
SPEC Collector = Collector- Spec(Mutator)

SPEC Mutator- Spec(Env: Mutator- Environment) = . ..

SPEC Collector- Spec(Env: Collector- Environment) = ...




2 Graph Specification

Graphs
fixed nodes

roots

SUCCESSOr al'CS

freglist
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SORT Node
- - the (coalgebraic ) type for graphs
SORT Graph OBSERVED BY roots, sucs, free

FUN roots : Graph — Set Node
FUN sucs : Node — Graph — Set Node
FUN free : Graph — Set Node
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SORT Node

- - the (coalgebraic ) type for graphs
SORT Graph OBSERVED BY roots, sucs, free
FUN roots : Graph — Set Node
FUN sucs : Node — Graph — Set Node
FUN free : Graph — Set Node

- - reachability
OBS reachable: (R: Set Node) — (G: Graph) — (S’ : Set Node)

POST 8’ = LEAST S. (R C S) A (U/(G.sucs) *S C S)
- - reachable from root
OBSblack: (G: Graph — Set Node) = G.reachable(G.roots)
- - alternative name for freelist
OBS gray: (G: Graph — Set Node) = G.free
- - totally unreachable nodes (garbage )
OBSwhite: (G: Graph — Set Node) = { n: Node } \ (G.black U G.gray)

AXM 1: G.black N G.gray = ()




- - add /delete arc (coinductive definition )
FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)
POST G'.sucs(x) = G.sucs(x

) &
FUN cut: (x: Node, y: Node) — (G: Graph) (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) Sy
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- - add /delete arc (coinductive definition )
FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)

POST G'.sucs(x) = G.sucs(x

) &
FUN cut: (x: Node, y: Node) — (G: Graph) (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) Sy

- - obtaining a free nod
FUN new: (G: Graph) @aph n @
PRE G free # ()
POST n € G.free
G .free = G.free©n

G'.sucs(n) =0

- - recycling a garbage node
FUN recycle: (G: Graph) — (G’ : Graph)
PRE G.white # ()
POST G'.free = G.free & n WHERE n € G.white
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[he becomes the (hidden)

of mutator/collector
IS of monadic operations.
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Monads  parameterized State
Monads polymorphic type M|

SPEC Monad (TYPE State) =

TYPE M|/
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Monads  parameterized State
Monads polymorphic type M|

SPEC Monad (TYPE State) =

TYPE M|/

M|c] two functions

- - coalgebraic view of M |«]
OBS evolution: Mla| — (State — State)

OBS observer: Ma] — (State — «)
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We can lift a value to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a
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We can |ift avalue to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a

We can compose two monads
FUN (- ; -)la, 5] Mla] x M[8] — M|

DEF (m; ; my).evolution = my.evolution o my.evolution
DEF (m; ; my).0observer = my.observer o my.evolution
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We can |ift avalue to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a

We can compose two monads
FUN (- ; -)la, 5] Mla] x M[8] — M|

DEF (m; ; my).evolution = my.evolution o my.evolution
DEF (m; ; my).0observer = my.observer o my.evolution

We can compose a monad with a continuation
FUN (- ; -)la, 8] Mla] x (a — M[5]) — M[f]

DEFm, ; f = (f o my.observer) S (m;.evolution)

H
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Automatic casting to monadic operations

FUN £ : M|/
DEF f.observer = £

FUN f: Graph — «

DEF f.evolution = id
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Automatic casting to monadic operations

FUN £ : M|/
FUN f: Graph — « DEF f.observer = £
DEF f.evolution = id

FUN f: M[Void|
FUN f: Graph — Graph DEF f.observer = Knil
DEF f.evolution = £
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The monadic graph Monad(Graph):

FUN roots: M[Set Node]

FUN sucs: Node — M|[Set Arc]
FUN free: M|Set Node]

FUN add : Node X Node — M|Void]
FUN cut : Node x Node — M|Void]
FUN new : M[Node]

FUN recycle: M|Void]

OBS reachable: Set Node — M|Set Node]
OBS black: M[Set Node|

OBS gray : M[Set Node]

OBS white: M[Set Node|
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Special Predicates on Monads

SPEC Monad (TYPE State) =

- - Invariance
OBS invariant : M{a| — Bool
DEF invariant(f) = preserve(=)(f)

- - monotonicity
OBSmonotone : M[a] — Bool
DEF monotone(f) = preserve(=)(f)

- - preservation of a relation
OBSpreserve: (X: a X a — Bool) — f: M/a| — Bool
PRE f.evolution = 1id
POST Vm: M|a] : f.observer =< f.observer cm.evolution




lterators on Monads

SPEC Monad (TYPE State) =

- - Infinite repetition
FUN forever : M|Void] — M|Void]
DEF foreverm = m; forever(m)

- - repeat as often as possible

FUN iterate: M[Void] — M|Void]

DEF iteratem = IF APPLICABLE (m) THEN m ; iterate(m)
ELSE nop Fl




4 The Mutator

roots, sucs, add, cut, new
mutator

SPEC Mutator- Spec ( Env: Mutator- Environment ) =
IMPORT Monad(Graph) ONLY roots, sucs, add, cut, new

FUN mutate: M|Void|
THM monotone white

guarantees
white
reman white
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The mutator relies
environment

SPEC Mutator- Environment =
EXTEND Monad(Graph) BY

AXM 1: invariant black
AXM 2:Vn € black: invariant sucs(n)

not change the black part of the graph

not
not
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5 The Collector (naive view)

collector
continuously recycles

SPEC Collector- Spec ( Env: Collector- Environment ) =
IMPORT Monad(Graph) ONLY recycle,white

FUN collect: M|Void]| = forever(recycle)
THM invariant black
THM Vn € black: invariant sucs(n)

guarantees
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EUES _
environment

SPEC Collector- Environment =
EXTEND Monad(Graph) BY

AXM monotone white

not make white nodes reachable
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Collector- Spec = Mutator- Environment

Mutator- Spec

~ Collector- Environment
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Collector- Spec = Mutator- Environment

Mutator- Spec

n € wvhite = On € gray

~ Collector- Environment
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Collector- Spec = Mutator- Environment

Mutator- Spec

n € wvhite = On € gray

~ Collector- Environment
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GOAL marked C white
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We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)
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We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)

Central invariant:
marked N (black U gray) C pink
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We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)

Central invariant:
marked N (black U gray) C pink

Conclusion
red=0 F pink=0 F marked C white
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[1 The collector alternates between
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[1 The collector alternates between

(removing the marks of the reachable nodes)

[

|6

=

&

=

It

[+

- p.25



[]

[]

- )

[1 The collector aternates between
(removing the marks of the reachable nodes)

(adding the remaining marked nodes to the freelist)
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SPEC XCollector- Spec ( Env: XCollector- Environment ) =
IMPORT Monad (XGraph)

IMPORT Cleaner ONLY clean
IMPORT Scavenger ONLY scavenge

FUN collect: M|Void]| = forever(clean ; scavenge)

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph has to remain untouched!

]

It
L

E:]
L

=) =) [=] =) = [



7.1 The Cleaning Phase (*'unmark"")

Cleaning unmarks reachable nodes as long as possible
It bases on an extended spec of Graph

SPEC Cleaner =
IMPORT Monad(Cleaning- View- of- XGraph)

FUN clean: M|[Void]
PRE marked = {n: Node}
POST marked C white
DEF clean = ( red « roots U free ; iterate(unmark) )

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph remains untouched!
BRERERE =RENE
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Unmarking ared node makes all its marked successors red
(push red frontier forward)

SPEC Cleaning- View- of- XGraph =
EXTEND XGraph ONLY red, sucs BY

- - unmark some node in the workset
FUN unmark: (G: Graph) — (G’ : Graph)
PRE G.red # ()
POST LETn € G.red IN
G'.red = G.red U (G.sucs(n) N G.marked) O n
G'.marked = G.marked ©n

- - the central invariant
THM 1: G.marked N G.dark C G.pink

- - a helpful lemma
THM 2: G.red = () = G.marked C G.white







7.2 The Scavenging Phase (*'Scan'")

The scavenger recycles marked nodes as long as possible

SPEC Scavenger —
IMPORT Monad(Scavenging- View- of- XGraph)

FUN scavenge : M[Void]

PRE marked C white
DEF scavenge = iterate(recycle)

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph remains untouched!
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The scavenger needs a primitive operation
for recycling

SPEC Scavanging- View- of- XGraph =
EXTEND XGraph ONLY marked, free BY

- - modify recycle
FUN recycle: (G: Graph) — (G’ : Graph)
PRE G.marked # ()
POST LET n € G.marked IN
G'.marked = G.marked & n
G .free = G.free®n

- - the central Invariant
AXM 1: G.marked C G.white




Adaptions for the Collector’s Environment

SPEC XCollector- Environment =
EXTEND Monad(XGraph)

AXM 1: G.marked N G.dark C G.pink
AXM 2: monotone white
AXM 3: invariant marked
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Counterexample: A demonic mutator
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SPEC XMutator- Spec ( Env: Mutator- Environment ) =
IMPORT Monad(Mutator- View- of- XGraph)

FUN mutate : M|Void|

THM 1: G.marked (N G.dark C G.pink
THM 2: monotone white
THM 3: invariant marked

The mutator guarantees.

al reachable marked nodes will still be visited
unreachable nodes remain unreachable

the marking remains untouched

H

ERENERERENERERE N



- p.36

bl

1
HH

&

ENE

i

9l

|




[1 Whenever an arc to a(still) marked node is created, this

node is coloured red (needs visiting)
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The mutator needs a modified add
operation

SPEC Mutator- View- of- XGraph =
EXTEND XGraph ONLY roots, sucs, cut,new BY

- - modify add

FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) By
x ¢ Gmarked Ay € G.marked = G.red =G.red Dy
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[1 Monads provide a sound and smooth way of

Integrating
with
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[1 Monads provide a sound and smooth way of
Integrating
with

[1 Selective import plays a central role in the formulation
and verification of properties.
|t to

(thisavoids the clumsy O (at = = .. .) known from temporal logic.)
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and
In the Mutator specification

Mutator(Collector)

P
Mutator(Mut-Env) Collector
Mutator-View Collector-View

GraphMonad
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