Programming
Concurrent Garbage Collectors

With
Pushouts and M onads

Technische Universitat Berlin

and
Kestrel Institute

I
(@)
H

IECE!

HH
&
i
D

System Diagram

Graphs

Monads

The Mutator

The Collector

|mplementation Problems

The Extended Collector
Cleaning (Mark)
Scavenging (Scan)

The Extended Mutator

Assessment of the Method

H

=) =) [=] =) = [

[l

]

_)

0 The Isaparallel combination of
[1 the (the "program")
[the (the "garbage collector")
SN ENERENERERERERE

Mut-Spec(M-Env)

[

|6

=

&

[+

-p4

24
Mut-Spec(M-Env) Coll-Spec(C-

[
|6
=
El
L4
It ,
m.
£l
[+

[

|6

=

&

[+

-p4

M ut-Spec(I\/I-Eﬁ\‘r)\\

Collector

\ \\
Coll-Spec(C-Env) |~

~
-~
~ -
-~
~ -
-~

Monad(Graph)
y y
Monad(State) Graph
% e
State
S NERERERERENERERE

The Overall System Specification

SPEC System —
IMPORT Mutator,Collector
FUN run: M[Void| = (mutate || collect) -- parallel

SPEC Mutator = Mutator- Spec(Collector)

SPEC Mutator- Spec(Env: Mutator- Environment) = . ..

]

It
L

E:]
L

=) =) [=] =) = [

The Overall System Specification

SPEC System —
IMPORT Mutator,Collector
FUN run: M[Void| = (mutate || collect) -- parallel

SPEC Mutator = Mutator- Spec(Collector)
SPEC Collector = Collector- Spec(Mutator)

SPEC Mutator- Spec(Env: Mutator- Environment) = . ..

SPEC Collector- Spec(Env: Collector- Environment) = ...

2 Graph Specification

Graphs
fixed nodes

roots

SUCCESSOr al'CS

freglist

ERENERERENERERE N

H
[l

SORT Node
- - the (coalgebraic) type for graphs
SORT Graph OBSERVED BY roots, sucs, free

FUN roots : Graph — Set Node
FUN sucs : Node — Graph — Set Node
FUN free : Graph — Set Node

=) =) [=] =) = [

It
[l
E:]
L

SORT Node

- - the (coalgebraic) type for graphs
SORT Graph OBSERVED BY roots, sucs, free
FUN roots : Graph — Set Node
FUN sucs : Node — Graph — Set Node
FUN free : Graph — Set Node

- - reachability
OBS reachable: (R: Set Node) — (G: Graph) — (S’ : Set Node)

POST 8’ = LEAST S. (R C S) A (U/(G.sucs) *S C S)
- - reachable from root
OBSblack: (G: Graph — Set Node) = G.reachable(G.roots)
- - alternative name for freelist
OBS gray: (G: Graph — Set Node) = G.free
- - totally unreachable nodes (garbage)
OBSwhite: (G: Graph — Set Node) = { n: Node } \ (G.black U G.gray)

AXM 1: G.black N G.gray = ()

- - add /delete arc (coinductive definition)
FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)
POST G'.sucs(x) = G.sucs(x

) &
FUN cut: (x: Node, y: Node) — (G: Graph) (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) Sy

ENENERE

[
HH|
[l
]
H|

- - add /delete arc (coinductive definition)
FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)

POST G'.sucs(x) = G.sucs(x

) &
FUN cut: (x: Node, y: Node) — (G: Graph) (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) Sy

- - obtaining a free nod
FUN new: (G: Graph) @aph n @
PRE G free # ()
POST n € G.free
G .free = G.free©n

G'.sucs(n) =0

- - recycling a garbage node
FUN recycle: (G: Graph) — (G’ : Graph)
PRE G.white # ()
POST G'.free = G.free & n WHERE n € G.white

ERENERERENERERE N

_)

[he becomes the (hidden)

of mutator/collector
IS of monadic operations.

[
|6
=

ENE

I
&
£l
[

Monads parameterized State
Monads polymorphic type M|

SPEC Monad (TYPE State) =

TYPE M|/

5]] 2] Bl & B E

It
[l
E:]
L

Monads parameterized State
Monads polymorphic type M|

SPEC Monad (TYPE State) =

TYPE M|/

M|c] two functions

- - coalgebraic view of M |«]
OBS evolution: Mla| — (State — State)

OBS observer: Ma] — (State — «)

]

It
L

E:]
L

=) =) [=] =) = [

We can lift a value to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a

]

It
L

E:]
L

=) =) [=] =) = [

We can |ift avalue to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a

We can compose two monads
FUN (- ; -)la, 5] Mla] x M[8] — M|

DEF (m; ; my).evolution = my.evolution o my.evolution
DEF (m; ; my).0observer = my.observer o my.evolution

=) =) [=] =) = [

It
[l
E:]
L

We can |ift avalue to a monad (with no evolution)

FUN yield|a]: a — M|a]
DEF (yield a).evolution = id

DEF (yield a).observer =K a

We can compose two monads
FUN (- ; -)la, 5] Mla] x M[8] — M|

DEF (m; ; my).evolution = my.evolution o my.evolution
DEF (m; ; my).0observer = my.observer o my.evolution

We can compose a monad with a continuation
FUN (- ; -)la, 8] Mla] x (a — M[5]) — M[f]

DEFm, ; f = (f o my.observer) S (m;.evolution)

H

ERENERERENERERE N

Automatic casting to monadic operations

FUN £ : M|/
DEF f.observer = £

FUN f: Graph — «

DEF f.evolution = id

2] (=) (e [=

=) =] [=] &) =) E) &

Automatic casting to monadic operations

FUN £ : M|/
FUN f: Graph — « DEF f.observer = £
DEF f.evolution = id

FUN f: M[Void|
FUN f: Graph — Graph DEF f.observer = Knil
DEF f.evolution = £

3] [z 2] Bl & Bl E E =

The monadic graph Monad(Graph):

FUN roots: M[Set Node]

FUN sucs: Node — M|[Set Arc]
FUN free: M|Set Node]

FUN add : Node X Node — M|Void]
FUN cut : Node x Node — M|Void]
FUN new : M[Node]

FUN recycle: M|Void]

OBS reachable: Set Node — M|Set Node]
OBS black: M[Set Node|

OBS gray : M[Set Node]

OBS white: M[Set Node|

H

ERENERERENERERE N

Special Predicates on Monads

SPEC Monad (TYPE State) =

- - Invariance
OBS invariant : M{a| — Bool
DEF invariant(f) = preserve(=)(f)

- - monotonicity
OBSmonotone : M[a] — Bool
DEF monotone(f) = preserve(=)(f)

- - preservation of a relation
OBSpreserve: (X: a X a — Bool) — f: M/a| — Bool
PRE f.evolution = 1id
POST Vm: M|a] : f.observer =< f.observer cm.evolution

lterators on Monads

SPEC Monad (TYPE State) =

- - Infinite repetition
FUN forever : M|Void] — M|Void]
DEF foreverm = m; forever(m)

- - repeat as often as possible

FUN iterate: M[Void] — M|Void]

DEF iteratem = IF APPLICABLE (m) THEN m ; iterate(m)
ELSE nop Fl

4 The Mutator

roots, sucs, add, cut, new
mutator

SPEC Mutator- Spec (Env: Mutator- Environment) =
IMPORT Monad(Graph) ONLY roots, sucs, add, cut, new

FUN mutate: M|Void|
THM monotone white

guarantees
white
reman white

ERENERERENERERE N

The mutator relies
environment

SPEC Mutator- Environment =
EXTEND Monad(Graph) BY

AXM 1: invariant black
AXM 2:Vn € black: invariant sucs(n)

not change the black part of the graph

not
not

=) =] [=] &) =) E) &

It
[l
E:]
L

5 The Collector (naive view)

collector
continuously recycles

SPEC Collector- Spec (Env: Collector- Environment) =
IMPORT Monad(Graph) ONLY recycle,white

FUN collect: M|Void]| = forever(recycle)
THM invariant black
THM Vn € black: invariant sucs(n)

guarantees

]

It
L

E:]
L

=) =) [=] =) = [

EUES _
environment

SPEC Collector- Environment =
EXTEND Monad(Graph) BY

AXM monotone white

not make white nodes reachable

]

It
L

E:]
L

=) =) [=] =) = [

Collector- Spec = Mutator- Environment

Mutator- Spec

~ Collector- Environment

[

|6

=

=

=

It
i

[+

-p.20

Collector- Spec = Mutator- Environment

Mutator- Spec

n € wvhite = On € gray

~ Collector- Environment

[

|6

=

=

=

It
i

[+

-p.20

Collector- Spec = Mutator- Environment

Mutator- Spec

n € wvhite = On € gray

~ Collector- Environment

[

|6

=

=

=

It
i

[+

-p.20

_)

GOAL marked C white

[

|6

=

&

=

It

&

[+

-p.21

We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)

]

It
L

E:]
L

=) =) [=] =) = [

We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)

Central invariant:
marked N (black U gray) C pink

]

It
L

E:]
L

=) =) [=] =) = [

We introduce the workset of currently considered nodes

FUN red: Graph — Set Node -- a coalgebraic observer

OBSpink: (G: Graph — Set Node) = G.reachable(G.red)

Central invariant:
marked N (black U gray) C pink

Conclusion
red=0 F pink=0 F marked C white

ERENERERENERERE N

H

) 1 | E

SN E N ERE RN EE

-)

[1 The collector alternates between

[

|6

=

&

=

It

[+

- p.25

[]

-)

[1 The collector alternates between

(removing the marks of the reachable nodes)

[

|6

=

&

=

It

[+

- p.25

[]

[]

-)

[1 The collector aternates between
(removing the marks of the reachable nodes)

(adding the remaining marked nodes to the freelist)

[

|6

=

&

=

It

[+

- p.25

SPEC XCollector- Spec (Env: XCollector- Environment) =
IMPORT Monad (XGraph)

IMPORT Cleaner ONLY clean
IMPORT Scavenger ONLY scavenge

FUN collect: M|Void]| = forever(clean ; scavenge)

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph has to remain untouched!

]

It
L

E:]
L

=) =) [=] =) = [

7.1 The Cleaning Phase (*'unmark"")

Cleaning unmarks reachable nodes as long as possible
It bases on an extended spec of Graph

SPEC Cleaner =
IMPORT Monad(Cleaning- View- of- XGraph)

FUN clean: M|[Void]
PRE marked = {n: Node}
POST marked C white
DEF clean = (red « roots U free ; iterate(unmark))

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph remains untouched!
BRERERE =RENE

) 1 | E

SN E N ERE RN EE

Unmarking ared node makes all its marked successors red
(push red frontier forward)

SPEC Cleaning- View- of- XGraph =
EXTEND XGraph ONLY red, sucs BY

- - unmark some node in the workset
FUN unmark: (G: Graph) — (G’ : Graph)
PRE G.red # ()
POST LETn € G.red IN
G'.red = G.red U (G.sucs(n) N G.marked) O n
G'.marked = G.marked ©n

- - the central invariant
THM 1: G.marked N G.dark C G.pink

- - a helpful lemma
THM 2: G.red = () = G.marked C G.white

7.2 The Scavenging Phase (*'Scan'")

The scavenger recycles marked nodes as long as possible

SPEC Scavenger —
IMPORT Monad(Scavenging- View- of- XGraph)

FUN scavenge : M[Void]

PRE marked C white
DEF scavenge = iterate(recycle)

THM invariant black
THM Vn € black: invariant sucs(n)

The black subgraph remains untouched!

H

ERENERERENERERE N

The scavenger needs a primitive operation
for recycling

SPEC Scavanging- View- of- XGraph =
EXTEND XGraph ONLY marked, free BY

- - modify recycle
FUN recycle: (G: Graph) — (G’ : Graph)
PRE G.marked # ()
POST LET n € G.marked IN
G'.marked = G.marked & n
G .free = G.free®n

- - the central Invariant
AXM 1: G.marked C G.white

Adaptions for the Collector’s Environment

SPEC XCollector- Environment =
EXTEND Monad(XGraph)

AXM 1: G.marked N G.dark C G.pink
AXM 2: monotone white
AXM 3: invariant marked

_)

Counterexample: A demonic mutator

A o

B

A

o B

[

|6

=

&

=

It
i

[+

SPEC XMutator- Spec (Env: Mutator- Environment) =
IMPORT Monad(Mutator- View- of- XGraph)

FUN mutate : M|Void|

THM 1: G.marked (N G.dark C G.pink
THM 2: monotone white
THM 3: invariant marked

The mutator guarantees.

al reachable marked nodes will still be visited
unreachable nodes remain unreachable

the marking remains untouched

H

ERENERERENERERE N

- p.36

bl

1
HH

&

ENE

i

9l

|

[1 Whenever an arc to a(still) marked node is created, this

node is coloured red (needs visiting)

[

|6

=

&

=

It

[+

- p.36

The mutator needs a modified add
operation

SPEC Mutator- View- of- XGraph =
EXTEND XGraph ONLY roots, sucs, cut,new BY

- - modify add

FUN add: (x: Node, y: Node) — (G: Graph) — (G’ : Graph)
POST G'.sucs(x) = G.sucs(x) By
x ¢ Gmarked Ay € G.marked = G.red =G.red Dy

H

ERENERERENERERE N

-)

[1 Monads provide a sound and smooth way of

Integrating
with

[

|6

=

&

=

It

[+

—p.37

-)

[1 Monads provide a sound and smooth way of
Integrating
with

[1 Selective import plays a central role in the formulation
and verification of properties.
|t to

(thisavoids the clumsy O (at = = .. .) known from temporal logic.)

I
&
£l
[

ENE

[
|6
=

—p.37

and
In the Mutator specification

Mutator(Collector)

P
Mutator(Mut-Env) Collector
Mutator-View Collector-View

GraphMonad

H

ERENERERENERERE N

	Content-1

