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Abstract

The main point of this note is the urgent necessity of establishing a proper balance in the
mathematical content of university curricula in computing. Especially in situations where
various local factors have inhibited curricula from growing into maturity, serious efforts
are needed to establish conditions where “university level” is more than a pretence.

Indeed, the important role of computing technology in modern economy ensures such
a multitude of tasks to be done at all levels that even departments that are “latecomers”
in the field (or only indirectly concerned with computing) can, with considerable near-
term impunity, find research niches and provide education far below the level that would
be considered minimal in, for instance, electronics engineering. For this complacency and
self-deception, however, the students will have to pay a heavy price by finding the half-
life time of their education unnecessarily short and their own obsolescence a continuous
threat, due to insufficient fundamental background for lifelong learning.

By analogy with education in more mature engineering disciplines such as electronics,
an outline is given of the mathematical prerequisites for a computing engineering cur-
riculum deserving the label “engineering”. The minimalist approach typical for curricula
inhibited by local traditions is clearly inadequate. It is also crucial to satisfy these prereq-
uisites as early as possible in the curriculum, otherwise none of the other courses can be
raised above the descriptive/technician level since the students lack proper preparation.

This note is a preliminary version; a few of the aspects are also discussed in [6].

0. Introduction and motivation

Engineering at the university level Technical, vocational and trade schools play a use-
ful role in society by providing skilled electricians, mechanics, plumbers etc.. Indeed, it is
instructive to ponder how many technical tasks can be fulfilled without scientific understand-
ing, just based on ad hoc insights, available technology, and established routine procedures.

Engineering, however, is characterized! by the application of scientific principles. The
use of mathematics is the most distinguishing element, and hence the issue considered here.
Indeed, as Parnas observes, referring to computer engineering: “Professional engineers can
often be distinguished from other designers by the engineers’ ability to use mathematical
models to describe and analyze their products” [28].

Although this epistemological principle is established de facto in engineering disciplines
with a longstanding scientific tradition, in some computing curricula it is still underdeveloped.

When colleagues who teach classical engineering courses (say, electronics) happen to look
at the computing courses in such curricula, they often make the remark that these courses
are merely descriptive, lacking in intellectual content, and altogether little more than inflated
programming courses—an opinion reinforced by the kind of assignments given to students
(writing software and reports). Unfortunately, this remark is all too often justified.

Complacency as an impeding factor The indifference regarding the level of computing
curricula is easily explained by the economic situation of the recent decades, where computer
and information technology have seen continued growth with only rare periods of faltering.

'See the Oxford English Reference Dictionary, the Webster’s New World Dictionary etc.



Due to this fast pace, there always are plenty of urgent development tasks to be done at all
levels. Even people with no computing background who invest a minor effort in self-study can
contribute usefully. With the urgent demand for quantity, and industry still uncertain about
the exact qualifications software designers need, level and scientific basis become secondary.

Likewise, there are ample research niches for turning out Ph.D.s and papers that evi-
dently are considered acceptable in the area of computing, but whose scientific level would
be inadequate in more classical engineering areas, say, electronics.

Many students choose computing as they are looking for a mathematically less demanding
engineering degree and for a sheltered way to reach a level that others attain by self-study.
Some are already content if it helps them understand the computer magazines in newsstands.
University administrators often prefer the easy way of large enrollment over quality.

So, considering this complacency in industry, academia and students, why devote effort
to providing more serious computing curricula? We discuss only two of many reasons.

(a) Students deserve better Students enter the university for a university-level educa-
tion. This implies a solid scientific basis to ensure (i) a deeper understanding of the material,
extending its half-life time far beyond that of its technological embodiments of the moment;
(ii) a systematic framework to facilitate the mastery of new subjects throughout the later
career by lifelong learning. Indeed, economics change, and employment may become selective.

By its power of abstraction and assistance to reasoning, mathematics is the crucial element
of a scientific basis: mere descriptive or intuitive approaches always fall short. The university
is the best environment for acquiring this element, because mathematics needs concentration
and gradual familiarization, and learning assistance is readily available. Moreover, once this
opportunity is missed and the basis is deficient, repair during a later career will be much
more difficult; for most this will even prove impossible, meaning there is no second chance.

Students put their trust in the university to provide the best possible curriculum, tacitly
assuming that the required professional knowledge and sense of responsibility is available.
They cannot verify this assumption in the short term. Specifically, in case demanding topics
are kept out of the curriculum and computing courses are descriptive with insignificant math-
ematical content, students have no frame of reference for knowing that this is inadequate.

In that case, their trust has been violated and their professional obsolescence will proceed
faster, while those responsible will not be available for making amends.

(b) A matter of professionalism No one would consider giving an electronics programme
at the university level without using the benefits from differential and integral calculus or
from transform methods. This background is assumed and routinely used throughout all
other courses. Often more advanced mathematics is also taught.

The only possible excuse for a program with less math is when design tasks are excluded,
e.g., in some Technicians Level programs: “technicians generally do not perform electronic de-
sign work and, thus, the math skills required are not as rigorous as that of a 3-year technology
program” [23]. Still, many entry-level technicians programs do include calculus [24]!

In brief, the idea of omitting calculus from a university EE curriculum as being “too
difficult for engineers” would be met with justified ridicule.

It is a sign of immaturity for software engineering that the idea of “leaving the mathemat-
ics out” is not treated likewise. Instead, occasionally one even hears that the mathematical
methods arising from computing science are “too advanced” for undergraduate students!

Clearly, the chasm between software design and true engineering is so huge that it can be
bridged only in the long term by education, teaching software engineering as true engineering.



1. Teaching “Software Engineering” as true Engineering

Professionalism in software engineering The recommendations of Dijkstra [12] and
Gries [14, 15, 16] for software education are well-known, as are Parnas’s observations [28].
This is also the rationale for the BESEME project [26]. A recent series of articles in the
Communications of the ACM provides additional arguments in the same direction [8, 17].
A particularly refreshing outlook is offered by Holloway [18], who argues that the tradi-
tional jestification of formal methods by increased reliability or productivity involves many
hidden assumptions as well as superfluous ones. He presents a much simpler argument in
the form of a syllogism: software engineers aspire to be true engineers; true engineers use
appropriate mathematics; hence software engineers should adopt the same approach.
Especially countries that, at least at the time of the 1999 TIMSS survey [32], represent the
best tradition in mathematics education of the western world (Asia being the forefront) have
a special duty in fostering this human resource in all engineering areas, computing included.

Formal Methods: the mathematics originating from Computing Science A serious
danger to curriculum design is the misconception that “Formal Methods” is a rather restricted
subject that can be taught in a small number of courses placed anywhere in the curriculum and
yet can cover all CS-generated mathematics? relevant to computer and software engineering.
Gopalakrishnan [13] attributes this misconception to the fact that “Formal Methods” was
introduced in Computing Science to indicate the use of mathematics—a practice so evident
in other branches of engineering that a separate appellation may be considered redundant.
Still, the specific term could be justified by the fact that computer engineering requires a
more formal kind of mathematics than the classical mathematical and engineering disciplines,
a point also emphasized in Lamport’s recent book on specifying systems [20]. The definition
of formality, its importance in computing, and further references are discussed in [6].
However, more directly important for curriculum design are the following observations.

a. The body of nonclassical mathematical knowledge relevant to software engineering and
sufficiently mature to be taught is staggering [13], in fact, considerably larger than the
amount of classical mathematics usually included in computer engineering curricula.

b. Computing Science has generated a new mathematical style that is much more formal,
yet practical, and even advantageous for teaching and research in classical mathematics.

Yet, this body of knowledge is rather recent (say, 35 years or less®) and the practical formal

approach even more. As a result, their representation in computing curricula is very uneven.
Some curricula are entirely designed around a mathematical core as outlined in [26], cre-

ating a situation nearly as favorable as in classical engineering. Other curricula are designed

around a pre-existing local body of lecturers who never studied the material themselves, and

without hiring or otherwise involving a sufficient number of qualified lecturers from elsewhere.
The damage need not be permanent. Indeed, according to Max Planck [29]:

An important scientific innovation rarely makes its way by gradually winning
over and converting its opponents: it rarely happens that Saul becomes Paul.
What does happen is that its opponents gradually die out, and that the growing
generation is familiarised with the ideas from the beginning.

Still, this optimistic view holds only insofar as the new generation is given the opportunity
to become familiarised with the ideas! This depends on the wisdom of curriculum designers.
Unfortunately, it has been observed that curriculum design can also amount to censorship.

2The mathematics from Computing Science (Table 0, column CM), as opposed to classical math (col. EM).
3More recent than the classics by Turing and Von Numann or the “new math” educational disasters.



2. Balancing the mathematical content of computer engineering curricula

The mathematics content of engineering curricula Given the preceding obserations
and the large body of mathematical knowledge and educational insights relevant to computing
generated in the past two decades [13], we propose a mathematics content as in Table 0.

| | EM. Engineering Math. | CM. Computing Engineering Mathematics |

Basic Analysis, Linear algebra Formal proposition and predicate calculus
(general) Probability and Statistics | Relations, (h.-0.) functions, orderings

Discrete mathematics Lambda calculus (basics)

(combinatorics, graphs) | Lattice theory, Induction principles, ...

Targeted Physics, Circuit theory, Formal languages and automata
(modelling) | Control theory Formal language semantics

Stochastic processes Concurrency (parallel, mobile calculi etc.)

Information Theory, ... Type theory, ...
“Advanced” | Functional analysis Category theory

Distribution Theory Unified algebra

Hilbert and Banach spaces | Modal logic

Measure theory, ... Co-algebras and co-induction, ...

Table 0: Mathematics for classical engineering and for computer/software engineering

Legend: “Basic” and “targeted” refer to undergraduate levels. “Basic” is domain-independent,
“targeted” is more domain-specific, e.g., Computing Mechanics in Denning’s setting [10]. The
designation “advanced” is in quotes because it is debatable: given today’s state of the art,
some topics are arguably useful at the undergraduate level. EM is the mathematics for classi-
cal engineering, with electronics (EE) as a reference. CM is the mathematics for Computing
Engineering (CE), and is meant to complement, not replace EM.

Balancing engineering mathematics and computing mathematics On one hand,
one might argue against CM topics that they are not yet common everyday practice. However,
the EM topics are not used daily either, yet universally recognized as being important enough
for the intellectual formation of future engineers to be part of every EE curriculum. Indeed,
the main thing in the mathematics is not the bare facts but learning to reason and model.
Moreover, giving CM a central role in education is the only way for enabling future computing
engineers to break the vicious circle and boost everyday industrial software design practice to
a level of professionalism comparable to what is considered minimal in electronics engineering.
The other extreme is arguing that EM is of little use for software and higher-level hard-
ware design, and hence superfluous in computing curricula. Some might applaud this as a
refreshing break with tradition in computing curricula where an excessive amount of EM
leaves no room for CM. Yet, omitting EM in a computing curriculum would be succumbing
to the blatant utilitarianism that increasingly endangers the university level of education. For
university-level engineers, mathematics is not just a tool but a part of their cultural heritage.
A proper balance would be a 50-50 allotment, assuming the equivalent of at least 1/3 of
the undergraduate programme is devoted to the scientific basis outlined in the first two rows.
This implies more attention to the topics from CM than is customary in most current and
even proposed computing curricula [25], but there is a very good reason for proposing it.
Indeed, observe that successful applications of formal methods in industrial projects take
place mostly at the Ph.D. level. The readership of the large body of useful results generated
over the past decades about crucial (but difficult) areas such as concurrency often remains
restricted de facto to researchers, without reaching the classroom. This situation is unsound,
since much material is sufficiently mature and useful even in the undergraduate curriculum.



Educational approach An overview of contents is just a list, and the approach is at least
as important.

The benefits of calculating formally and developing intuition in formal calculation can-
not be overemphasized [6]. This differs from the traditional approach where, for instance,
predicate calculus is taught informally, and quantifiers (V, 3) appear only as shorthand for
natural language (“for all”, “there exists”), without developing this into a calculus that makes
quantified formulas a useful reasoning tool [4, 15].

Indeed, although in Lethbridge’s survey [21] software practitioners did not list formal logic
along with calculus among the courses they consider useless, neither did they include it in
the list of topics that made a lasting impression. This indicates that logic is not sufficiently
taught in a way that makes it useful for everyday practice [16]. It is also important to keep
in mind that high school has offered the students little preparation for logic.

For these reasons, the idea of covering logic in a “quick course” must be resisted.

Similarly, computer tools may help, but can never be a substitute for solid mathematics.
There is a certain analogy with the role of packages like Maple or Mathematica in calculus
courses. However, the successful use of such packages by students makes it easy to overlook
how heavily this relies on the fact that high school provides significant preparation for the
underlying mathematical concepts and conventions. Hence analogous expectations are not
justified for logic software: the situation is different beyond comparison.

Researchers and educators note that symbolic computation packages are meant to elimi-
nate “wearisome calculations” for the [experienced] user, but also warns that such calculations
play an essential role in the development of the understanding of beginning students [30].

Still, simple tools may help students by lowering the level of abstraction and facilitating
the discovery of their own mistakes. However, this assumes a receptive attitude: students
are often less than enthusiastic about learning “yet another language; are C++ and Java
not enough?”, or blame the tool for errors in their own specification or hidden assumptions.
Such unreceptive attitudes are seldom the students’ fault but generally the result of poor
curriculum design or an inadequate education environment where minimalism prevails?.

Should education reflect current SWE practice? Many SWE courses are based on
textbooks describing various “methodologies”. Such an approach is favored by students who
prefer material that makes fewer mathematical demands, yet gives the impression of direct
usefulness in industry. This impression is debatable, since different companies make different
choices about software design procedures, which therefore are best learned on the job.

In fact, Bruce et al. [8] observe that just-in-time learning is the province of on-the-job
training. This is very apt for the “methodology” topics that, according to Lethbridge’s survey
[21], software practitioners currently encounter most in their everyday work.

More importantly, since current SWE practice does not approximate the level of profes-
sionalism of classical engineering, education should not mirror it, lest the vicious circle be
perpetuated. Raising professionalism requires sustained injection with fresh graduates having
a superior background. Students and industry are best served by focusing on solid founda-
tions, principles and topics that can only be mastered effectively via university education.

A psychological problem is that the mathematics of computing is relatively demanding.
This makes it easy to oppose its integration into the curriculum with the unfair argument
that it does not solve all problems of the software crisis. Evidently, such arguments (not
always unintentionally!) blur the distinction between necessary and sufficient conditions.

Indeed, on the heavy road towards professionalizing software engineering, mathematics
can modestly claim only necessity, where easier “methodologies” freely claim sufficiency.

4A typical error is giving in to beginners’ insistence that learning a new programming language be given
ample classroom time rather than result from self-study. This yields cheap credits for the students, but the
time thus wasted forces omitting harder topics that truly benefit from exposition and explanation in class!



3. Some final remarks

Impeding factors Realizing curricula matching the above rationale is increasingly difficult.

Most successful are universities where CS curricula developed early (about 1965-70) under
the direct influence of computing pioneers. Universities that started later (say, 15 years) but
took computing seriously as a scientific discipline were still able to catch up by attracting
people from elsewhere with suitable background and vision. Problematic are latecomers
where computing is just a side activity of various departments and where compensation by
influx of personnel from elsewhere is minimal, and incentive to improve the situation is low.

There are strong social pressures to reduce the mathematical content of engineering cur-
ricula. It is at least strange that the academic community has done so little to resist these
pressures, since epistemology quite transcends ephemeral issues like social preferences, and it
is a disservice to the student community to provide less than the level it has the right to expect
at a university. By lack of solid tradition, computing education is especially vulnerable.

Another factor are local traditions and vested interests. The importance and difficulty
of obtaining “buy-in” from colleagues for establishing a high-quality educational programme
in computing has been emphasized by Page [26], Wing[34] and others. The fact that any
serious improvement of the curriculum would require that, borrowing Page’s euphemism,
“most instructors must revise notes” is a major (hidden) motive for opposing change.

In the worst case, even the potential for gradual improvement is curtailed, for instance,
by tolerating only a token of CM-related material and placing it late in the curriculum. First,
students will be adversely motivated towards such material, and see it as ballast by lack of
opportunity to apply it in other courses. Moreover, lecturers who might aim for a gradual
increase of mathematical methods in their courses are prohibited from doing so because
students lack the background, unless a major proportion of the course is set aside for ad hoc
patches. It is simpler to lay uniform, solid foundations early, letting later courses benefit.

The European context In Europe, the current Bachelor/Master reform following the
Sorbonne/Bologna agreements has reduced the space allotted to the fundamentals at many
universities. Indeed, the new Bachelor programme is only three years in many countries, as
opposed to four in the U.S. [33]. This short duration, together with the pressure to have more
courses specific to the chosen technical specialty early in the curriculum, has compromised
the scientific basis, in particular the mathematical foundations, to a very large extent.
These developments cause the continuation an earlier worldwide trend whose disastrous
consequences for the intellectual formation of students have already been observed even in
well-established disciplines such as mathematical analysis and physics. We give a few exam-
ples, found at various occasions on the web (e.g., Amazon customer reviews). About Rudin’s
classic analysis text [31], Mikhail Ostrovskii noted that, based on educational experience with
undergraduates, it has become “too advanced for the 21st century”. Conversely, the degree
to which some recent books have succumbed to the downward trend leads to bitter criticisms:

[The author| appears to vainly grasping at the microscopic attention spans of his
weakest readers. After all, we live in an era where teachers must entice their
TV-addicted, suburbanite students to work, using books with beautiful covers
and lots of flashy pictures inside. Many teachers no longer dare to challenge their
students with difficult readings or problem sets because they will be harrassed by
endless complaints and negative evaluations (bad news for profs seeking tenure).
[...] another reviewer |[...] summed it all up far better than I. To paraphrase...

If you don’t know any linear algebra

Or if you don’t know anything about differential equations

And are glad of it because you just don’t like math

Then [this book’s author] is your man.”



We omit the reference, but Google provides the full text within a second. It is sad to observe
that, in well-established disciplines as mentioned, many serious teachers must recommend for
their classes textbooks of rougly 30 years ago if they want level and quality.

How much graver are the consequences for younger disciplines such as the mathematics
for software engineering, especially formal logic, which rarely had an established position to
start with! In some computing curricula, the scientific basis is simply discarded, necessarily
restricting the level of all other courses. Ultimately the students are the victims.

What is being squandered within the time span of a few years will take a generation to
recover when the need is realized again. At the same time, one hears complaints from various
sides about the gradual shift of engineering towards Asian countries.

These European developments are just a large-scale version of what occurred in The
Netherlands about 15 years ago. The erstwhile Minister of Education, in collusion with some
colleagues from other countries, reduced the nominal duration of the (Dutch) engineering cur-
ricula from 5 years to 4, claiming industry support, ignoring all arguments from universities,
and making promises about a “second phase” (Masters degree) that never materialized. Few
years after the first graduates emerged, companies complained about the reduced quality,
and Philips even openly stated henceforth preferring engineers from Leuven over those from
Eindhoven. Only several years later was the original 5-year duration re-established.

The authoritarian way in which the Sorbonne/Bologna agreements and their interpreta-
tions by local politicians are imposed on the universities—with only a token opposition and
considerable opportunism from the latter side—suggests that we are witnessing a rerun of
the same story.

In particular, it is virtually certain that industry, after perhaps an initial impression
of more “immediate gratification” lasting a few years, will realize the lack of substantial
foundations in the new graduates as compared to those from preceding curricula. The new
generation will face faster obsolescence, Asian countries will have taken a serious lead, and
the surprise of the responsible politicians in government and academia will be feigned: they
are fully aware of the damage they are inflicting upon education, yet are more keen on leaving
their imprint on history even though they are incapable of doing so constructively.
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Appendix: the situation in Belgium

Wasting opportunities At the time of the 1999 TIMSS survey [32], the Flemish part of
Belgium represented the best tradition in mathematics education of the western world, Asian
countries having the lead. This entails a special responsibility in fostering this resource.

Unfortunately, precisely here we have seen unprecedented squandering in the recent past.
The entrance examination for engineering students was considerably reduced a few years ago,
and altogether eliminated starting 2004 by ministerial decision, the openly stated purpose
being to attract more engineering students—an illusory or at best short-lived effect.

Whereas the earlier entrance requirements for engineering have long sustained a track in
secondary education with a solid mathematical content, already now secondary school math-
ematics teachers are reporting the negative effects of the reduced requirements on the student
motivation for this track, which is rapidly approaching extinction. At some universities, the
use of computer tools is invoked as a reassurance that we can afford such developments, which
obviously is just another epistemological illusion [30] with dire consequences.

What is being squandered within the time span of a few years will take a generation to
recover when the need is realized again. At the same time, one hears complaints from various
sides about the gradual shift of engineering towards Asian countries. Don’t they deserve it?



