
Tail-recursive streaming 1

Streaming for

tail-recursive programs

Jeremy Gibbons

University of Oxford

WG2.1#60, May 2005



Tail-recursive streaming 2

1. Metamorphisms

> meta :: (b->Maybe (c,b)) -> (b->a->b) -> b -> [a] -> [c]
> meta f g b as = unfoldr f (foldl g b as)

> foldl :: (b -> a -> b) -> b -> [a] -> b
> foldl f e [] = e
> foldl f e (a:as) = foldl f (f e a) as

> unfoldr :: (b -> Maybe (c,b)) -> b -> [c]
> unfoldr f b = case f b of
> Just (c, b’) -> c : unfoldr f b’
> Nothing -> []



Tail-recursive streaming 3

2. Streaming

> stream :: (b->Maybe (c,b)) -> (b->a->b) -> b -> [a] -> [c]
> stream f g b as =
> case f b of
> Just (c, b’) -> c : stream f g b’ as
> Nothing ->
> case as of
> (a:as’) -> stream f g (g b a) as’
> [] -> []



Tail-recursive streaming 4

3. Streaming condition

The streaming condition for f and g is that whenever

f b = Just (c,b’)

then, for any a,

f (g b a) = Just (c, g b’ a)

It’s a kind of invariant property.

b
produce c � b’

g b a

consume a

�

produce c
� g b’ a

consume a

�



Tail-recursive streaming 5

4. Streaming theorem

Theorem: if the streaming condition holds for f and g, then

stream f g b as = unfoldr f (foldl g b as)

for all finite lists as.

For example, the streaming condition holds for unCons and (++), and so
the composition

unfoldr unCons . foldl (++) []

can be streamed.



Tail-recursive streaming 6

5. Generalizing

As stated above, streaming is about converting lists to lists.

It is not too difficult to generalize the output to other datatypes.
(But I have no convincing examples. . . )

How about the input? foldl does not generalize easily to other datatypes.
(Yes, I know about Alberto Pardo’s work, but that doesn’t seem to help
here.)

I now think streaming is really about tail recursion.
foldl is just one example—perhaps the most familiar—of tail recursion.



Tail-recursive streaming 7

6. The tail recursion pattern

Here is a (fairly) general form of tail recursion.

> tr :: (a->Maybe a) -> (b->a->b) -> b -> a -> b
> tr h g b a =
> case h a of
> Nothing -> b
> Just a’ -> tr h g (g b a) a’

For example,

> reverse = tr safetail conshead []
> where safetail [] = Nothing
> safetail (x:xs) = Just xs
> conshead ys (x:xs) = x:ys

(WLOG, we assume that the final value of type a is not used.)



Tail-recursive streaming 8

7. Refactoring tail recursion

I claim:

tr h g b a = foldl g b (trace h a)

where

> trace :: (a->Maybe a) -> a -> [a]
> trace h a = case h a of
> Just a’ -> a : trace h a’
> Nothing -> []

Thus, any tail-recursive program is a foldl after a trace.

Tail-recursive programs are necessarily linearly recursive, and that is
where the lists in streaming come from.



Tail-recursive streaming 9

8. Streaming a tail recursion

> trstream :: (b->Maybe (c,b)) -> (b->a->b) -> (a->Maybe a) ->
> b -> a -> [c]
> trstream f g h b a =
> case f b of
> Just (c, b’) -> c : trstream f g h b’ a
> Nothing ->
> case h a of
> Just a’ -> trstream f g h (g b a) a’
> Nothing -> []

Provided the streaming condition holds for f and g,

trstream f g h b a = unfoldr f (foldl g b (trace h a))

on as for which trace h a is finite.



Tail-recursive streaming 10

9. Applications?

I feel there is a connection with Doaitse’s Polish Parsers (ICFP 2004). One
aspect of that work is to make parsing online: the output is a list of
revelations, either bits of AST or confirmations of inputs consumed, and
this output is streamed.

I’d welcome other suggestions!


