
Transforming Types

Johan Jeuring

Joint work with Rui Guerra

2 / 29

Introduction

➙ Information possesses structure (has a type), and structural
information is used to store, edit, view, and search in data.

➙ There are many applications in which you want to view
(values of) certain types as other types, or transform types to
other types:

– when two types are isomorphic, you want to use
functionality on one type also on the other type;

– to suggest program corrections in type checking;
– cut & paste;
– coercive subtyping;
– schema/data type evolution;
– . . .

3 / 29

Isomorphic types

Suppose you want to use of two different libraries with functionality
on dates. The first one defines Date by

data Date = Date Day Month Year
data Day = Day Int
data Month = Month Int
data Year = Year Int

the second by:

data Date′ = Date′ (Int, Int, Int)

How can I mix functions from the two libraries in a single program?

4 / 29

Suggesting program corrections I

The following example is inspired by ‘How to Repair Type Errors
Automatically’ from Bruce McAdam (Trends in functional
programming, 2002). Consider the following program

square :: Int → Int
square i = i ? i
squareList :: Int → [Int]
squareList n = map ([1 . . n], square)

This program is incorrect, the programmer probably meant:

square :: Int → Int
square i = i ? i
squareList :: Int → [Int]
squareList n = map square [1 . . n]

but didn’t know how to use map properly.

5 / 29

Suggesting program corrections II

The type of map in the prelude is

(a → b) → [a] → [b]

map’s expected type is

([a], a → b) → [b]

These types are isomorphic under (un)currying and product
commutativity.

6 / 29

Cut & Paste

➙ In an editor you want to cut and paste data from one place to
another. But what if the types don’t match?

6 / 29

Cut & Paste

➙ In an editor you want to cut and paste data from one place to
another. But what if the types don’t match?

➙ Transform!

6 / 29

Cut & Paste

➙ In an editor you want to cut and paste data from one place to
another. But what if the types don’t match?

➙ Transform!
➙ If, for example, I paste

Date′ (20, 02, 2005)

to a location that expects values of type Date, I want it to be
transformed silently to

Date (Day 20) (Month 02) (Year 2005)

6 / 29

Cut & Paste

➙ In an editor you want to cut and paste data from one place to
another. But what if the types don’t match?

➙ Transform!
➙ If, for example, I paste

Date′ (20, 02, 2005)

to a location that expects values of type Date, I want it to be
transformed silently to

Date (Day 20) (Month 02) (Year 2005)

➙ This problem has been studied in the structure editors
community. For example: Akpotsui, Quint, Roisin. Type
Modelling for Document Transformation in Structured Editing
Systems.

7 / 29

Coercive subtyping

➙ Kiessling and Luo (Coercions in Hindley-Milner systems,
Types 2004): ‘Coercive subtyping is a framework of
abbreviation for dependent type theories.’

➙ If you want to silently coerce an integer to a float, you can
write the following code in Kiessling and Luo’s system:

int2float :: Int → Float
int2float = . . .

cdec int2float :: Int → Float

8 / 29

Schema evolution

The database community has been working (a lot) on Schema
transformation, integration, and translation.

9 / 29

Approaches to type transformations

In all these examples we want to have a function that transforms
values of one type to another type, with as little effort as possible.

➙ Obviously, generic transformations between isomorphic types
are of no help for non-isomorphic types.

9 / 29

Approaches to type transformations

In all these examples we want to have a function that transforms
values of one type to another type, with as little effort as possible.

➙ Obviously, generic transformations between isomorphic types
are of no help for non-isomorphic types.

➙ The suggestions for type corrections do not generate
transformations.

9 / 29

Approaches to type transformations

In all these examples we want to have a function that transforms
values of one type to another type, with as little effort as possible.

➙ Obviously, generic transformations between isomorphic types
are of no help for non-isomorphic types.

➙ The suggestions for type corrections do not generate
transformations.

➙ The type transformations in structure editors are built-in, and
only described informally.

9 / 29

Approaches to type transformations

In all these examples we want to have a function that transforms
values of one type to another type, with as little effort as possible.

➙ Obviously, generic transformations between isomorphic types
are of no help for non-isomorphic types.

➙ The suggestions for type corrections do not generate
transformations.

➙ The type transformations in structure editors are built-in, and
only described informally.

➙ The Hindley-Milner system extended with coercions only
allows a single coercion between two types.

10 / 29

This talk

A ‘type system’ and a ‘transformation inference algorithm’:

➙ Type transformation rules.
➙ An algorithm for calculating the minimum cost type

transformation.
➙ Soundness and completeness claims.

Given two types, the minimum cost type transformation between
these types is inferred.

It is a different problem to refactor a given type to a different type

11 / 29

Type transformations

Definition 1 (Type Transformation) A type transformation between
types a and b is a t such that a 7→t b is derivable using the following
rules.

12 / 29

Basic type transformation rules

a 7→id a

a 7→m b b 7→n c

a 7→trans (m,n) c

13 / 29

Placeholder transformation rules: example

If two types don’t match, I still want to be able to transform values
from one to the other.

Int 7→string String

This should be expensive.

Alternatively, it should be possible to add special-purpose coercions,
together with their cost, to the type transformation system.

14 / 29

Placeholder transformation rules

a 7→unit Unit

a 7→string String

a 7→int Int

15 / 29

Product transformation rules

a b

7→prodIntro a × b

a × b 7→fst a a × b 7→snd a

a × b 7→swapprod b × a

a 7→m a′ b 7→n b′

a × b 7→prod (m,n) a′ × b′

16 / 29

Sum transformation rules

a 7→sumInl a + b b 7→sumInr a + b

a 7→m c b 7→n c

a + b 7→either (m,n) c

a + b 7→swapsum b + a

a 7→m a′ b 7→n b′

a + b 7→sum (m,n) a′ + b′

17 / 29

Function transformation rules

a × b → c 7→curry a → b → c

a → b → c 7→uncurry a × b → c

a 7→const Unit → a Unit → a 7→unconst a

a 7→m a′ b 7→n b′

a′ → b 7→fun (m,n) a → b′

18 / 29

Constructor transformation rules

Con c a 7→rmConstr a

a 7→addConstr Con c a

a 7→m a′

Con c a 7→con (m) Con c a′

19 / 29

About the rules

Are these rules the minimal set of type rules?

➙ The sum and product rules are the standard monoidal iso’s.

19 / 29

About the rules

Are these rules the minimal set of type rules?

➙ The sum and product rules are the standard monoidal iso’s.
➙ The function rules correspond to the laws of the exponentials.

The rule

(a + b) → c 7→sumprod (a → c) × (b → c)

and its converse are derivable, and therefore omitted.
However, we might want to add them because we want these
transformations to be ‘cheap’.

19 / 29

About the rules

Are these rules the minimal set of type rules?

➙ The sum and product rules are the standard monoidal iso’s.
➙ The function rules correspond to the laws of the exponentials.

The rule

(a + b) → c 7→sumprod (a → c) × (b → c)

and its converse are derivable, and therefore omitted.
However, we might want to add them because we want these
transformations to be ‘cheap’.

➙ I suspect I want to add rules about subtyping.

20 / 29

Minimum cost type transformations

Suppose there exists an ordering on transformations.

Definition 2 (Minimum cost type transformation) A minimum cost
type transformation between types a and b is a type transformation t
between a and b such that for any other type transformation t′ between a
and b, t 6 t′.

Theorem 1 Given any two types a and b, there exists a minimum cost
type transformation.

In general this minimum cost type transformation will not be
unique. The ordering on transformations should be such that:

Theorem 2 Given two canonically isomorphic types a and b, the
minimum cost type transformation between a and b corresponds (in some
sense) to the isomorphism between a and b.

21 / 29

Inferring minimum cost type transformations

I’d like to have a function that automatically infers a (or the)
minimum cost type transformation TYPETRANSFORM between two
types.

Frank Atanassow and I have shown how to generate the unique
isomorphism between two isomorphic types.

We want to use similar techniques to infer a minimum cost type
transformation.

[We haven’t looked at the situation in which multiple solutions exist
yet.]

22 / 29

TYPETRANSFORM is a generic function

➙ TYPETRANSFORM takes two types as arguments, and returns a
function, the structure of which depends on the structure of
the arguments types.

22 / 29

TYPETRANSFORM is a generic function

➙ TYPETRANSFORM takes two types as arguments, and returns a
function, the structure of which depends on the structure of
the arguments types.

➙ TYPETRANSFORM is a generic function that depends on two
type arguments.

22 / 29

TYPETRANSFORM is a generic function

➙ TYPETRANSFORM takes two types as arguments, and returns a
function, the structure of which depends on the structure of
the arguments types.

➙ TYPETRANSFORM is a generic function that depends on two
type arguments.

➙ Generic functions in Generic Haskell take a single type as
argument.

22 / 29

TYPETRANSFORM is a generic function

➙ TYPETRANSFORM takes two types as arguments, and returns a
function, the structure of which depends on the structure of
the arguments types.

➙ TYPETRANSFORM is a generic function that depends on two
type arguments.

➙ Generic functions in Generic Haskell take a single type as
argument.

➙ We can get around this restriction by
– producing a representation of the source value in a

universal language (a generic function depending on the
type Source),

– and calculating the minimum cost type transformation
from that representation to the target type (a generic
function depending on the type Target).

23 / 29

High level structure

typetransform :: Source → Target
typetransform = mctt〈Target〉 . reduce〈Source〉
reduce〈t :: ?〉 :: t → Univ
mctt〈t :: ?〉 :: Univ → t

24 / 29

Reducing to a universal value

Function reduce〈t〉 reduces a value of type t to a value of a universal
data type, defined by, for example

data Univ = UUnit Unit
| UInt Int
| UStr String
| USum Opt Univ
| UProd Univ Univ
| UCon ConDescr Univ

data Opt = ULeft | URight
reduce〈t :: ?〉 :: t → Univ

25 / 29

Costs

We define a data type Cost:

data Cost = IdCost
| TransCost Cost Cost
| UnitCost
| IntCost
| StringCost
| . . .

minCost :: [Cost] → Cost

Furthermore, we have two obvious mappings, cost2tt and tt2cost,
from Cost to type transformations and vice versa.

26 / 29

The minimum cost type transformation

Function mctt〈t〉 returns the minimum cost type transformation. It is
a kind of parsing function with type:

mctt〈t :: ?〉 :: [Univ] → (t, Cost, [Univ])

It implements the type rules given at the beginning of this talk. It is a
large function, with arms of the form:

mctt〈Int〉 univ@((UInt int) : rest) =
let id = (int, IdCost, rest)

phint = (0, IntCost, univ)
in minCost2nd [id, phint]

27 / 29

Soundness and optimality

We want to prove the following theorem:

Theorem 3 (TYPETRANSFORM is sound and optimal) If

typetransform source = (target, cost, [])

then cost2tt cost is a minimum cost type transformation.

28 / 29

Completeness

We would like to have the following result:

Theorem 4 (TYPETRANSFORM is complete) If t is a minimum cost type
transformation, then

typetransform source = (target, cost, [])

where tt2cost t = cost.

However, since I expect that the minimum cost type transformation
is not unique in general, this is unlikely to hold.

29 / 29

Conclusions and future work

➙ Finish the implementation, and develop some heuristics to
increase efficiency.

➙ Work out some more realistic examples.
➙ (Dis)prove the theorems.
➙ . . .

