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Command Algebra

1 Introduction

approaches to semantics of imperative programs
partial /total correctness (wlp/wp) [Hoare 69, Dijkstra 74]
general correctness [Morgan/Morris/Nelson 87, Doornbos 94]
Kleene algebra with tests (partial correctness) [Kozen 97]

demonic relational semantics [Nguyen 91, Backhouse 93,
Desharnais 95, Desharnais/Mili/Nguyen 97,
Desharnais/Moller /T'chier 02/04]

Unifying Theories of Programs (UTP) [Hoare/He 98]
omega algebra [Cohen 00]
demonic refinement algebra (DRA) [von Wright 02]

how do all these interrelate?
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2 Commands (General Correctness)

basic idea [Broy et al. 79, Berghammer/Zierer 86, Parnas 83]
model a program as a pair (a,p) consisting of
a transition relation a between states and
a set p of states with guaranteed termination
|[Parnas 83| required p < dom a (= set of starting states of a)

allows distinguishing the “must-termination” given by p

from the “may-termination” given by dom a

excludes “miraculous” program behaviour

[Morgan /Morris/Nelson 87] dropped this restriction
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basic non-iterative commands

fail & (0,1)

skip = (1,1)

loop def (0,0)
(a,p) [(b,q) = (aVb,pAq)
(a,p);(b,q) = (aAb,pAlalq)

where
— 0 = empty transition relation/false

— 1 = identical transition relation/true

def

- la]g = —dom (a A—q) (analogue of wlp)
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algebraic properties:
(COM(S), [], fail,;, skip) is a left semiring
fail 1s only a left zero
even right-distributive

associated natural order on COM(S):
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if S is a complete lattice then so is COM(S)

if S has a greatest element T then chaos def (T,0) is the

greatest element of COM(S)

whereas havoc & (T, 1) represents the most nondeterministic

but everywhere terminating program
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weakest (liberal) precondition

wip.(a,p).q = [alg

def
wp.(a,p).q = pAwlp.(a,p).q

then p = wp.(a,p).1, so that, for command Kk,
wp.k.g = wp.k.l Awlp.k.q

(Nelson’s pairing condition)
by antitony of box: k <1 = wp.k > wp.l

(converse of the usual refinement relation)

Moller -7 - WG 2.1 06



Command Algebra

3 wpis wlp

definition of commands based on tests (abstract versions of

assert-statements that characterise sets of states)

analogous test commands: (p, 1) where p is a test

this admits a domain operation on commands:

domk = (grd.k, 1)

where, as usual,

grd.(a,p) det —wp.(a,p).0 = p —- doma
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corresponding box operator

kl(q,1) = (wpk.q,1)

this equation explains the title of this section:

wp wlp

except for fail the usual wp/wlp laws are just general laws for
box operators

moreover, we can re-use the general soundness and relative

completeness proof for propositional Hoare logic from
[Moller /Struth 04]

this yields fairly quickly a sound and relatively complete proof

system for wp
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refinement relation:

(a,p) I (b,q) & q<p A gra<hb

—] is a preorder

associated equivalence:

(a,p)=(b,q) © p=qg N pAa=pAb
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4 Relation to UTP

UTP specs and programs are predicates relating initial values v
of variables with their final values v’

ok < program has been started
ok’ < program has terminated

both may occur freely in predicates
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________________________________________________________________________________________________________________________________________________________________________|

set of all such predicates is too general

subclass: designs

PFQ & (0kAP = ok’ AQ)

where ok and ok’ do not occur in P or Q
informal meaning: a computation is allowed by the design iff
when started in a state satisfying P it will terminate in a state

satisfying Q
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still narrower subclass: normal (or (H3)) designs

where the precondition P may involve only initial values

such a predicate is formally called a condition

an (H3) design p F a can be modelled as the command (a, p)
(actually as an equivalence class under refinement equivalence)

the more general normal prescriptions of [Dunne 01] correspond
precisely to the set of all commands (without a quotient

formation)

'
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feasible (or (H4)) designs model programs that cannot

“recover” from nontermination

characterised by chaos; k = chaos

equivalent to Parnas’s condition p < doma
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general UTP predicates:

can be modelled as 2 x 2-matrices that record the residual

predicates for the four possible combinations of the values of
ok and ok’ [Moller 06]

in this way the unobservables ok and ok’ are truly hidden
choice then becomes matrix addition
and ; becomes matrix multiplication

designs and prescriptions correspond to matrices of special
shapes, from which many of the relevant laws can be derived
more simply and concisely than from the original predicative

specifications
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5 Relation to Demonic Semantics

demonic semantics is a simplification of the general command

semantics for feasible commands
projection: (a,p) — (p Aa, p Adoma)

for such commands the termination information coincides with
the domain of the first component,

hence can be omitted
ie., (a,p) — p Aa suffices

inverse operation (up to refinement equivalence) b — (b, dom b)
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this 1s the view of demonic semantics:

all states that have the possibility of triggering a
non-terminating computation are considered “unsafe”, and
hence all “proper” transitions for them are deleted as well
hence all such states are excluded from the domain of the
corresponding semantic element

this means that the transition part alone is sufficient

the demonic operators can now be from the

command versions using the above projection/injection pair
|Guttmann /Moller 06]
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6 Iteration and Demonic Refinement
Algebra

finite /infinite iteration: (left) Kleene/w algebra

DRA: strong iteration (finite or infinite iteration)

connection [Hofner /Moller /Solin 06]
DRA = left w algebra + chaos is a left zero
strong iteration = x + w

in particular, the commands form a DRA

this can be non-extensional, hence not isomorphic to a

predicate transformer model

therefore the DRA axioms do not characterise predicate

transformer models uniquely
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