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1 The Shortest Path Problem

informal problem statement:

given:

— directed graph (n, e)

— with node set n and non-negatively weighted edge set e
— a starting node s e n

task: for each v € n return

— length of a shortest path from s to v

— or oo if there is no path from s to v.
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algebraic formulation:
calculate d = s;e”

where ; is path concatenation (under adjustment of costs)

aim of derivation: eliminate the expensive star operation

earlier version: |Backhouse et al. 92/94]
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2 Some Properties of Paths

general idea: work with an algebra of path sets (and their costs)
edge sets: sets of paths with 2 nodes

node sets: sets of singleton paths

concatenation: glue at common intermediate node (associative)

for node set m and path set a
— m; a set of paths in a that start in m-nodes
— a; m set of paths in a that end in m-nodes

hence set n of all nodes is the identity of composition

a* arbitrary finite iteration of a, i.e., all paths that can be

constructed out of an arbitrary finite number of a-paths
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choice:

a [| b: for all pairs of nodes take shortest connecting paths
provided by a or b

refinement order: aC b =4 al/b=D>b

(b refines a iff it offers the less costly paths)

since singleton paths are always cheapest (cost 0), set n of all
nodes refines all sets: a C n

a full graph may offer better paths than a restricted one:
m;al a

composition distributes over choice, hence is C-isotone

convention: composition binds tighter than choice

further details in Appendix II
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three essential properties used in the derivation:

for graph node p and path set a:

p;a;p C p (no detours)
since all path costs are non-negative, any path from p to itself
cannot be cheaper than the 0-cost trivial singleton path

consisting just of p

*

a* =nfa;a* =n{a*;a (star recursion)

iteration of a either uses zero a-paths or one a-path

followed /preceded by zero or more others

(b [] c)*: arbitrary alternations of b paths and ¢ paths
(bflc)* = c¢*5(m [ bi(cb)*)  (path grouping)

= (m[] (b]c)*;b)5c
exhibit maximal c-sequences at the beginning or end
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3 Dijkstra’s Algorithm

central ideas:

generalise the problem by using a set ok of nodes for which the
problem 1s solved exactly

initially, ok is empty
extend this set node by node till all are in ok

for each node outside ok the algorithm computes an
approximation to d, viz.

the length of a shortest path whose interior nodes are from ok

]
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formalisation:
use the path algebra with node set n and edge set e

for ok < m define generalised function dd by
dd(ok) =4 s;(ok;e)”

expresses that dd(ok) only considers paths with interior nodes
in ok

then, by neutrality of n w.r.t. composition, d = dd(n)

“strategy”: extract maximal subexpressions of form p;a;p to

allow application of no-detours rule
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plan of derivation: find an inductive version of dd that does not
use star operations anymore
maintain the invariant that dd solves the problem exactly, 1.e.,

using all possible paths, for end nodes in ok:

s;(ok;e)":0k = s;e*;ok

more compactly,
dd(ok): ok = d; ok (1)
induction base: ok = ()

dd() = s;0" = s;n = s

invariant holds trivially for dd(()

]
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induction step: calculate behaviour of dd when ok is extended by

a node w < —ok

from this infer how to choose w appropriately to maintain the

invariant
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dd(w || ok)
= { definition dd and distributivity [}
s;(w;el|l ok;e)*
= { path grouping and distributivity [}
s;(okse) s (n [] wie;((w] ok);e)”)
= { definition dd and abbreviation h =4 (W || ok);e [}
dd(ok);(n || w;e;h")
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simplification of second alternative (h =4 (W[ 0k);e):
w:e;h*

= { star recursion and definition of h [}
wie[[w;iesh™;(w]ok);e

= { distributivity }
wiellw;e;h*swie[|w;e;h*; 0k ;e

= { middle summand C first one by no-detours rule [}

w;el|lw;e;h*;0k;e
substituted back:
dd(w || ok) = dd(ok);(n [| w;e [| w;e;h";o0k;e)

now continue simplification with third alternative (after
distribution)
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dd(ok);w;e:;h*;ok;e

C {{sincew;eCeandhCel]
dd(ok);e;e*;ok ;e

C { definition of dd(ok) and star rules [}

s;e*;ok;e

= { definition of d = s;e* and invariant d; ok = dd(ok); ok [}
dd(ok); ok ;e

C { definition of dd(ok) = s; (0ok;e)* and star rule [}
dd(ok)

informal interpretation: shortest paths to nodes outside ok cannot

loop back through ok
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in sum:

dd(w || ok) = dd(ok);(n[|w;e) ()

algebraic equivalent of the usual set of assignments

dd[v] = min (dd[v], dd[w] [| weight(w,V))

forv<mn
(where by the invariant dd(ok); ok = d; ok only the subset

—ok — {w} needs to be considered)

now choose w such that the invariant holds for w [| ok again
sufficient: d;w = dd(w [| ok) ; w

by (%) and no-detours rule the rhs is equal to dd(ok) ;w
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abbreviation: f =4 dd(ok) = s; (ok;e*)
d;w
— { definition of d [}

*

s;e’;w

— { path grouping, using e = ok ;e[| —ok;e [}
s;(ok;e*);(n||—ok;e;e*);w

= { definitions of f and setting e™ =4 e;e" |}
f;(m[]—ok;et);w

= { splitting —ok into its nodes and distributivity [}

fsw ] ([ycoor fiviem;w)

so goal achieved if [| ., f;v;e ;w C f;w
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reduction:
Jvc—anfivie

& 4] universal characterisation of choice [}
Vv<—ok:f;viet;wCf;w

& { instance f;w;e" ;w C f;w of no-detours rule [}
Vv<—-ok:f;vCf;w

this holds iff w 1s a node with minimal cost along ok paths

TwEf;w
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complete algorithm:
dd(0) = s
dd(ok [|w) = dd(ok);(n[|w;e)
if ok # () and w < —ok satisfies

Vv<—o0k : dd(ok);vC dd(ok);w

]
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4 Knuth’s Generalisation

observations:

edge XY with weight m corresponds to an automaton transition
X 5Y
matrix algebra approach works, because the problem is

essentially about automata/regular languages

Knuth generalises this to a context-free setting

Bernhard Moller — 18 - WG2.1 March 06



Dijkstra,Kleene, Knuth

approach:

use restricted cfgs of with productions of the shape (n > 0)

Xi p— f(Xﬂ y oo >Xin)

and associated IN-valued interpreting functions f! that are
1sotone in each argument
superior, 1.e., satisfy

Vj:fl(x1,...,xn)>xj

task: compute for all 1

m(Xi) =ar min{w! :w e L(X;)}
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the shortest path example:

edge X —= Y gives production

X = 1(Y)

with fl(x) =4f M+ X
f is 1sotone and superior

for start node S add a production S ;=20
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algorithm:

use again a set ok and an auxiliary function mm

ok is the set of nonterminals X for which m(X) has been

determined
for all other Y the value mm(Y) approximates m(Y)

invariant: V X € ok : mm(X) = m(X)

initialisation: ok :=0;V X : mm(X) := oo
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loop:
if all nonterminals are in ok, stop
otherwise, for all Y ¢ ok, compute
mm(Y) =g min{f!(m(X7),..., m(X;,) |
You=1f(X7,..., X)) A{Xq,..., Xn} C ok}

(if the set involved is empty then mm(Y) = oo)

choose a Y with minimum mm(Y)
ok := ok U{Y}
m(Y) = mm(Y)
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challenge:

find a nice calculational correctness proof/derivation for Knuth'’s

algorithm
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Appendix I: Just for Fun - The
Floyd /Warshall Algorithm

this is the all-pairs shortest non-empty path problem
specification even simpler than for Dikstra: compute e™

central idea: use again a set ok that restricts the inner nodes of

paths and increment it stepwise

specification of auxiliary function:

rt(ok) =4 e; (0k;e)”

(“restricted transitive closure”)

I
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here another star property is useful:
(a[]b)* = a*;(b;a*)* = (a*;b);a* (star of sum)

induction base:
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induction step: for arbitrary node w:
rt(ok [| w)

= { definition 7t and distributivity [}
e;(ok;el|w;e)

= { star of sum [}
e;(ok;e)”;(w;e;(ok;e))”

= {fold e; (ok;e)* twice to f =4 rt(ok) [}
5 (w;f)”

= { star recursion and distributivity [}
f [ fsw;f;(w;f)*

= { star recursion and distributivity [}
f [ fiwif [] fiwif;(wif)*iw;f

= { since third alternative C second one by no-detours rule [}
f [ f;w;f
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to guarantee termination, choose w ¢ ok

complete algorithm:
rt() = e
rt(ok [Jw) = f [ f;w;f
where f = rt(ok) and w & ok

depending on the underlying cost semiring (see Appendix II) this is
the Floyd or Warshall algorithm
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Appendix II: Algebraic Background

Definition 4.1 semaring: structure (S, +,-,0,n) such that
(S,+,0) is a commutative monoid
(S,-,1) is a monoid
the distributive laws hold

0 is an annihilator: 0-a=0=a-0

if S 1s idempotent, 1.e., x +x = x, therelation a <b &4 a+b=D>b

1s a partial order, the natural order
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interpretation:
+ ¢ choice,
+ sequential composition
0 < empty set of choices
1 < identity
< ¢« Increase In information or in choices

Example 4.2 tropical semiring:

(mln)—|_) (]N-OO)mIn)—i_)OO)O)

natural ordering: converse of the standard ordering on IN,

1 = 0 1s the largest element.
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generalisation: cost algebra
idempotent semiring with total natural order

in which 1 is the greatest element

further examples:
IR~y U{oo} with the operations as above

Booleans IB with implication order

Bernhard Modédller — 30 — WG2.1 March 06



Dijkstra,Kleene, Knuth

MAT(M>S) — (SMXM>—|—> °>O> ]-)

set of matrices with indices in M and elements of semiring S as

entries

again a semiring

idempotent iff S is

natural order: componentwise

MAT (M, IB) isomorphic to semiring REL(M) of binary

relations over M under union and composition
modelling graphs with edge weights:

MAT(N, S) where S is a cost algebra
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representing sets of graph nodes
test semiring |[Kozen 97|: pair (S, test(S)) with Boolean
subalgebra test(S) C [0, 1] such that
0,1 € test(S)
+ is join and - is meet in test(S)
S is discrete if test(S) = {0, 1}
S = (min,+) is discrete, but MAT (M, S) can be made

non-discrete:
choose as tests all matrices with tests on the main diagonal and

0 outside
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over discrete S, matrix p i1s a point if it is an atom in
test(MAT(M, S)),
i.e., if it has exactly one entry 1 in its main diagonal (and
hence 0 everywhere else)
general tests represent subsets of M in the analogous way
for points p and q and matrix a

aww fu=pAv=q

(]9 - ac q)uv — .
0 otherwise
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Lemma 4.3 Consider a discrete cost algebra S, a point p and an
arbitrary matrix a of MAT(M,S). Thenp-a-p <.

since IB is a cost algebra, this property holds for the relation
semiring REL(M), too
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iteration: add Kleene star and plus with standard axioms |[Kozen94]

Example 4.4 Since in (min,+) the multiplicative unit 1 = 0 is the
largest element, and x* = 1 for all x < 1, we can extend (min,+)

uniquely to a Kleene algebra by setting n* =1 for all n € N, .

useful law

(b+c)" = (14+(b+c)"-b)-c* = b*-(1+b-(b+c)*) (path grouping)
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fact [Conway71]: MAT(M, S) over Kleene algebra S can be

extended to a Kleene algebra

Corollary 4.5 Consider a discrete cost algebra S, a point p

and an arbitrary matriz a of MAT(M,S). Thenp-a*-p =p.

reason: 1 < a* holds for all Kleene algebras
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connection to path problems:

for graph matrix a € MAT (M, S) over cost algebra S and

X,y € M:

element a}(y gives the minimum cost of paths with exactly 1
edges from x to y

hence af,, 1s the minimum cost along arbitrary paths

from x to y
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