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1 Survey

aim: give algebraic semantics to some modal logics
such as multiagent common knowledge logic
and preference logic

apply the algebra to some examples
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2 The Wise Men Puzzle

wise men puzzle:
a king wants to test the wisdom of his three wise men

they have to sit on three chairs behind each other, all facing

the same direction
the king puts a hat on each head, either red or black

he announces that at least one hat is red

he asks the wise man in the back if he knows his hat colour
that one denies

he asks the middle one who denies, too

now he says to the front one: “If you are really wise, you should

now know the colour of your hat.”
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formalisation:

rules of the puzzle represented as individual knowledge K;¢ of

man i or common knowledge C¢ where 1\ are certain formulas

let r; mean that i’s hat is red (numbering in order of

questioning, i.e. from back to front)
every man can only see the hats before him
C(ri = Kjri) C(—r — Kj—r) (j <i)
at least one hat is red
C(r1 Vo V r3)
after the king’s questions
C(—=Kir; \ =K;—r;) (i=1,2)

can we infer anything about K313 from that?
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3 Modelling Knowledge (Epistemic
Modal Logic)

Kripke semantics for modal logic:
set of possible worlds
predicates characterise subsets of possible worlds
access relation between worlds

the worlds accessible from a current world w are called the

epistemic neighbours of w

box/diamond act as universal/existential quantifiers over the

neighbour worlds

knowing p means that p holds in all neighbour worlds
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setting: systems with several agents
each has its own access relation with associated box operator K;
now K;p is interpreted as “agent 1 knows p”
corresponding special properties :
Kip<p if 1 knows p, it’s actually true
Kip < KiKip if 1 knows p, she knows that she knows p,

positive introspection

—Kip < Ki—K;p negative introspection
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4 Algebraic Semantics

abstraction:
use a test semiring (see appendix for precise definitions)

tests (= monotoypes = coreflexives) play the role of predicates
or sets of worlds
0 & false «— () 1 & true & set of all worlds

< is implication (or subsethood)
general elements play the role of access relations

compositions pa and ap of an access element a with a test p

mean restriction of a on the input/output side

hence paq is the part of a that takes p-elements to g-elements
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informal definition of the box operator:

a world w satisfies [a]q iff all worlds accessible from w via a

satisfy (or guarantee) p

for the algebraic characterisation we lift this to sets of worlds

all p-worlds satisfy [a]q iff there is no a-connection from

p-worlds to —g-worlds:

p <lalg & pa—q <0
the diamond is the de Morgan dual of box:

(a)q & —[a]—q
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consequences of the definition:

box 1s normal, 1.e.

[a]1 =1 [al(p — q) < [dl(p) — [al(q)

consequently, box is conjunctive, hence isotone,
diamond is disjunctive, hence isotone

box 1s anti-disjunctive

[a+Dblp = [alp A [blp
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additional axiom for composition:

[ab] = [a][b]

in a Kleene algebra this entails box star induction:

q<pAgq<lalg=q<[a*lp
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modelling common knowledge:
assume agents i€ [ ={1,...,n}
agent group G C 1
two operators for expressing common knowledge:
Ecgp: everyone in group G knows p

Cgp: everyone knows that everyone knows that ...
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formal definition: exploit the algebra of modal operators
for G = {kq,...,km},
E(;p = Kk1P VANERIRIVAN Kkmp

[Clk1]]9 ZANRERIVAN [akm]P
= |lax, + -+ ax. lp
= laglp

def
where ag = ay, +---+ax

m
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for Cg we obtain
Cop = Egp N\ EgEgp A EGEGEcp- -
= laglp A lagllaglp A lagllagllaglp -+
= [lag+ag +at -]

= [atlp

if the underlying semiring is even a Kleene algebra

in sum we have an algebraic version of the multiagent logic KT'45™
(see e.g. [HRO4])
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using common knowledge:

implication order )
a<b b —a+b

expresses that b offers at least as much transition possibilities

as a
the addition law entails

a<b = [blp <l[alp

(if more choices are offered, one can guarantee less)
now, since ay, < ag < af we get

Cop < Egp < Kyp

and
Cop < CeKyip
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5 Solving the Wise Men Puzzle

main reasoning principle: isotony of modal operators M
p<qg = Mp < Mg
(remember that < means implication)

basic equivalence (shunting)

p<qg& 1<p—gq
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repetition of the knowledge assertions

C(I’i — Kjl’i) C(_‘I’i — KJ‘_‘I’;) () < 1)
C(r1 \V4 o V r3)
C(—Kiri A —=Ki—rj) (i=1,2)

before using isotony we take the contrapositives of the first two
clauses to have simple literals right of — and rewrite the third into

an implication (fourth unchanged):

C(—=Kjri — —rj) (1)
C(=Kj=ri — ) (2)
C(—ra A\ —r3 —rg) (3)
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C(_‘Kjl’i — _‘I’i) (])
C(=K;=ri — r) (2)
C(—ra A —r3) = rq) (3)

now we reason as follows:

Ki((—r2 A —r3) = rq)

< Ki(=ra A\ =r3) — Kirg normality

=  —Kirp = —Ky(—rp A —r3) contraposition

= —Kirp = (—Ki—rp V —Ki—r3)  conjunctivity, de Morgan
< —Kirp = (r2 Vr3) by (2)
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hence

C(I’l V o V I’3) AN C(_‘Kll’l)

<  CKi(r1 Vra V) A C(—Kir) use of common knowledge

< C(—=Kir1 = (rp V r3)) A C(—Kir;) previous derivation

= C(rp V r3) normality, modus ponens
analogously,

Clra V r3) N\ C(—Kara) < C(r3) < Ks(rs)

and we are done
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generalised form of the argument: for agent groups G and H C G,

C(\/ I’j) AN C(/\ _‘Kil’i) A\ C(/\ /\ ry — Kil’j) < C( \/ I’j)

j€G icH icH jeG—H jeG—H

puzzles with a similar structure that should allow re-use of the

general result:
muddy children
unexpected hangman’s paradox

Mr. S and Mr. P
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6 Preferences and Their Upgrade

some agent logics allow expressing preferences between possible
worlds, e.g. |[BLO4]

since we are completely free in choosing our accessibility

elements, we can also include these

each agent 1 has her own preference relation <;

then [<i]p holds in a world w iff p holds in all worlds that

agent 1 prefers to w under =

requirements on <;: preorder, modally expressed by
=ilp <p reflexivity
[=ilp < [Zil[=ilp transitivity

antisymmetry is not required: agent 1 is indifferent about w;

and wy 1f wi <; wo A\ wo <5 Wi
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some things that can be modelled that way:
regret: Ki—p A (=Xi)p
although agent 1 knows her wish p cannot be satisfied, she’d

still prefer a world where it could

the agent system can be updated in various ways

in belief revision agents may discard or add links to epistemic

neighbour worlds

e.g., public announcement of property p, denoted !p:

make sure that all agents now know p

to this end, remove all links between p and —p worlds:

ailp =paip +—pai—p
preference upgrade by suggesting that p be observed:

def
PH=ZL= PP U P

now agent a; no longer prefers —p worlds over p ones
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and so on — the field is vast...
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Appendix: Algebraic Background

Definition 6.1 semiring: structure (S, +,-,0,1) such that
(S, +,0) is a commutative monoid
(S,-, 1) is a monoid
the distributive laws hold

O is an annihilator: 0-a=0=a-0

if S is idempotent, 1.e., x + x = x, the relation a < b (%é:f a+b=D

1s a partial order, the natural order

test: element p < 1 that has a complement —p relative to 1
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interpretation:
+  choice,
— sequential composition
0 « empty set of choices
1 identity
< ¢ Increase in information or in choices
test: < assertion/predicate

Kleene star and plus can be added with the usual axioms

Mboller — 24 — WG 2.1 06 Namur



